用户名: 密码: 验证码:
矿区复垦土地质量监测与评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据《土地复垦条例》对复垦事业制度化、规范化和法制化的要求,以及《国土资源“十二五”科学和技术发展规划》提出的制定和完善矿区土地复垦动态监测的标准的需要,本文以黄土高原区平朔露天煤矿为实例,从矿山土的研究出发,结合矿区土地利用分类的特点,在研究区内进行了野外的样地监测与采样,通过室外现场调查和室内分析,选用了土地立地条件、理化性质和生产力作为矿区土地质量的监测指标,建立矿区土地质量监测与评价指标体系,对矿区原地貌阶段、损毁后未复垦阶段和已复垦阶段的耕林草地进行了土地质量评价,主要研究结果如下:
     (1)针对矿山土的特点,建议将矿山土划分在人为新成土亚纲下,命名为矿山人为新成土,并尝试以矿山土的成土母质、复垦区划中的类型区、堆垫及填充土层的厚度或地名分别作为矿山土的亚类、族和系的划分及命名的依据。
     (2)针对当前矿区土地利用分类调查中的问题,结合矿区土地利用与管理的现实需要,参考矿区土地利用的用途和覆盖以及阶段性特点,提出了矿区土地利用调查与分类的建议,并尝试用三级分类的方式补充了“采矿用地”的含义。
     (3)在研究区选取18块监测样地剖面和混合采样两种方式进行调查与采样分析,发现以当地土壤作为主要复垦物质进行土壤重构对环境不会造成污染,土壤的有效厚度至少在60cm以上,剖面质地多为通体壤,经过地形重塑后的矿区土地和原地貌平原区基本一致,更适合规模化、机械化耕作,复垦后的土地生产力除了耕地外,林地和草地都有明显提高,说明以草地和林地为主要复垦方向是最佳选择。
     (4)矿区内复垦土壤以及未复垦土壤的容重与原地貌土壤相同层次的容重相比较高,其中未复垦土壤容重高达1.7g/cm3以上;但随着复垦年限的延长,复垦地表层土壤容重逐渐向原地貌土壤靠近。矿区所在地的土壤偏碱性或碱性,复垦地的pH值跟复垦时间、排土方式和地形坡度相关;未复垦土地的pH值在剖面分布上较均匀。
     (5)土壤有机质含量在原地貌耕地和林地的土壤剖面中的分层现象明显,复垦地中的有机质含量随时间增高逐渐升高,其中复垦林地的表层土壤中有机质含量稍高。从混合土样的情况来看,复垦林地和边坡的复垦草地的有机质含量高于原地貌土地,而复垦耕地的有机质含量普遍较低,跟复垦时间、地形坡度和排土方式有一定的关系。
     原地貌土壤中全氮含量随土层深度的增加而降低,在复垦地中的全氮含量出现有不规律变化现象。从土壤表层的混合土样来看,全氮含量在复垦耕地中最低,且跟复垦时间无必然联系。
     从剖面分布来看,除了边坡处的复垦草地外,其余复垦地的全磷含量在同一土层中要高于原地貌的耕林地。复垦地的有效磷含量在同一土层中普遍高于原地貌土地,但在土壤的剖面分布中不均匀,无规律性。从样地的混合土样情况看,复垦耕地和林地的全磷与有效磷含量均高于原地貌耕地和林地;复垦草地的全磷高于原地貌草地,有效磷相反。
     从土壤剖面全钾的含量及分布上来看,复垦地和原地貌土地中的全钾含量在同一土层中相差不大,且整体分布较均匀。但从速效钾的含量和分布来看,原地貌耕林草地分布相似;复垦地中的速效钾含量一般随深度的增加而降低。从样地中混合土样的情况来看,复垦地中的全钾和速效钾的含量均高于原地貌土地。
     未复垦地中的有机质、全氮、全磷、有效磷、全钾和速效钾含量在剖面上分布均匀;从表层混合土样的情况看,未复垦地中有机质和全氮含量偏低,而磷和钾素含量较高,因此在今后植被重建的过程中需多施用有机质和氮肥。
     (6)复垦土地质量跟其复垦时间、复垦方向、地形地貌等有密切关系,其中在平朔矿区制约土地复垦质量的最主要因素依次是土壤容重、酸碱性和有机质含量,因此在今后平朔矿区的土地质量监测过程中,这三项指标是在复垦过程中需着重监测的内容。
According to the requirement of Land Reclamation Regulations forinstitutionalization, standardization and legalization, as well as the need to developand improve the standard mine land reclamation dynamic monitoring proposed byChina Land and Resource Twelfth Five-Year Scientific and Technical DevelopmentPlan. This dissertation took Pingshuo opencast mine in the Loess Plateau as anexample, from the point of view of minesoils, combined with land use classificationcharacteristics in mining area, and monitoring and sampling of field plots were carriedout in the study area. Through the field investigation and indoor analysis, the sitecondition, physical and chemical properties, productivity as the monitoring indicatorsof mining land quality. Finally, the land quality monitoring and evaluation indexsystem was established, and the land quality of farmland, forestland and grassland inundisturbed stage, damaged stage and reclaimed stage was evaluated. The mainresearch results were as follows:
     1. According to the characteristics of minesoils, it recommended minesoils to theSuborder of Anthric Entisols, which named Mine Anthric Entisols. It attempted todivide and name minesoils by soil parent material, type area of reclamation, pilingand filing layer thickness or local place name as minesoils’ Subgroup, Tu, Series.
     2. In view of the current land use classification and the meaning of excavatingland that was not perfect, for the purpose of practical needs of use and managementfor land in mining area, as well as the characteristics of land use and coverage inmining area, it proposed land use investigation and classification in mining area, andattempted to use the way of three level classification to complement the meaning ofexcavating land.
