用户名: 密码: 验证码:
抗菌型聚丙烯酸酯基纳米复合乳液的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯酸酯以其优异的光稳定性、化学稳定性、成膜柔软、膜光洁透明等性能,被广泛应用于皮革涂饰剂、纺织涂层剂、木器漆、建筑涂料等领域中。但是,纯聚丙烯酸酯本身存在着“热粘冷脆”、抗菌性、卫生性能差等缺陷。近年来,随着纳米科技的快速发展,聚合物基无机纳米复合乳液迅速成为材料领域的研究热点。
     本研究正是基于以上背景,通过对无机纳米材料进行筛选,优选出抗菌性能优异的无机纳米材料并将其引入聚丙烯酸酯中,研究无机纳米材料的尺寸、形貌对复合乳液及薄膜性能的影响,制备一种“软而不粘”、抗菌性优异、卫生性能良好的聚丙烯酸酯基纳米复合乳液。具体内容包括以下几个方面:
     1.首先对无机纳米材料进行筛选,考察市售氧化镁(MgO)、二氧化钛(TiO_2)、氧化锌(ZnO)、三氧化二铝(Al2O3)、蒙脱土(MMT)、二氧化硅(SiO2)等不同种类的无机纳米材料对聚丙烯酸酯乳液及薄膜性能,尤其是抗菌性的影响。然后,以阴离子型聚合物(PA30)为分散剂对优选出的纳米ZnO进行表面改性,对其改性条件进行优化;最后,将PA30改性纳米ZnO引入聚丙烯酸酯中,对聚丙烯酸酯/纳米ZnO复合乳液的制备工艺进行探索和初步优化。
     2.由于纳米ZnO形貌丰富、结构多样,且纳米ZnO形貌、尺寸对材料性能有较大的影响。因此,采用微波水热技术制备不同尺寸的球形ZnO以及不同形貌的纳米ZnO;通过扫描电镜(SEM)、X射线衍射(XRD)等对产物的形貌结构进行表征;考察了球形ZnO尺寸及纳米ZnO形貌对纳米ZnO性能的影响。然后,采用常规乳液聚合法在PA30改性纳米ZnO的分散液中原位引发丙烯酸酯类单体聚合,制备聚丙烯酸酯/纳米ZnO复合乳液。考察球形ZnO尺寸、纳米ZnO形貌对复合乳液及薄膜、涂饰后革样及整理后织物性能的影响。
     结果表明:球形ZnO及聚丙烯酸酯/球形ZnO纳米复合薄膜的抗菌性随球形ZnO尺寸的增大而降低。与其他几种形貌ZnO相比,球形ZnO、花状ZnO均具有良好的抗菌和紫外吸收性能;聚丙烯酸酯/球形ZnO纳米复合薄膜、聚丙烯酸酯/花状ZnO纳米复合薄膜对白色念珠菌的抗菌效果良好,但对霉菌的抗菌效果不佳。
     与纯聚丙烯酸酯乳液涂饰后革样相比,聚丙烯酸酯/花状ZnO纳米复合乳液涂饰后革样的透气性提高了232.65%。聚丙烯酸酯/球形ZnO纳米复合乳液整理后织物的透湿率较纯聚丙烯酸酯乳液整理后织物提高了129.21%。
     聚丙烯酸酯/球形ZnO纳米复合薄膜的抗菌作用由锌离子的溶出作用和ZnO的光催化作用共同所致,聚丙烯酸酯/花状ZnO纳米复合薄膜的抗菌作用则以ZnO的光催化作用为主。
     3.对抗菌性能较优的球形、花状ZnO进行掺银处理,以提高其对霉菌的抗菌效果;采用SEM、XRD、TEM等对复合粒子的形貌结构及组成进行分析;考察化学吸附还原法、微波辅助还原法和氧化还原法等三种纳米粒子制备方法以及纳米粒子形貌对粒子性能的影响。然后,采用常规乳液聚合法在PA30改性纳米ZnO/Ag复合粒子的分散液中原位引发丙烯酸酯类单体聚合,制备聚丙烯酸酯/纳米ZnO/Ag复合乳液;考察复合粒子制备方法、复合粒子形貌、用量对乳液及薄膜性能的影响。最后,将所得乳液应用到皮革、纺织涂层中考察其应用性能。
     结果表明:采用化学吸附还原法所制备的花状ZnO/Ag复合粒子以及含该复合粒子的聚丙烯酸酯薄膜的抗菌性优于采用微波辅助还原法和氧化还原法所制备的复合粒子。掺银以后纳米粒子及复合薄膜对霉菌的抗菌效果显著提高。
     球形ZnO/Ag复合粒子和花状ZnO/Ag复合粒子的抗菌性能相差不大。但是,聚丙烯酸酯/花状ZnO/Ag纳米复合薄膜的抗菌性能优于聚丙烯酸酯/球形ZnO/Ag纳米复合薄膜。
     与纯聚丙烯酸酯乳液涂饰后革样相比,采用聚丙烯酸酯/花状ZnO/Ag纳米复合乳液涂饰后革样的透气性提高了138.46%;采用聚丙烯酸酯/花状ZnO纳米复合乳液整理后织物的透湿性最好,较纯聚丙烯酸酯乳液整理后织物提高了12.84%。
     聚丙烯酸酯/花状ZnO/Ag纳米复合薄膜的抗菌作用主要以花状ZnO/Ag复合粒子的光催化抗菌为主,Ag系抗菌剂的金属粒子接触抗菌为辅;复合薄膜对白色念珠菌、霉菌抗菌效果的差异,与两种菌种的细胞壁结构和化学组成密切相关。
     本研究所研制的聚丙烯酸酯基纳米复合薄膜“软而不粘”、抗菌性能优异、卫生性能良好。反应以水为介质,安全环保、无毒、无污染。目前,有关纳米材料形貌、尺寸对复合材料性能,尤其是抗菌性能影响的研究国内外还鲜见报道。
As one of the most common used film-forming materials, polyacrylate is widely used in leather finishing agent, textile adhesive, wood and construction paints due to its excellent gloss, flexibility, transparent and chemical stability. However, the drawback of neat polyacrylate, such as weak climate-resistance, poor antimicrobial activities and lower sanitation properties often restrict its application. Recently, polymer/inorganic nanocomposites have attracted a great deal of attention with the rapid development of nanotechnology.
