用户名: 密码: 验证码:
橡胶/高岭土复合材料的动态生热及其阻隔性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以高岭土原料的矿物学和细化改性处理为研究基础,以高岭土在橡胶基体中的分散程度以及填料-填料和填料-聚合物相互作用机理为研究主线。文章系统分析了高岭土粉体的粒度、表面性质、填充份数以及填料的结构对高岭土/橡胶复合材料的静态力学性能、动态生热性能以及气体阻隔性能的影响。研究表明:高岭土的填充显著提高了橡胶复合材料的物理机械性能,改善了胶料的加工性能,分析填料的补强机理;填充体系中,填料的聚集体和网络化是导致复合材料滞后生热的主要因素。相对传统填料,高岭土填料表现出较弱的“Payne”效应,滞后生热也较低。高岭土填料网络化形成的机理为填料粒子直接接触机理和填料表面吸附橡胶分子形成橡胶壳带机理;复合材料的气体阻隔性能有了显著的改善,在此基础上建立了复合材料的数学阻隔模型,可较好的预测和计算复合材料的透气系数,探讨和解释了高岭土填料对复合材料的阻隔机理。
The kaolin sample was analysed by mineralogy method and processed withrefinement and modification, the dispersion degree of kaolin and the interacton offiller-filler and filler-polymer in rubber matrix were researched. The affection of thekaolin powder particle size, surface properties, contents of filler and the structuretypes of fillers on the mechanical properties, dynamic heating performance and thegas barrier properties of kaolinite/rubber composites was systermatically analysised.The research results indicate that the kaolin has significantly improved the physicalmechanical properties and the processing performance of rubber composites.then, thereinforcing mechanism of kaolin filler in rubber was analysised. In the compositesmatrix, the aggregation and network of kaolin filler is the main factor which resultedlag heating of composite materials. Kaolin filler showed a weaker effection of―Payne‖and lower heat build-up than the traditional fillers, such as Carbon black andprecipitated silica.The mechanism of the kaolin network is the contaction of fillerparticles and the rubber molecular chain segments adsorped on the surface of filler.The kaolin filler has effectively improved the gas barrier properties of compositematerials. Acoordingly, the math barrier model of kaolin filler in the compositematerials were established, which can be applied to predicted and calculatedpermeability coefficient of the composite material filler by kaolin filler. Finally thebarrier mechanism of kaolin filler in rubber was discussed and explained based on thethe combination of experimental results and math barrier model.
引文
[1]赵杏媛,张有瑜.粘土矿物与粘土矿物分析[M].北京:海洋出版社,1990.2
    [2]赵丽颖,蒋引珊,王秀平.改性粘土矿物在橡胶中的应用.世界地质,2001(1):95-99
    [3] Siby Varghese, J. Karger-Kocsis. Natural rubber-based nanocomposites by latexcompounding with layered silicates. Polymer,2003(44):4921-4927