     3.18monitoring sampling plots were selected in the study area, and theinvestigation and sampling analysis were carried out by the profile and mixedmethods. It found that the local soil as the major reclamation substance could notcause pollution to the environment. The effective thickness of soil is more than60cm,and the whole soil profile texture is loam. The terrain of mining land which had beenremodeled was as the same as the undisturbed plain area, which was more suitable forlarge-scale mechanized farming. The productivity of reclaimed land, such as forestland and grassland except for farmland were improved significantly, which means thereclamation direction of forestland and grassland was the best choice.
     4. The bulk density of minesoils is higher than the nature soil in the same layer.With the extension of reclamation years, it is gradually near the undisturbed soil onthe surface level. The local soil is alkaline, and the pH of reclaimed land is related toreclamation time, dump ways and terrain slope, while the pH of un-reclaimed land isuniform.
     5. Stratification of soil organic matter content appeared in the soil profile in theundisturbed farmland and forestland is obvious, while the content of organic matter inthe reclaimed land increased gradually with time, among which the surface soil ofreclaimed forestland has more organic matter. In the view of mixed sampling, the content of organic matter in reclaimed forestland and grassland was higher than thatof the undisturbed land, while the reclaimed farmland has a little lower organic matter,which is related to the reclamation time, terrain slope and dump ways.
     The total nitrogen content decreased with the increase of soil depth, while inreclaimed land it showed irregular change. In the view of mixed soil samples from thesurface soil, reclaimed farmland had the lowest total nitrogen, which has littlecontacted with reclamation time.
     In addition to the reclaimed grassland in the slope terrain, the content of totalphosphorus of other reclaimed land was higher than undisturbed land in the samelevel. The available phosphorus content of the reclaimed land is generally higher thanthe undisturbed land in the same layer, but it showed irregular in the soil profile. Inthe view of mixed soil samples, total phosphorus and available phosphorus werehigher than undisturbed farmland and forestland. Total phosphorus of reclaimedgrassland was higher than undisturbed grassland, while the available phosphorus wasopposite.
     In the view of total potassium content and distribution, it has no differencebetween reclaimed and undisturbed land. The distribution of available potassiumcontent in the undisturbed land was the same, while it in decreased with increasingsoil depth in the reclaimed land. According to the mixed soil samples, both the totaland available potassium were higher than that in undisturbed land.
     The distribution of organic matter, total nitrogen, total phosphorus, availablephosphorus, total potassium and available potassium in the soil profile was even in theun-reclaimed land. In the view of mixed surface soil, organic matter and total nitrogenwere lower, while the phosphorus and potassium content were high enough, whichmeans the organic and nitrogen fertilizer were needed in the future course ofvegetation reconstruction.