     This research is based on the above background. Inorganic nanomaterials with excellent antimicrobial activities were bought into polyacrylte firstly. Then the influences of inorganic nanomaterials with different morphologies and sizes on the properties of the nanocomposites were investigated in details. At last, polyacrylate-based nanocomposites with excellent antibacterial and sanitation properties were obtained. The main contents are listed as follows.
     1. The effects of inorganic nanoparticles including commercially MgO, TiO2, ZnO, Al2O3, MMT and SiO2on the properties of the nanocomposites were investigated in details. Then anionic polymer (PA30) was used to modify the chosen ZnO, and the optimum modification conditions were obtained. At last, the preparation method and optimum conditions of polyacrylate/ZnO nanocomposites were studied.
     2. There are various ZnO nano structures with different shapes and sizes, and each of them displays some unique properties. ZnO nano structures with various morphologies and sizes were successfully obtained via microwave-assisted hydrothermal process in this study. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to investigate the morphology and crystal structure of obtained ZnO. Then polyacrylate/ZnO nanocomposite latexes were prepared by in-situ emulsion polymerization of acrylate monomers in the presence of PA30modified ZnO nanostructures. The influences of ZnO nano structures with various morphologies and sizes on the performances of the obtained ZnO, nanocompsite latexes and films, as well as the finished leather samples and treated fabrics were investigated.
     The results showed that the antimicrobial activities of sphere-like ZnO and polyacrylate/sphere-like ZnO nanocompsoite film were both decreased with the increasing of the diameter of ZnO.
     Sphere-like ZnO and flower-like ZnO had better antimicrobial activities and ultraviolet absorption property than those of ZnO with other morphologies. Polyacrylate-based films containing sphere-like ZnO and flower-like ZnO showed excellent antimicrobial activities on candida albicans. However, the antimicrobial activities of films containing sphere-like ZnO and flower-like ZnO on aspergillus flavus were poor.
     Experimental results showed that vapor permeability of the leather finished by polyacrylate/flower-like ZnO nanocomposite latex increased by232.65%, compared to that finished by pure polyacrylate latex. The moisture permeability of fabric treated by polyacrylate/sphere-like ZnO nanocomposite latex was increased by129.21%, compared to that treated by pure polyacrylate latex.
     The releasing of Zn ions and the photo catalysis activity of ZnO played an important role in the antimicrobial activities of polyacrylate/ZnO nanocomposite film containing sphere-like ZnO, and the excellent antimicrobial properties of polyacrylate-based film containing flower-like ZnO might attribute to the photo catalysis activity of ZnO.