    [4] Ranimol Stephen, Kuruvilla Joseph, Zachariah Oommen. Molecular transport ofaromatic solvents through microcomposites of natural rubber (NR), carboxylatedstyrene butadiene rubber (XSBR) and their blends. Composites Science andTechnology,2007(67):1187-1194
    [5] Qinfu Liu, Yude Zhang, Hongliang Xu. Properties of vulcanized rubbernanocompo sites filled with nanokaolin and precipitated silica. Applied ClayScience,2008(42):232-237
    [6] Yurong Liang, Weiliang Cao, Zhao Liet al. A new strategy to improve the gasbarrier property of isobutylene–isoprene rubber/cl ay nanocomposites. PolymerTesting,2008(27):270-276
    [7] S. Pavlidou, C. D. Papaspyrides. A review on polymer–layered silicatenanocomposites. Progress in Polymer Science,2008(333):1119-1198
    [8] Yahaya L. E, Adebowale K. O, Menon A. R. R. Menon. Mechanical propertiesof organomodifi ed kaolinnatural rubber vulcanizates. Applied Clay Science,2009(46):283-288
    [9]刘钦甫,吉雷波,冯春喜.纳米高岭土在橡塑及其复合材料中的应用.新材料产业,2009:65-68
    [10]张玉德.橡胶/高岭土纳米复合材料的分散性及其阻隔性能研究.中国矿业大学(北京),2007
    [11]杨清芝.实用橡胶工艺学[M].北京,2005
    [12]梁玉蓉.高气体阻隔性能弹性体的制备及有机粘土/橡胶纳米复合材料微观结构的后工艺响应.北京化工大学,2005
    [13]张立群,吴友平,王益庆等.橡胶的纳米增强及纳米复合技术.合成橡胶工业,2000,23(2):71-77
    [14]陈尔洽.炭黑生产中节能降耗的探讨.福建化工,1994,2(31)
    [15]王振华.橡胶纳米增强机理及新型增强导热复合材料的制备_结构与性能研究.北京化工大学,2010
    [16]张方良,伟王,马连湘.炭黑N351填充硫化胶动态性能及生热率的实验研究.弹性体,2006,2(16):28-30
    [17]李昭,卢咏来,王益庆等.高气体阻隔性ECO/OMMT纳米复合材料的性能研究.橡胶工业,2007(6):325-329
    [18]任强,周亚斌,史铁钧.层状结构改进塑料阻隔技术研究进展.现代塑料加工应用,2003,3(15):47-51
    [19] Bharadwaj, A. R. Mehrabi, C. Hamilton. Structure-Property relationships incross-linked polyester-clay nanocoposites. Polymer,2002(43):3699-3705
    [20] Michael Alexandre, Philippe Dubois. Polymer-layered silicate nanocoposites:preparation, properties and uses of a new class of materials. Materials Scienceand Engineering,2000(28):1-63
    [21]王梦蛟.聚合物-填料和填料-填料相互作用对填充硫化胶动态力学性能的影响.轮胎工业,2000,20(10)
    [22]韩敏芳.非金属矿物材料制备与工艺[M].北京:化学工业出版社,2004
    [23]李宪洲,刘研,刘丽华等.高岭土/肼插层材料的制备与表征.吉林大学学报(地球科学版),2006(4):659-662
    [24]张印民,刘钦甫,赫军凯等.高岭土插层—剥片研究进展.中国非金属矿工业导刊,2010(2):11-14
    [25]程宏飞.高岭石插层、剥片及其在橡胶复合材料中应用研究.中国矿业大学(北京),2011
    [26] Patrick V Brady, Randall T. Cygan, Kathryn L. Nag. Molecular controls onkaolinite surface charge. Journal of Colloid and Interface Science,1996(183):356-364
    [27] X. Liu Y. Hu. Chemical composition and surface property of kaolins. MineralsEngineering,2003,11(16):1279-1284
    [28] Kelleher B. P, Sutton D, Dwyer T. F. O. The effect of kaolinite intercalation onthe structural arrangements of N-methylformamide and1-methyl-2-pyrrolidone.Journal of Colloid and Interface Science,2005,2(255):219-224