     6. The quality of reclaimed land is related to the reclamation time, reclamationdirection, and terrain. In Pingshuo mining area, the most important factors ofrestricting land reclamation quality are bulk density, pH and organic matter, so it mustfocus on the three indicators in the process of monitoring.
引文
Akala V A,Lal R. Soil organic carbon pools and sequestration rates in reclaimed minesoils inOhio[J]. J Environ Qual,2002,30:2098-2104
    Alan Kosse, Albuquerque N.M. Classification of anthropogenic soils in WRB[A].2ndInternational Conference “Soil Classification2004”,2004
    (英)Andy Moffat,John McNeil著.废弃土地的林业复垦技术.孙凤等译.郑州:黄河水利出版社,1994
    Arrouays D,Morvan X,Saby P. Environmental assessment of soil for monitoring volume IIa:Inventory and Monitoring[R]. Luxembourg: Office for official publication s of theEuropean Communities,2008:29-40
    Arshad M.A,Cz M.Coen. Characterization of soil quality: physical and chemical criteria[J]. Am. J.Alters. Agric,1992,7:5-12
    C.A.Seybold,R.B.Grossman,H.R.Sinclair,et.al. Evaluation soil quality on reclaimed coal minesoils in Indiana[A]. National Meeting of the American Society of Mining and Reclamationand the25thWest Virginia Surface Mine Drainage Task Force[C].2004
    Carlson C.L, Adriano D.C. Environmental impacts of coal combustion residues [J]. Journal ofEnvironmental Quality,1993(22):227-247
    Chad N. Casselman,Thomas R.Fox,Jame A. Burger. First-year survival and growth of threespecies assemblages planted on reclaimed mine land as affected by three levels ofsilvicultural intensity[A]. Proceedings of the13thbiennial southern silvicultural researchconference[C],2006
    Duxbury T,Bicknell B. Metal-tolerant bacterial populations from natural and metal-pollutedsoils[J]. Soil Biol. Biochem,1983,15:243-250
    European Environment Agency. Proposal for a European soil monitoring and assessmentframework[R]. Copenhagen: European Environmental Agency,2001:5-6
    Graham Sparling,Louis Schipper. Soil quality monitoring in New Zealand: trends and issuesarising from a broad-scale survey[J]. Agriculture,Ecosystem and Envrionment,2004,104:545-552
    H.Croft,N.J.Kuhn,K.Anderson. On the use of remote sensing techniques for monitoringspatiotemporal soil organic carbon dynamics in agricultural systems[J]. CATENA,2012,94(6):64-74
    H.R.Sinclair,K.M. McWilliams,C.A. Seybold,et al. Characterization of reclaimed soils insouthwestern Indiana after surface mining for coal, part II[A]. National Meeting of theAmerican Society of Mining and Reclamation,2005