     3. Ag particles were doped on the surface of sphere-like ZnO and flower-like ZnO to improve the antimicrobial activities of ZnO on aspergillus flavus. SEM, XRD and TEM were used to investigate the morphology, structure and chemical composition of the obtained composite particles. The influences of different methods including chemical and adsorption reduction method, microwave-assisted reduction method and oxidation-reduction method, and the morphologies of ZnO on the properties of the obtained ZnO/Ag composite particles were investigated. Then polyacrylate/ZnO/Ag nanocomposites were obtained by in-situ emulsion polymerization of acrylate monomers in the presence of PA30modified ZnO/Ag composite particles. The effects of ZnO/Ag composite particles with different preparation methods, morphologies, and the dosages of ZnO/Ag composite particles on the properties of the polyacrylate/ZnO/Ag nanocompsite latexes and films were investigated in detail. At last, the composite latex was used in leather finishing and textile treating.
     The results indicated that the antimicrobial activities of ZnO/Ag composite particles and polyacrylate/flower-like ZnO/Ag composite prepared by chemical and adsorption reduction method were higher than that prepared by microwave-assisted reduction method and oxidation-reduction method. Besides, the inhibition abilities to aspergillus flavus were greatly improved with the doping of Ag on the surface of ZnO.
     The antimicrobial activities of sphere-like ZnO/Ag composite particles and flower-like ZnO/Ag composite particles were almost alike. However, the antimicrobial activities of the film containing flower-like ZnO/Ag composite particles was higher than that of the film containing sphere-like ZnO/Ag composite particles.
     Experimental results showed the vapor permeability of the leather finished by polyacrylate/flower-like ZnO/Ag composite latex was increased by138.46%, compared to that finished by polyacrylate/flower-like ZnO composite latex. The moisture permeability of fabrics treated by polyacrylate/flower-like ZnO composite latex was increased by12.84%, compared to that treated by pure polyacrylate latex.
     The photocatalysis activites of ZnO/Ag composite particles played an important role in the antimicrobial activities of polyacrylate/flower-like ZnO/Ag nanocomposite film. The contaction of metal ions also influenced the antimicrobial activities of the nanocomposite film. However, the reason for the different antimicrobial activities on candida albicans and aspergillus flavus were probably due to the different structures and compositions of the two kinds of bacteria.
     Polyacrylate-based nanocomposites prepared by the above method had excellent antimicrobial and sanitation properties. The as-prepared composite film was soft but not sticky. Besides, the reaction was carried out in water media, which was non-toxic, pollution-free, and safe. There were few reports about the influences of inorganic nanomaterials with different morphologies and sizes on the properties of the nanocomposites, especially the antimicrobial activities.
引文
[1]中商情报网.2012年11月中国纺织行业进出口情况分析[EB/OL]. http://www.askci.com/news/201212/10/144051_13.shtml.
    [2]慧聪皮革网.2012年我国皮革业进出口顺差619亿美元[EB/OL]. http://info.leather.hc360.com/2013/02/010920302102.shtml.
    [3]樊颖,杜治平,陈维潮.皮革涂饰的发展与前景[J].皮革与化工,2009,26(6):19-21.
    [4]曹志峰,苗青,金勇.皮革涂饰剂研究的最新进展[J].西部皮革,2008,30(6):24-27.
    [5]贾娟,王革辉.防水透湿涂层织物的现状及发展趋势[J].中国皮革,2006,35(15):38-41.
    [6]王春能,范浩军,石碧,等.温度感应聚氨酯及皮革/PU革的透气、透湿性的可控性研究[J].中国皮革,2006,35(13):26-31.
    [7]方云,杨澄宇,陈明清.纳米技术与纳米材料(Ⅰ)-纳米技术与纳米材料简介[J].日用化学工业,2003,33(1):55-58.
    [8]张立德.纳米材料与纳米结构[M].北京:化学工业出版社,2000.
    [9]朱世东,周根树,蔡锐,等.纳米材料国内外研究进展[J].热处理技术与装备,2010,31(3):1-5.
    [10]I. Nobru, J. Maleolm. Superfine Partiele Teehnology[M].London:Springer-verl.
    [11]方云,杨澄宇,陈明清,等.纳米技术与纳米材料(Ⅰ)-纳米技术与纳米材料简介[J].日用化学工业,2003,33(1):55-58.
    [12]李凤生.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002.
    [13]张旭,孙凤久.有机/无机纳米复合材料的研究进展[J].材料导报,2006,20:212-221.
    [14]X.Y. Su, H.Y. Xu, Y. Deng, et al. Preparation and optical limiting properties of a POSS-containing organic-inorganic hybrid nanocomposite[J]. Materials Letters,2008,62:3818-3820.
    [15]J.B. Marroquin, K.Y. Rhee, S.J. Park. Chitosan nanocomposite films:Enhanced electrical conductivity, thermal stability, and mechanical properties[J]. Carbohydrate Polymers,2003,92:1783-1791.