    [29] Jorge C. Miranda-Trevino, Cynthia A. Kaolinite properties, structure and influence of metal retention on pH. Applied Clay Science,2003,1-4(23):133-139
    [30]高嵩,何广平,吴宏海.高岭石表面酸碱反应的电位滴定试验研究.矿物岩石学杂志,2005,3(24):239-243
    [31]赵顺平,夏华,张生辉.高岭石/有机插层复合材料的研究进展.材料科学与工程学报,2003,4(21):62-66
    [32]吴铁轮.我国非金属行业现状剖析与展望.非金属矿,2002,2(25):8-10
    [33]沈永和.论高岭岩[M].北京:地质出版社,1959
    [34]郑直.中国主要高岭土矿床[M].北京:科技出版社,1987
    [35]李宝智,徐星佩.煅烧高岭土表面改性.非金属矿,2002(S1):48-49
    [36]韩跃新,印万中.矿物材料[M].北京:科学出版社,2006.60-78
    [37]陈福,赵恩录,张文玲等.纳米高岭土的制备方法及应用展望.陶瓷,2007(5):9-12
    [38]韩炜,陈敬中,严春杰等.高岭土深加工研究方向及其纳米化探讨.矿产综合利用,2003,4:27-28
    [39] Franco F, M. Ruiz Cruz D. Factors influencing the intercalation degree('reactivity') of kaolin minerals with potassium acetate, formamide,dimethylsulphoxide and hydrazine. Clay Minerals,2004,2(39):193-205
    [40]程宏飞,刘钦甫,王陆军.我国高岭土的研究进展.化工矿产地质,2008,2(30):125-128
    [41]程宏飞,刘钦甫,赫军凯等.机械—化学法制备超微细煤系高岭土研究.煤炭工程,2012(6):103-106
    [42]蒋军华,陈晓英.国外高岭土剥片的现状与动态.国外非金属矿,1988,6:56-58
    [43]华夏,李学强,孟祥庆.高岭土_吡啶插层复合物的制备与表征.矿物学报,2003,23(3):216-220
    [44] Wada K. Intercalation of water in kaolin minerals. The American Minerlogist,1965(50):924-941
    [45] Hinckley D. N. Variability in “crystallinity” values among the kaolin depositsof the coastal plain of georgia and south carolina. Clays and Clay Minerals,1963(11):229-235
    [46] Wiewióra A, Brindley G. W. Potassium acetate intercalation in kaolinites andits removal: effect of material characteristics [A]. In: Heller, L.(Ed.)[M]. IsraelUniversity Press, Jerusalem,1969
    [47] Ledoux R. L, White J. L. Infrared studies of hydrogen bonding interactionbetween kaolinite surfaces and intercalated potassium acetate, hydrazine,formamide and urea. Journal of Colloid and Interface Science,1966(21):127-152
    [48] Olejnik S, Aylmore L. A. G, Pasner A. M. Infrared Spectra of KaolinMineral-Dimethyl Sulfoxide Complexes. The Journal of Physical Chemistry,1968,72(1):241-249
    [49] Chris B. M, Prakash B. M. Kaolin-potassium acetate intercalation complexprocess of forming same[M],1997
    [50] S. Yariv, A. Nasser, Y. Deutschet al. Study of the interaction between caesiumbromide and kaolinite by differential thermal analysis. Journal Thermal Analysis,1991(37):1373-1388
    [51] Frost R. L. The structure of the kaolinite minerals: FT-Raman study. ClayMinerals,1997,32(1):227-236