    Jacinthe P A, Lal R. Spatial variability of soil properties and trace gas fluxes in reclaimed mineland of southeastern Ohio[J]. Geoderma,2006,136(3):598-608
    James A. Burger,Daniel M. Evans. Ripping compacted mine soils improved tree growth18yearsafter planting[A]. National Meeting of the American Society of Mining and Reclmation[C],2010
    J.Dumanski,C.Pieri. Land quality indicators: research plan[J]. Agriculture, Ecosystem andEnvironment,2000,81:93-102
    John F.Unerwood,Neil E. Smeck. Soil development in two Ohio minesoils under continuous grasscover for twenty-five years following reclamation[A].2002National Meetings of AmericanSociety of Mining and Reclamation[C]. Published by ASMR,2002
    Klingebiel L, Montgomery P.H. Land capability classification. Agricultural Handbook.Department of Agriculture,U.S.A. Washington DC,1996
    Kukier U,Summer M.E. Boron availability to plants from coal combustion by products [J]. Water,Air, and Water pollution,1996(87):93-110
    Lauric Cecillon,Bernard G. Assessment and monitoring of soil quality using near infraredreflectance spectroscopy (NIRS). European Journal of Soil Science,2009,60:770-784
    Lorenz K,Lal R. Stabilization of organic carbon chemically separated pools in no-till and meadowsoils in Northern Appalachia[J]. Geoderma,2006,137(2):205-211
    Maharaj S,Barton C D,Karathanasis T A D. Distinguishing new from old organic carbon inreclaimed coal mine sites using thermogravimetry: II. Field validation[J]. Soil science,2007,172(4):302-312
    Ma Y,Dickinson N M,Wong M H. Beneficial effects of earthworms and arbuscular mycorrhizalfungi on establishment of leguminous trees on Pb/Zn mine tailings[J]. Soil Biology andBiochemistry,2006,38(6):1403-1412
    M.K. Shukla,R. Lal,M. Ebinger. Soil quality indicators for reclaimed minesoils in southeasternOhio[J]. Soil science,2004,169(2):133-142
    M.K. Shukla, R. Lal, M. Ebinger. Determining soil quality indicators by factor analysis[J]. Soil&Tillage Research,2006,87:194-204
    M.K. Shukla, R. Lal,John F.Unerwood. Physical and Hydrological Characteristics of ReclaimedMinesoils in Southeastern Ohio[J]. Soil Science,2004,68(4):1352-1358
    M.K. Shukla, R. Lal,M. Ebinger. Physical and chemical properties of a mine spoil eight yearsafter reclamation in Northeastern Ohio[J]. Soil Science,2005,69(4):1288-1297
    National Resources Council. Surface mining: soil, coal and society. Washington D C: NationalAcademy Press,1981