    [16]H.Y. Li, H. Kim. Thermal degradation and kinetic analysis of PVDF/modified MMT nanocomposite membranes[J]. Desalination,2008,234:9-15.
    [17]M. Itoh, J.R. Liu, T. Horikawa, et al. Electromagnetic wave absorption properties of nanocomposite powders derived from intermetallic compounds and amorphous carbon[J]. Journal of Alloys and Compounds,2006,408(412):1400-1403.
    [18]张葵花,林松柏,谭绍早.有机抗菌剂的研究现状及发展趋势[J].2005,35(5):45-47.
    [19]丁帅.天然抗菌剂及其应用[J].山东纺织科技,2010,(5):50-53.
    [20]孙剑,乔学亮,陈建国.无机抗菌剂的研究进展[J].材料导报,2007,21:344-347.
    [21]代小英,许欣,陈昭武,等.纳米抗菌剂的概况[J].现代预防医学,2008,35(13):2513-2515.
    [22]K.Nakata, T.Ochiai, T. Murakami, et al. Photoenergy conversion with TiO2photocatalysis: New materials and recent applications [J]. Electrochimica Acta,2012,84:103-111.
    [23]A.I. Lukman, B. Gong, C.E. Marjo, et al. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativaseed exudates[J]. Journal of Colloid and Interface Science,2011,353:433-444.
    [24]郭锋,李镇江,岑伟,等.金属粒子/光催化氧化物型复合纳米抗菌剂的研究发展[J].化工新型材料,2008,36(3):74-76.
    [25]代小英,许欣,陈昭武,等.纳米抗菌剂的概况[J].现代预防医学,2008,35(13):2513-2515.
    [26]U. Ozgur, Y.I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices[J]. Journal of Physical Chemistry,2005,98(041301):1-103.
    [27]A.M. Nahh. Study of ZnO Epitaxial Film Growth and UV Photodeteetors[D]. University of Pittsburgh,2001.
    [28]T.L. Sounart, J. Liu, J.A. Voigt, et al. Secondary Nucleation and Growth of ZnO[J]. Journal of the American Chemical Society,2007,129:15786-15793.
    [29]H. Wang, K.P. Yan, J. Xie, et al. Fabrication of ZnO colloidal photonic crystal by spin-coating method[J]. Materials Science in Semiconductor Processing,2008,11:44-47.
    [30]Z. Cao, Z.J. Zhang, F.X. Wang, et al. Synthesis and UV shielding properties of zinc oxide ultrafine particles modified with silica and trimethyl siloxan[J]. Colloids and Surfaces A:Physicochem. Engneering. Aspects,2009,340:161-167.
    [31]L.L. Wang, X.T. Zhang, Y.Fu, et al. Bioinspired Preparation of Ultrathin SiO2Shell on ZnO Nanowire Array for Ultraviolet-Durable Superhydrophobicity[J]. Langmuir2009,25(23):13619-13624.
    [32]G. Goncalves, P.A.A.P. Marques, C.P. Neto, et al. Growth, Structural, and Optical Characterization of ZnO-Coated Cellulosic Fibers[J]. Crystal Growth&Design,2009,9(1):386-390.
    [33]王虎,谢娟,段明.特殊形貌的晶体水热法生长及光催化性能[J].无机化学学报,2011,27(2):321-326.
    [34]贺英,王均安,桑文斌,等.采用高分子自组装ZnO纳米线及其形成机理[J].化学 学报,2005,63(12):1037-1041.
    [35]X.Y. Kong, Y. Ding, R. Yang, et al. Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts[J]. Science,2004,303:1348-1351.
    [36]X.Y. Ma, W.D. Zhang. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane[J]. Polymer Degradation and Stability,2009,94:1103-1109.
    [37]H. Jiang, J.Q. Hu, F. Gu, et al. Large-Scaled, Uniform, Monodispersed ZnO Colloidal Microspheres[J]. Journal of Physical Chemistry C,2008,112:12138-12141.
    [38]J. Goldberger, R. He, Y.F. Zhang. Single-crystal gallium nitride nanotubes[J]. Nature,2003,422:599-602.
    [39]S. Cho, D.S. Shim, S.H. Jung. Fabrication of ZnO nanoneedle arrays by direct microwave irradiation[J]. Materials Letters,2009,63:739-741.
    [40]张月,高艳阳.室温固相法合成ZnO纳米棒及其光学特性[J].功能材料与器件学报,2006,12(4):343-346.
    [41]马宏文,矫立男,杨雪,等.固相法合成纳米ZnO及其光催化性能研究[J].化学与生物工程,2006,23(4):17-21.