    [52] Frost R. L, J. Kristof. The Role of Water in the Intercalation of Kaolinite withPotassium Acetate. Journal of Colloid and Interface Science,1998,204(2):227-236
    [53] Frost R. L, Kristof J. Molecular structure of dimethylsulfoxide intercalatedkaolinites. The Journal of Physical Chemistry B,1998,102:8519-8532
    [54] Kristof J, Frost R. L. Thermal behaviour of kaolinite intercalated withformamide, dimethyl sulphoxide and hydrazine. Journal of ThermalAnalysis and Calorimetry,1999,56(2):885-891
    [55] Frost R. L, J. Kristof. Deintercalation of dimethylsulphoxide intercalatedkaolinites-a DTA/TGA and Raman spectroscopic study. Thermochimica Acta,1999,1-2(27):155-166
    [56] Frost R. L, J. Kristóf, E. MakoJ T. Kloprogge. Modification of the HydroxylSurface in Potassium-Acetate-Intercalated Kaolinite between25and300℃.Langmuir,2000,16:7421-7428
    [57] Tunney J, Christian D. Aluminosilicate nanocomposites materials:Poly(ethylene glycol)-kaolinite nanocomposites. Journal of MaterialsScience,1997,12(11):3134-3139
    [58]曹秀华,王炼石,周奕雨.一种制备插层和无定形高岭土的新方法.化工矿物与加工,2003(7):10-12
    [59]韩世瑞,刘雪宁,胡南等.超声化学法制备高岭土/二甲亚砜插层复合物的研究.广州化学,2003(3):11-15
    [60]夏华,李学强,孟祥庆.高岭土/吡啶插层复合物的制备与表征.矿物学报,2003(3):216-220
    [61] Franco F, M. D. Ruiz Cruz. Factors influencing the intercalation degree('reactivity') of kaolin minerals with potassium acetate,formamide,dimethylsulphoxide and hydrazin. Clay Minerals,2004,39:193-205
    [62]陈洁渝,严春杰.煤系高岭土/醋酸钾插层复合物制备及意义.矿产保护与利用,2004(6):16-20
    [63] J. E. F. C. Gardolinski, G. Lagaly. Grafted organic derivatives ofkaolinite:I.Synthesis, chemical and rheological characterization. Clay Minerals,2005(40):537-546
    [64]孙嘉,徐政.微波对不同插层剂插入高岭石的作用与比较.硅酸盐学报,2005(5):593-598
    [65]程宏飞,刘钦甫.我国超微细高岭土的研究现状.中国非金属矿工业导刊,2007(5):6-8
    [66]阎琳琳,张存满,徐政.高岭石插层-超声法剥片可行性研究.非金属矿,2007(1):1-4
    [67]林喆,冯莉,王永田等.超声法制备高岭土/二甲基亚砜插层复合物的影响因素.硅酸盐学报,2007(5):653-658
    [68]秦芳芳,何明中,崔景伟等.高岭土/二甲亚砜插层复合物脱嵌反应热动力学.高等学校化学学报,2007(12):2343-2348
    [69] Rutkai G, T. Kristóf. Molecular simulation study of intercalation of smallmolecules in kaolinite. Chemical Physics Letters,2008,462(4-6):269-274
    [70] Li Y, B. Zhang, X. Pan. Preparation and characterization of PMMA-kaoliniteintercalation composites. Composites Science and Technology,2008,9(68):1954-1961
    [71] Elbokl T. A, Detelliter.C. Intercalation of cyclic imides in kaolinite. Journal ofColloid and Interface Science,2008,2(323):338-348