    O.N. Belyaeva,R.J.Haynes. Chemical, microbial and physical properties of manufactured soilsproduced by co-composting municipal green waste with coal fly ash[J]. BioresourceTechnoloygy,2009,100:5203-5209
    Raj K. Shrestha,Ratttan Lal. Soil carbon and nitrogen in28-year-old land uses in reclaimed coalmine soils of Ohio[J]. Environment,2007,36:1775-1783
    Raj K. Shrestha,Ratttan Lal. Land use impacts on physical properties of28years old reclaimedmine soils in Ohio[J]. Soil,2008,306:249-260
    Raj K. Shrestha,Ratttan Lal. Changes in physical and chemical properties of soil after surfacemining and reclamation[J]. Geoderma,2011,161(3-4):168-176
    Rossiter D.G. Proposal for a new reference group for the World Reference Base for Soil Resourcesthe Technosols(2ndrevised draft),2006
    Rossiter D.G. Classification of urban and industrial soils in the World Reference Base for SoilResources:Working Document[A]. SUITMA conference
    Sencindiver J.C,J.T. Ammons. Reclamation of drastically disturbed lands. Agron. Monogr.41.ASA, CSSA, and SSSA, Madison, WI. Minesoil genesis and classification,2000
    Simms D L,Morgan H. Comparison of amendments and management practices for long-termreclamation of abandoned land[J]. Sci. Total Environ,1998,75:135-143
    Stroganova M,Prokfieva T. Urban soils-concept, definition, classification[A]. First InternationalConference on Soils of Urban, Industrial, Traffic and Mining Areas[C],2000
    S.W.Blecker,L.L.Stillings,M.C.Amacher,et al. Development of vegetation based soil qualityindices for mineralized terrane in arid and semi-arid regions[J]. Ecological Indicators,20:65-74
    Wilding L.P,Ahrens R.J. Soil Taxonomy: Provisions for Anthropogenically Impacted Soils[A].European Soil Bureau Research Report No.7,2002
    百度百科.土壤发生学[DB/OL]. http://baike.baidu.com/view/3011894.htm,2012
    白中科,赵景逵,朱荫湄.试论矿区生态重建[J].自然资源学报,1998,14(1):35-41
    白中科.工矿区土地复垦与生态重建[M].北京:中国农业科技出版社,2000
    白中科,付梅臣,赵中秋.论矿区土壤环境问题[J].生态环境,2006,15(5):1122-1125
    白中科,左寻,郭青霞.大型露天煤矿土地复垦规划案例研究[J].水土保持学报,2001,15(4):118-121
    白中科,郧文聚.矿区土地复垦与复垦土地的再利用—以平朔矿区为例[J].资源与产业,2008,10(5):32-37
    卞正富,张国良.矿山复垦土壤生产力指数的修正模型[J].土壤学报,2000,37(1):124-130
    曹志洪,周建民等.中国土壤质量[M].北京:科学出版社,2008
    陈百明.加拿大耕地质量监测概述[J].资源科学,1996,2:77-80
    陈百明,张凤荣.中国土地可持续利用指标体系的理论与方法[J].自然资源学报,2001,16(3):197-206
    陈百明,周小萍.《土地利用现状分类》国家标准的解读[J].自然资源学报,2007,22(6):994-1003
    陈龙乾.土地复垦评估[J].矿山测量,1996,(1):38-48
    陈龙乾,邓喀中,徐黎华等.中国矿业大学学报[J].1999,28(5):449-452
    陈龙乾,邓喀中,唐宏等.矿区泥浆泵复垦土壤物理特性的时空演化规律[J].土壤学报,2001,38(2):277-284