    [42]刘家祥,丁德玲,王震,等.均匀沉淀法制备纳米氧化锌[J].有色金属,2006,58(1):49-52.
    [43]Y.Y. Tay, S. Li, F. Boey, et al. Growth mechanism of spherical ZnO nanostructures synthesized via colloid chemistry[J]. Physica B,2007,394,372-376.
    [44]L.Y. Zhang, L.W. Yin, C.X. Wang, et al. Sol-Gel Growth of Hexagonal Faceted ZnO Prism Quantum Dots with Polar Surfaces for Enhanced Photocatalytic Activity[J]. Applied material and interfaces,2010,2(6):1769-1773.
    [45]J.F. Wang, T. Tsuzuki, L. Sun, et al. Reverse Microemulsion-Mediated Synthesis of SiO2-Coated ZnO Composite Nanoparticles:Multiple Cores with Tunable Shell Thickness [J]. Applied materials and interfaces,2010,2(4):957-960.
    [46]唐二军.微乳液法制备纳米氧化锌粒子[J].河北化工,2008,31(11):31-33.
    [47]Y.G. Wei, W.Z. Wu, R. Guo, et al. Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays[J]. Nano Letters,2010,10:3414-3419.
    [48]江锦春,程文娟,张阳.微波水热条件对氧化锌晶体的形态和粒度的影响[J].人工晶体学报,2005,34(2):254-258.
    [49]朱振峰,杨冬,刘辉,等.氧化锌自组装微球的微波水热合成与影响因素[J].功能材料,2010,41(1):55-58.
    [50]A. Kajbafvala, M.R. Shayegh, M. Mazloumi. Nanostructure sword-like ZnO wires: Rapid synthesis and characterization through a microwave-assisted route[J]. Journal of Alloys and Compounds,2009,469:293-297.
    [51]Z.J. Gu, M.P. Paranthaman, J. Xu. Aligned ZnO Nanorod Arrays Grown Directly on Zinc Foils and Zinc Spheres by a Low-Temperature Oxidization Method[J]. ACS Nano,2009,3(2):273-278.
    [52]Y.G. Wei, Y. Ding, C. Li, et al. Growth of Vertically Aligned ZnO Nanobelt Arrays on GaN Substrate[J]. Journal of Physical Chemistry C,2008,112,18935-18937.
    [53]L.Y. Chen, S.H. Wu, Y.T. Yin. Catalyst-Free Growth of Vertical Alignment ZnO Nanowire Arrays by a Two-Stage Process[J]. Journal of Physical Chemistry C,2009,113,21572-21576.
    [54]Z.Q. Jia, H.J. Sun, Q.Y. Gu. Preparation of Ag nanoparticles with triethanolamine as reducing agent and their antibacterial property[J]. Colloids and Surfaces A:Physicochem. Engneering. Aspects,2013,419:174-179.
    [55]X.P. Li, S.L. Li, M.T. Zhang, et al. Evaluations of Antibacterial Acti vity and Cytotoxicity on Ag Nanoparticles[J]. Rare Metal Materials and Engineering,2011,40(2):0209-0214.
    [56]C. Charton, M. Fahland. Electrical properties of Ag films on polyethylene terephthalate deposited by magnetron sputtering[J]. Thin Solid Films,2004,449:100-104.
    [57]E. Kayahan, N. Ceylan, K. Esmer. Ag-metallization effects on optical and electrical properties of porous silicon[J]. Applied Surface Science,2008,255:2808-2812.
    [58]S. Panigrahi, S. Praharaj, S. Basu. Self-assembly of silver nanoparticles:Synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering [J]. Journal of Physical Chemistry,2006,110(27):13436-13444.
    [59]L. Lu, A. Kobayashi, K. Tawa. Silver nanoplates with special shapes:Controlled synthesis and theirsurface Plasmon resonance and surface-enhanced Raman scattering properties[J]. Chemistry of Materials,2006,18(20):4894-4901.
    [60]舒东,何春,郭海福.纳米Ag-TiO2/ITO光催化膜的制备、表征及光催化活性的研究[J].精细化工,2004,21(6):421-424.
    [61]S.Y. Wu, Y.S. Ding, X.M. Zhang, et al.. Structure and morphology controllable synthesis of Ag/carbon hybrid with ionic liquid as soft-template and their catalytic properties[J]. Journal of Solid State Chemistry,2008,181:2171-2177.
    [62]P. Pootawang, N. Saito, O. Takai. Ag nanoparticle incorporation in mesoporous silica synthesized by solution plasma and their catalysis for oleic acid hydrogenation[J]. Materials Letters,2011,65:1037-1040.