    [72] Compos R. B, Wypych F, Martins Filh H. P. o. Theoretical estimates of the IRspectrum of water intercalated into kaolinite. International Journal of QuantumChemistry,2009,3(109):594-604
    [73]蒋军华.漳平高岭土剥片技术的研究.矿产保护与利用,1991(6):40-43
    [74]刘全军,唐荣.高岭土的超细粉碎及剥片技术.昆明工学院学报,1994(4)
    [75]茹为玉.高岭土剥片技术.矿产综合利用,1988(1):42-45
    [76]梁宗刚. BMP-500型磨剥机在煤系煅烧高岭土超细磨矿中的应用.中国非金属矿工业导刊,2005(5):45-46
    [77]韩敏芳.非金属矿物材料制备与工艺[M].北京:化学工业出版社,2004
    [78]邵亚平,唐建明.超细煅烧高岭土制备新工艺.非金属矿,2005:67-68
    [79]李三华,张甲宝.助磨剂在煤系高岭土湿法超细研磨中的应用试验.中国非金属矿工业导刊,2006(1):24-26
    [80]李启成,段小林,胡玉蓉.高岭土超细离心分级的试验研究.南华大学学报(自然科学版),2006
    [81]郑水林.超细粉碎[M].北京:建材工业出版社,1999
    [82] Valá ková M., Rieder M, Matějkaet V. al. Exfoliation/delamination of kaoliniteby low-temperature washing of kaolinite-urea intercalates. Applied Clay Science,2007,1-2(35):108-118
    [83]王小萍,朱立新,贾德民.橡胶纳米复合材料研究进展.合成橡胶工业,2004(4):257-260
    [84]杨性坤,张永萍.粘土橡胶纳米复合材料研究进展.化工矿物与加工,2006(11):33-35
    [85]刘钦甫,张玉德,陆银平.黏土/聚合物纳米复合材料研究现状.非金属矿,2005:41-43
    [86]郝爱.橡胶纳米复合材料研究进展.弹性体,2001(1):37-44
    [87]赵竹第,李强,欧玉春等.尼龙6/蒙脱土纳米复合材料的制备、结构与力学性能的研究.高分子学报,1997(5):8-12
    [88]漆宗能等.一种聚酰胺/粘土纳米复合材料及其制备方法[M],1996
    [89]李青山,白德安,蔡传英等.聚甲基丙烯酸甲酯-蒙脱土纳米复合材料的研究.中国粉体技术,2000(S1):273-275
    [90] Okada A, Usuki A. Thechemistryof polymer2clayhybrid. Material sciense andtechnology,1995:109-115
    [91]张立群,王一中,余鼎声.粘土/橡胶纳米复合材料的制备方法[M],1998
    [92]李同年,周持兴.乳液聚合法制备聚苯乙烯/蒙脱土插层复合材料.中国塑料,2001(6):41-44
    [93]陈光明,马永梅,漆宗能.甲苯-2,4-二异氰酸酯修饰蒙脱土及聚苯乙烯/蒙脱土纳米复合材料的制备与表征.高分子学报,2000(5):599-603
    [94]吴友平,张立群,王一中等.粘土_羧基丁腈橡胶纳米复合材料的结构与性能研究.材料研究学报,2000,14(2):188-192
    [95] Wang Shengjie, Long Chengfen. Synthesis and properties of siliconerubber/organomorillonite hybrid nanocomposites. Journal of applied polymerScience,1998,69(8):1557
    [96]王韶晖,赵树高,张萍.橡胶纳米复合材料制备研究进展.特种橡胶制品,2002(1):58-61
    [97]李青山,任桂兰,钟克利等.纳米科技与纳米功能高分子助剂材料的新进展.纺织科学研究,2002(3):9-13
    [98]黄文勇,浩庞,兵廖.聚氨酯蒙脱土纳米复合弹性体材料1.高分子材料科学与工程,2005,21(1):191-194
    [99]超丁,慧何,洪浩群等. PP蒙脱土纳米复合材料的制备结构与性能.塑料工业,2004,32(9):8-16
    [100]陈汉周,王延斌,宇杨等. PET蒙脱土纳米复合材料的制备结构与性能.纺织科学研究,2004(4):9-13
    [101]刘岚,罗远芳,贾德民等.胶乳接枝插层法制备天然橡胶/蒙脱土纳米复合材料的研究.广州化工,2003(4):103-105
    [102]李卫青,罗远芳,贾德民.单体接枝改性制备炭黑填充型天然橡胶复合材料.湘潭大学自然科学学报,2004(4):63-66
    [103]梁玉蓉.高气体阻隔性能弹性体的制备及有机粘土/橡胶纳米复合材料微观结构的后工艺响应.北京化工大学,2005
    [104]王胜杰,李强,漆宗能.硅橡胶_蒙脱土复合材料的制备_结构与性能.高分子学报,1998(2):149
    [105]王益庆,张惠峰,吴友平等.累托石/NR纳米复合材料的结构与性能研究.橡胶工业,2006(3):133-138
    [106]郑华,段友顺,史新研等.三元乙丙橡胶/蒙脱土纳米复合材料的制备、结构、性能与应用前景.化工新型材料,2007(9):1-2
    [107]刘钦甫,张玉德,李和平等.纳米高岭土/橡胶复合材料的性能研究.橡胶工业,2006(9):525-529