    陈星彤,胡振琪,张学礼.煤炭开采沉陷区典型复垦工艺的土壤压实度分析[J].矿业研究与开发,2006,26(2):86-88
    崔艳.生态脆弱矿区土地利用调控机制与对策[D].中国地质大学(北京),2009
    戴尔阜,王昊,吴绍洪等.东北温带旱作农业主要作物生产潜力及资源利用效率评价-以黑龙江海伦市为例[J].地理研究,2007,26(3):461-469
    董飞,宋戈.从哈尔滨市看城市区域土地生态安全评价-以哈尔滨市阿城区为例[DB/OL].http://www.mlr.gov.cn/zljc/201011/t20101117_795389.htm,2010
    董文涛,路明洁,韦大山等.基于模糊数学方法的土壤肥力综合评价及应用[J].资源开发与市场,2011,27(06):511-513
    段丽珍,汪建飞,于群英.长期施肥对菜地土壤氮磷钾养分积累的影响[J].中国农学通报,2007,23(3):293-296
    范英宏,陆兆华,程建龙,等.中国煤矿区主要生态环境问题及生态重建技术[J].生态学报,2003,23(10):2144-2152
    樊文华,白中科,李慧峰等.复垦土壤重金属污染潜在生态风险评价[J].农业工程学报,2011,27(1):348-354
    傅伯杰.土地评价研究的回顾与展望[J].自然资源,1990,(3):1-7
    傅伯杰,陈利顶,马诚.土地可持续利用评价的指标体系与方法[J].自然资源学报,1997,12(2):113-118
    高振纪,邬伦,马修军.黄土高原水土流失监测指标体系研究[J].水土保持研究,2005,12(4):53-55
    郭立刚.我国煤矿、金属矿损毁土地复垦潜力研究[D].中国地质大学(北京),2011
    郭力娜,马仁会,徐东瑞等.农用地等别质量监测带布设方法探讨-以冀豫鄂三省为例[J].资源科学,2008,30(8):1199-1205
    郭力娜,张凤荣,马仁会等.基于标准样地的国家级农用地等别质量监测点设置方法探讨-以冀豫鄂三省为例[J].资源科学,2009,31(11):1957-1967
    郭青霞,贺斌,白中科.大型矿区工业旅游及生态旅游资源开发研究-以平朔矿为例[J].生产力研究,2004(4):131-132
    龚子同.中国土壤系统分类(理论·方法·实践)[M].北京:科学出版社,1999
    顾宁博.中国矿区土地复垦的立法研究[D].中国地质大学(北京),2007
    郝利军.农用地质量动态监测数据申报与预测[D].中国地质大学(北京),2009
    何书金,苏光全.矿区废弃土地复垦潜力评价方法与应用实例[J].地理研究,2000,19(2):165-171
    惠任林.西部开矿需慎行[DB/OL]. http://www.zhb.gov.cn/hjyw/200409/t20040927_61666.htm,2004
    胡春胜.土壤质量诊断与评价理化指标及其应用[J].生态农业研究,1999,7(3):16-18
    胡振琪.煤矿山复垦土壤剖面重构的基本原理与方法[J].煤炭学报,1997,22(6):617-621
    胡振琪,魏忠义,秦萍.矿山复垦土壤重构的概念与方法[J].土壤,2005,37(1):8-12
    李笃仁,黄照愿.实用土壤肥料手册[M].北京:中国农业科技出版社,1992
    李晋川,白中科.露天煤矿土地复垦与生态重建-平朔露天煤矿的研究与实践[M].北京:科学出版社,2000
    李俊杰,白中科,赵景逵等.“矿山工程扰动土”人工再造的概念、方法、特点与影响因素[J].土壤,2007,39(2):216-211
    李俊杰.矿山工程扰动土人工再造的理论、方法与实证研究[D].山西农业大学,2005
    李昆,土壤监测信息系统建设初探[J].西南农业学报,2003,16:38-42
    李玲.高潜水位平原区采煤塌陷地复垦土壤特征与分类研究[D].中国矿业大学,2011
    李玲,宋莹,陈胜华.矿区土壤环境修复[J].中国水土保持,2007,(4):22-23
    李志强,曹永新,李伟光等.安家岭露天矿排土场复垦适宜性评价与效益分析[J].露天采矿技术,2007,(2):58-74
    林大仪.土壤学实验指导[M].北京:中国林业出版社,2004
    刘黎明.土地资源学[M].北京:中国农业大学出版社,2002
    刘灵伟,孔祥斌,姚兰等.国外经验对建立我国国家级标准样地质量监测体系的启示[J].国土资源科技管理,2006,23(6):16-19
    刘美英.马家塔复垦区土壤质量评价及其平衡施肥研究[D].内蒙古农业大学,2009
    刘思峰.科技综合实力评估指标与数学模型[J].南京航空航天大学学报,2002,34(5):409-412
    刘文锴,陈秋计,刘昌华等.基于可拓模型的狂区复垦土地的适宜性评价[J].中国矿业,2006,15(3):34-37
    刘文生,韩彩娟.模糊综合评价法在矿区塌陷土地复垦潜力评估中的应用[J].环境工程学报,2008,2(12):1711-1714
    刘耀林,焦利民.土地评价理论、方法与系统开发[M].北京:科学出版社,2008
    刘振国.准确把握精神实质全面履行法定职责[N].中国国土资源报,2011-04-21
    龙健.我国南方红壤矿区复垦土壤微生物生态特征及其恢复研究[D].浙江大学,2013
    罗明.土地复垦潜力调查评价研究[M].北京:中国农业科学技术出版社,2013
    倪绍祥.土地类型与土地评价概论[M].北京:高等教育出版社,1999
    倪绍祥.近10年来中国土地评价研究的进展[J].自然资源学报,2003,18(6):672-683