    [63]P. Gangopadhyay, S.K. Srivastava, P. Magudapathy, et al. Ion-beam sputtering and nanostructures of noble metals[J]. Vacuum,2010,84:1411-1414.
    [64]I.B. Szymanska, P. Piszczek, W. Bala, et al. Ag/Cu layers grown on Si (111) substrates by thermal inducted chemical vapor deposition[J]. Surface&Coatings Technology,2007,201:9015-9020.
    [65]樊新,黄可龙,刘素琴,等.化学还原法制备纳米银粒子及其表征[J].功能材料,2007,38(6):996-999.
    [66]J.G. Liu, X.Y. Li, X.Y. Zeng. Silver nanoparticles prepared by chemical reduction-protection method, and their application in electrically conductive silver nanopaste [J]. Journal of Alloys and Compounds,2010,494:84-87.
    [67]V.R. Manikam, K.Y. Cheong, K.A. Razak. Chemical reduction methods for synthesizing Ag and Al nanoparticles and their respective nanoalloys[J]. Materials Science and Engineering B,2011,176:187-203.
    [68]T. Nguyen, K. Lee, B.T. Lee. Fabrication of Ag nanoparticles dispersed in PVA nanowire mats by microwave irradiation and electro-spinning[J]. Materials Science and Engineering C,2010,30:944-950.
    [69]J. Ma, G.A. Tai, W.L. Guo. Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles[J]. Ultrasonics Sonochemistry,2010,17:534-540.
    [70]A.N. Krkljes", M.T. M. Cincovic', Z.M. Kacarevic-Popovic, et al. Radiolytic synthesis and characterization of Ag-PVA nanocomposites[J]. European Polymer Journal,2007,43:2171-2176.
    [71]D. Spadaro, E. Barletta, F. Barreca, et al. Synthesis of PMA stabilized silver nanoparticles by chemical reduction process under a two-step UV irradiation[J]. Applied Surface Science,2010,256:3812-3816.
    [72]孙杰,许(?),刁鹏,等.银纳米结构的电化学制备及表面增强拉曼效应[J].北京航空航天大学学报,2013,39(2):280-284.
    [73]廖学红,朱俊杰,赵小宁,等.纳米银的电化学合成[J].高等学校化学学报,2000,21(12):1837-1839.
    [74]A.I. Lukman, B. Gong, C.E Marjo, et al. Facile synthesis, stabilization and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativaseed exudates[J]. Journal of Colloid and Interface Science,2011,353:433-444.
    [75]N.M. Huang, H.N. Lim, S. Radiman, et al. Sucrose ester micellar-mediated synthesis of Ag nanoparticles and the antibacterial properties[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2010,353:69-76.
    [76]O.J. Ilegbusi, H.W. Song, R. Chakrabarti. Biocompatibility and Conductometric Property of Sol-Gel Derived ZnO/PVP Nanocomposite Biosensor Film[J]. Journal of Bionic Engineering,2010:S30-S35.
    [77]T.D. Du, H.W.Song, O.J. Ilegbusi. Sol-gel derived ZnO/PVP nanocomposite thin film for superoxide radical sensor[J]. Materials Science and Engineering C,2007,27:414-420.
    [78]Y.J. Lin, M.J. Jheng, J.J. Zeng. Current-voltage characterization of Au contact on sol-gel ZnO films with and without conducting polymer[J]. Applied Surface Science,2010,256:4493.4496.
    [79]刘志敏,胡乐乾,沈国励,等.基于ZnO溶胶-凝胶固定的酪氨酸酶传感器的研制[J].分析科学学报,2007,23(5):555-558.
    [80]严玉蓉,赵耀明,汤京龙.超微细ZnO表面改性及PP/ZnO共混体系流变性能[J].中国塑料[J].2001,15(11):56-58.
    [81]M. Ali, M. Zafar, T. Jamil, et al. Influence of glycol additives on the structure and performance of cellulose acetate/zinc oxide blend membranes[J]. Desalination,2011,270:98-104.
    [82]J.H. Chen, C.Y. Cheng, W.Y. Chiu, et al. Synthesis of ZnO/polystyrene composites particles by Pickering emulsion polymerization[J]. European Polymer Journal,2008,44:3271-3279.
    [83]M. Mekewi, A. Shebl, A.I. Imam, et al. Screening the Insecticidal Efficacy of Nano ZnO Synthesized via in-situ Polymerization of Crosslinked Polyacrylic Acid as a Template[J]. Journal of Materials Science and Technology,2012,28(11):961-968.
    [84]L.V. Trandafilovi, D.K. Bo zani'c, S. Dimitrijevi'c-Brankovi'c, et al. Fabrication and antibacterial properties of ZnO-alginate nanocomposites[J]. Carbohydrate Polymers,2012,88:63-269.