    [108]张玉德,刘钦甫,李和平等.高岭土/白炭黑并用填充天然橡胶复合材料的性能.高分子材料科学与工程,2011(3):87-91
    [109]吴红丹,雷新荣,张锦化等.高岭土剥片改性研究及其在丁苯橡胶中的应用.非金属矿,2007(2)
    [110]武卫莉,张广信,于明磊.高岭土填充橡胶共混物的性能及表征.弹性体,2010(5):64-69
    [111]王梦蛟.聚合物填料和填料填料相互作用对填充硫化胶动态力学性能的影响.轮胎工业,2000,20:601-605
    [112]王梦蛟.填充聚合物填料和填料填料相互作用对填充硫化胶动态力学性能的影响(续1).轮胎工业,2000(11):670-677
    [113]王梦蛟.聚合物-填料和填料-填料相互作用对填充硫化胶动态力学性能的影响(续2).轮胎工业,2000(12):737-744
    [114]王梦蛟.聚合物-填料和填料填料相互作用对填充硫化胶动态力学性能的影响(续3).轮胎工业,2001(1):38-44
    [115]王梦蛟.聚合物-填料和填料填料相互作用对填充硫化胶动态力学性能的影响(续4).轮胎工业,2001(2):99-104
    [116]王贵一.用橡胶加工分析仪(RPA)研究白炭黑—硅烷填料系统.世界橡胶工业,2003,30(2):30-35
    [117]何燕,马连湘,黄素逸等.轮胎橡胶材料生热率的测定及分析.橡胶工业,2004(1):53-55
    [118]马连湘,张方良,崔琪等. NR/SBR/BR共混胎面胶料动态力学性能及生热特性研究.弹性体,2005(5):47-49
    [119]张方良,王伟,马连湘等.炭黑N351填充硫化胶动态性能及生热率的实验研究.弹性体,2006(2):28-30
    [120]梁中华.纳米蒙脱土/丁苯橡胶复合材料结构及动态力学性能的研究.橡塑技术与装备,2006(3):29-33
    [121]马连湘,郭剑锋,何燕. Si69和白炭黑对全钢基部胶动态特性的影响.特种橡胶制品,2007(6):20-22
    [122]吕明哲,李普旺,黄茂芳等.用动态热机械分析仪研究橡胶的低温动态力学性能.中国测试技术,2007(3):27-29
    [123]朱琳.白炭黑填充溶聚丁苯橡胶的动态力学性能.橡胶参考资料,2009(5):21-26
    [124]王永刚,李超芹.炭黑填充丁基橡胶动态力学性能研究.世界橡胶工业,2010(10):10-14
    [125]吴礼刚,段小成,黄兴等.半主动液阻型橡胶隔振器动态性能测试与计算分析.振动与冲击,2011(4):33-37
    [126]宋成芝,车永兴,张志广等.硅烷偶联剂对炭黑/白炭黑增强丁腈橡胶填料网络结构及动态性能的影响.合成橡胶工业,2011(2):128-132
    [127]杜娟,王孝平,曹玉梅等.含低PAH油的橡胶的动态力学性能.世界橡胶工业,2011(11):1-3
    [128]邓志峰,郭丽云,徐玲等.钼系高1,2-聚丁二烯橡胶动态力学性能的研究.橡胶工业,2011(4):227-230
    [129] Cussler E, Hughes S, Wardet W. al. Barrier me mbranes. Journal of MembraneScience,1988,38(2):161-174
    [130] Takahashi S, Goldberg H. A, FeeneC. A. y. Gas barrier properties of butylrubber/vermiculite nanocomposite coatings. Polymer,2006,47(9):3083-3093
    [131] Aris R. On a problem in hindered diffusion. Arch. Ration. Mech Anal,1986,95(2):83-91
    [132] Wakeham W. A, Mason E. A.. Diffusion through multiperforate laminae, Ind.Eng. Chem,1979,18:301-305
    [133] Fredrickson G. H, Bicerano J. Barrier properties of oriented disk co mposites. J.Chem. Phy,1999,110:2181-2188
    [134]张惠峰,冯予星,吴友平等. SBR粘土纳米复合材料的气密性.橡胶工业,2001(10):587-591
    [135]王文涛.天然橡胶/蒙脱土纳米复合材料的阻隔性及相关性能研究.华南理工大学,2010
    [136]张玉德,刘钦甫,陆银平.改性高岭土对丁苯橡胶的增强和阻隔作用研究.矿物岩石,2009(3):29-35
    [137]赵志正.填充剂对天然橡胶气密性的影响.世界橡胶工业,2003(6):2-4
    [138]赵蔚,吴友平,王益庆等.蒙脱土/SBR纳米复合材料在轮胎内胎中的应用.橡胶工业,2007(5):275-278
    [139] Chunsheng Lu, Yiu-Wing Mai. Influence of Aspect Ratio on Barrier Propertiesof Polymer-Clay Nanocomposites. Influence of Aspect Ratio on BarrierProperties of Polymer-Clay Nanocomposites,2005,19:1-4