    彭建,蒋一军,刘松等.我国农用地分等定级研究进展与展望[J].中国生态农业学报,2005,13:168-170
    戚家忠,胡振琪,赵艳玲.铲运机复垦重构土壤容重值的时空变异特性[J].中国矿业大学学报,2005,34(4):467-471
    秦俊梅.矿区复垦土壤环境分析与评价[D].山西农业大学,2004
    秦俊梅,李俊杰,白中科等.复垦土壤母质原始形成环境及化学特征分析[J].山西农业大学学报(自然科学版),2004,24(2):148-152
    秦俊梅,白中科,李俊杰等.矿区复垦土壤环境质量剖面变化特征研究—以平朔露天矿区为例[J].山西农业大学学报,2006,26(1):101-105
    秦文展,陈建宏.平果铝矿高效复垦示范区土壤质量评价[J].农业系统科学与综合研究,2010,26(3):304-309
    全国农业技术推广服务中心.土壤分析技术规范[M].北京:中国农业出版社,2009
    陕永杰,张美萍,白中科等.平朔安太堡大型露天矿区土壤直来那个演变过程分析[J].干旱区研究,2005,22(4):565-569
    陕永杰,白中科.黄土区大型露天矿区土壤质量评价指标研究[J].能源环境保护,2008,22(2):42-47
    沈善敏.长期土壤肥力实验的科学价值[J].植物营养与肥料学报,1995,1(1):1-9
    苏光全,何书金,郭焕成等.矿区废弃土地资源适宜性评价[J].地理科学进展,1998,17(4):39-46
    孙海运.山东济宁矿区复垦土壤理化特征及修复技术研究[D].中国矿业大学(北京),2010
    孙鸿烈.中国自然资源综合科学考察与研究[M].北京:商务印书馆,2007
    王德利,陈秋计.矿区废弃土地复垦潜力的模糊层次综合评价模型[J].北京工业职业技术学院学报,2002,1(1):28-31
    王欢,王平,谢立祥等.土地复垦适宜性评价方法[J].中南林业科技大学学报,2010,30(4):154-158
    王辉,卞正富,刘夫华等.柳新国家复垦示范区充填复垦土壤性质及其分类建议[J].土壤通报,2005,36(3):295-298
    王辉,卞正富,刘夫华等.徐州柳新采煤塌陷地充填复垦土壤的特性及其分类的初步探讨[J].矿山测量,2004,(3):52-54
    王秋兵.土地资源学[M].北京:中国农业出版社,2007
    王润福,曹金亮.煤矿区土壤环境质量评价[J].水文地质工程地质,2008,(4):120-125
    王涛,刘劲松,吕昌河等.京津冀地区农业土地资源潜力分类评价[J].安徽农业科学,2010,38(19):10150-10153
    王万茂.土地定级与估价[M].徐州:中国矿业出版社,1993
    王越.江西经济社会可持续发展之矿产资源合理利用与保护的对策思路[J].江西地质科学,2000,14(1):28-36
    王煜琴,李新举,胡振琪等.煤矿区复垦土壤压实时空变异特征[J].农业工程学报,2009,25(5):223-227
    吴克宁,焦学瑾,梁思源等.基于标准样地国家级汇总的耕地质量动态监测点构架研究[J].农业工程学报,2008,24(10):74-79
    徐建明,张甘霖,谢正苗等.土壤质量指标与评价[M].北京:科学出版社,2010
    徐中春,谢永生,王恒俊.中国土地资源评价研究新进展[J].中国农学通报,2008,24(3):279-283
    许宁.基于RS和GIS的土地退化程度信息挖掘及评价研究[D].中国地质大学(北京),2008
    许妍,吴克宁.欧盟土壤环境评价监测项目及其对我国农用地质量监测的启示[J].生态环境学报,2011,20(11):1777-1782
    杨国栋,贾成前.高速公路复垦土地适宜性评价的BP神经网络模型[J].系统工程理论与实践,2002,(04):119-125
    叶瑞明,刘洋.标准样地管理系统的设计与实现[J].测绘工程,2009,18(4):50-54
    张耿杰,白中科.平朔矿区生态系统服务功能价值变化研究[J].资源与产业,2008,10(6):8-12
    张耿杰.平朔矿区生态服务功能价值评估研究[D].中国地质大学(北京),2009
    张耿杰,白中科.关于矿区土地分等定级若干问题讨论[A].中国农业工程学会2011年学术年会论文集[C],2011
    张凤荣,安萍莉,胡存智.制定农用地分等定级野外诊断指标体系的原则、方法和依据[J].中国土地科学,2001,15(2):31-35
    张鹤.采矿用地使用权的取得-以地役权解“采矿用地”之结[J].昆明理工大学学报,2009,9(11):44-48
    张学礼,胡振琪,初士力.矿山复垦土壤压实问题分析[J].能源环境保护,2004,18(3):1-4
    赵冈.中国土地制度史[M].北京:新星出版社,2006
    赵景逵.矿区土地复垦技术与管理[M].北京:农业出版社,1993
    赵淑芹,胡振琪.矿区土地利用结构优化研究[M].北京:中国农业出版社,2007
    郑昭佩,刘作新.土壤质量及其评价[J].应用生态学报,2003,14(1):1-4
    中科院南京土壤研究所,中国土壤系统分类课题研究协作组.中国土壤系统分类检索(第三版)[M].合肥:中国科学技术大学出版社,2001
    周伟,曹银贵,白中科等.煤炭矿区土地复垦监测指标探讨[J].中国土地科学,2012,2(611):68-73
    朱德举.土地评价(修订版)[M].北京:中国大地出版社,2006
    朱晓冬.国内外土地复垦现状及经验[DB/OL]. http://www.docin.com/p-289349994.html,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700