    [85]J. Jiang, G. Li, Q. Ding, et al. Ultraviolet resistance and antimicrobial properties of ZnO-supported zeolite filled isotactic polypropylene composites[J]. Polymer Degradation and Stability,2012,97:833-838.
    [86]唐二军,赵卫利,董少英.纳米ZnO复合聚苯丙乳液的合成及其功能性研究[J].涂料工业,2009,39(3):53-56.
    [87]王霞,陈少卿,成霞,等.纳米ZnO对聚乙烯抗紫外光老化的影响[J].电工技术学 报,2008,23(10):6-10.
    [88]H. Huang, T. Hsieh. Preparation and characterizations of highly transparent UV-curable ZnO-acrylic nanocomposites[J]. Ceramics International,2010,36:1245-1251.
    [89]R.S. Mishra, A.K. Mishra, K.V.S.N. Raju. Synthesis and property study of UV-curable hyperbranched polyurethane acrylate/ZnO hybrid coatings[J]. European Polymer Journal,2009,45:960-966.
    [90]周健伟,覃东欢,罗潺,等.纳米ZnO-共轭聚合物MEH-PPV异质结太阳能电池的制备和研究[J].真空与低温,2006,12(1):9-14.
    [91]王霞,成霞,陈少卿,等.纳米ZnO/低密度聚乙烯复合材料的介电特性[J].中国电机工程学报,2008,28(19):13-18.
    [92]J. Choi, D. Khang, J. Myoung. Fabrication and characterization of ZnO nanowire transistors with organic polymer as a dielectric layer[J]. Solid State Communications,2008,148:126-130.
    [93]F.J. Carrion, J. Sanes, M. Bermudez. Influence of ZnO nanoparticle filler on the properties and wear resistance of polycarbonate[J]. Wear,2007,262:1504-1510.
    [94]B.P. Chang, H.M. Akil, R.B.M. Nasir. Comparative study of micro-and nano-ZnO reinforced UHMWPE composites under dry sliding wear[J]. Wear,2013,297:1120-1127.
    [95]王弼偲,丁长坤,赵渝,等.纳米银改性聚丙烯的非等温结晶动力学研究[J].功能材料,2012,12(43):1516-1523.
    [96]A.T. Hang, B.Tae, J.S. Park. Non-woven mats of poly(vinyl alcohol)/chitosan blends containing silver nanoparticles:Fabrication and characterization[J]. Carbohydrate Polymers,2010,82:472-479.
    [97]张凯,范敬辉,马艳,等Ag/PMMA复合粒子的制备及表征[J].化学工程师,2011,1(1):1-4.
    [98]安静,田志颖,罗青枝,等.银/聚苯乙烯纳米复合粒子的制备与表征[J].河北科技大学学报,2010,31(4):304-308.
    [99]G.F. Dang, Y. Shi, Z.F. Fu, et al. Polymer particles with dendrimer@SiO2-Ag hierarchical shell and their application in catalytic column[J]. Journal of Colloid and Interface Science,2012,369:170-178.
    [100]李德记,徐国财,陶玉红.纳米银与基体P(AMPS-MMA)的相互作用研究[J].高分子学报,2010,4(4):378-381.
    [101]F. Ruffino, M.G. Grimaldi. Template-confined dewetting of Au and Ag nanoscale films on mica substrate[J]. Applied Surface Science, http://dx.doi.org/10.1016/j.apsusc.2013. 01.130
    [102]M.A. Vorotyntsev, M.Skompska, A. Rajchowska, et al. A new strategy towards electroactive polymer-inorganic nanostructure composites. Silver nanoparticles inside polypyrrole matrix with pendant itanocene dichloride complexes[J]. Journal of Electroanalytical Chemistry,2011,62:105-115.
    [103]薛青芳,冉建华,张传杰,等.粘胶非织造布的PAMAM/Ag+抗菌整理[J].印染,2012,6:29-32.
    [104]C.H. Xue, J. Chen, W. Yin, et al. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles [J]. Applied Surface Science,2012,258:2468-2472.
    [105]P.A. Hu, W.O Neil, Q. Hu. Synthesis of10nm Ag nanoparticle polymer composite pastes for low temperature production of high conductivity films [J]. Applied Surface Science,2010,257:680-685.
    [106]徐曼,曹晓珑.纳米银/环氧树脂复合电介质的电导特性[J].稀有金属材料与工程,2010,39(8):1370-1374.
    [107]Y. Deng, Y. Sun, P. Wang, et al. In situ synthesis and nonlinear optical properties of Ag nanocomposite polymer films[J]. Physica E,2008,40:911-914.