    [140] Choudalakis G, Gotsis A. D. Permeability of polymerclay nanocomposites: Areview. European Polymer Journal,2009,45:967-984
    [141]朱琳.环氧化天然橡胶对NR/BIIR复合材料气体阻隔性能和力学性能的影响.橡胶参考资料,2012:31-35
    [142]吴红丹,于吉顺,张锦化等.不同产地煤系高岭土的结晶度及有序度研究.非金属矿,2010(4):24-27
    [143]刘钦甫,张鹏飞.华北晚古生代煤系高岭岩物质组成和成矿机理[M].北京:海洋出版社,1997
    [144]赫军凯,王陆军,刘钦甫等.淮北煤系高岭土作为FCC催化剂载体的矿物学研究.矿物学报,2011(2):274-279
    [145]刘钦甫,王陆军,赫军凯.煤系高岭土原位晶化合成NaY分子筛的研究.矿物学报,2010:31-32
    [146]赵杏媛,张有瑜.粘土矿物与粘土矿物分析[M].北京:海洋出版社,1990.2
    [147]杜小满,刘钦甫,邢楠等.煅烧煤系高岭土和硅粉用于混凝土的对比试验.金属矿山,2010(9):170-172
    [148]耿妹华,吕秀江.我国煤系高岭土的利用现状及其进一步开发的建议.河北建筑科技学院学报(社科版),2006(3):33-34
    [149] R. L. Frost, J. Kristóf Kloprogge, E. MakoJ. T. Modification of the HydroxylSurface in Potassium-Acetate-Intercalated Kaolinite between25and300℃.Langmuir,2000,19(16):7421-7428
    [150]陈洁渝,严春杰,万为敏等.高岭石/尿素夹层复合物的结构及热稳定性.硅酸盐学报,2010(9):1837-1842
    [151]陈祖熊,卫颜,坚王等.肼对高岭土插层的研究_高岭土结构对插层的影响.建筑材料学报,2000,3(3):240-245
    [152]冯莉,林喆,刘炯天等.超声波法制备高岭石插层复合物.硅酸盐学报,2006(10):1226-1231
    [153]李伟东,黄建国,许承晃.高岭土-二甲亚砜夹层复合物的形成机理.华侨大学学报(自然科学版),1994,15(1):48-52
    [154]王林江,吴大清.高岭石有机插层反应的影响因素.化工矿物与加工,2001(5):29-32
    [155]粤尔芬H.范.粘土胶体化学导论[M].北京:农业出版社,1982.182-185
    [156] Kristof J, Toth M, Gabor M. Study of the structure and thermal behaviour ofintercalated kaolinites. Journal of Thermal Analysis,1997,49(3):1441-1448
    [157]刘钦甫,许红亮.煤系高岭土表面改性效果评价及机理研究.材料研究学报,2000(3):325-328
    [158]刘立华.吸油值表征氢氧化铝阻燃剂的改性效果研究.清洗世界,2011(8):18-21
    [159]刘立华,宋云华,陈建铭等.硬脂酸钠改性纳米氢氧化镁效果研究.北京化工大学学报(自然科学版),2004(3):31-34
    [160]杨清芝.实用橡胶工艺学[M].北京:化学工业出版社,2005
    [161]严志云,贾德民.橡胶纳米复合材料研究进展.广东化工,2005(3):34-37
    [162]何燕,刘丽,马连湘等.温度及频率对轮胎橡胶材料生热率的影响.轮胎工业,2006(6):323-328
    [163]王梦蛟.填料_弹性体相互作用对填充硫化胶滞后损失_湿摩擦性能和磨耗性能的影响.轮胎工业,2007,27:579-584
    [164] Wendt RC Owens DL. Estimationof thesurfacefreeenergy of polymers. Journalof Appllied Polymer Science,1969,13:1741-1747
    [165]何燕,张方良,马连湘.炭黑填充胎面胶的动态力学性能研究.轮胎工业,2005(10):591-594
    [166] Yiqing Wang, Huifeng Zhang, Youping Wuet al. Preparation and properties ofnatural rubber/rectorite nanocomposites. European Polymer Journal,2005,41:2776-2783
    [167]张惠峰.层状硅酸盐/橡胶纳米复合材料的结构与性能研究.北京化工大学,2004
    [168] Nielsen LE. Models for the permeability of filled polymer systems. J MacromolSci A,1967(1):929-942
    [169]张玉德.橡胶/高岭土纳米复合材料的分散性及其阻隔性能研究.中国矿业大学(北京),2007
    [170] Bharadwaj RK. Modeling the barrier properties of polymer-layered silicatenanocomposites. Macromolecules,2001,34:9189-9192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700