    [108]B. Karthikeyan. Optical studies on thermally surface plasmon tuned Au, Ag and Au:Ag nanocomposite polymer films [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,96:456-460.
    [109]J. Lv. Effect of wettability on surface morphologies and optical Properties of Ag thin films grown on glass and polymer substrates by thermal evaporation[J]. Applied surface science, http://dx.doi.org/doi:10.1016/j.apsusc.2013.02.015
    [110]G.F. Dang,Y. Shi, Z.F. Fu, et al. Polymer nanoparticles with dendrimer-Ag shell and its application in catalysis [J]. Particuology,2012, www.elsevier.com/locate/partic.
    [111]R. Rajesh, R.Venkatesan. Encapsulation of silver nanoparticles into graphite grafted with hyperbranched poly(amidoamine) dendrimer and their catalytic activity towards reduction of nitro aromatics[J]. Journal of Molecular Catalysis A:Chemical,2012,359:88-96.
    [112]刘凌云.丙烯酸树脂/纳米SiO2复合涂饰剂的研究[D].西安:陕西科技大学,2004.
    [113]张志杰.原位生成纳米Si02/丙烯酸树脂复合涂饰剂的研究[D].西安:陕西科技大学,2006.
    [114]J.Z. Ma, J. Hu, Z.J. Zhang. Polyacrylate/silica nanocomposite materials prepared by sol-gel process[J]. European Polymer Journal,2007,43:4169-4177.
    [115]胡静.无皂聚丙烯酸酯/纳米SiO2复合乳液的合成性能及其聚合机理的研究[D].西安:陕西科技大学,2009.
    [116]J. Hu, J.Z. Ma, W.J. Deng. Synthesis of alkali-soluble copolymer (butyl acrylate/acrylic acid) and its application in leather finishing agent[J]. European Polymer Journal,2008,44:2695-2701.
    [117]刘俊莉.聚丙烯酸酯/纳米SiO2复合乳液的制备与应用研究[D].西安:陕西科技大学,2011.
    [118]J.L. Liu, J.Z. Ma, Y. Bao, et al. Effect of Long-Chain Acrylate on the Properties of Polyacrylate/Nano-SiO2Composite Leather Finishing Agent[J]. Polymer-Plastics Technology and Engineering,2011,50:1546-1551.
    [119]H.J. Song, Z.Z. Zhang, X.H. Men, et al. A study of the tribological behavior of nano-ZnO-filled polyurethane composite coatings[J]. Wear,2010,269:79-85.
    [120]K.H. Ding, G.L. Wang, M. Zhang. Characterization of mechanical properties of epoxy resin reinforced with submicron-sized ZnO prepared via in situ synthesis method[J]. Materials and Design,2011,32:3986-3991.
    [121]M. Altan, H. Yildirim. Mechanical and Antibacterial Properties of Injection Molded Polypropylene/TiO2Nano-Composites:Effects of Surface Modification[J]. Journal of Materials Science and Technology,2012,28(8),686-692.
    [122]F.C. Zhao, X.R. Zeng, H.Q. Li, et al. Preparation and characterization of nano-SiO2/fluorinated polyacrylate composite latex via nano-SiO2/acrylate dispersion[J]. Colloids and Surfaces A:Physicochem Engneering Aspects,2012,396:328-335.
    [123]Y.H. Chen, A. Lin, F.X. Gan. Improvement of polyacrylate coating by filling modified nano-TiO2[J]. Applied Surface Science,2006,252:8635-8640.
    [124]M.C. Lai, K.C. Chang, J.M. Yeh, et al. Advanced environmentally friendly anticorrosive materials prepared from water-based polyacrylate/Na+-MMT clay nanocomposite latexes[J]. European Polymer Journal,2007,43:4219-4228.
    [125]S.C. Liufu, H.N. Xiao, Y.P. Li. Thermal analysis and degradation mechanism of polyacrylate/ZnO nanocomposites[J]. Polymer Degradation and Stability,2005,87:103-110.
    [126]X.J. Cui, S.L. Zhong, J.Yan, et al. Synthesis and characterization of core-shell SiO2-fluorinated polyacrylate nanocomposite latex particles containing fluorine in the shell[J]. Colloids and Surfaces A:Physicochem Engneering Aspects,2010,360:41-46.
    [127]李爱元,徐国财,邢宏龙.纳米粉体表面改性技术及应用[J].2002,30(10):25-28.
    [128]N. Saleema, M. Farzaneh. Thermal effect on superhydrophobic performance of stearic acid modified ZnO nanotowers[J]. Applied Surface Science,2008,254:2690-2695.
    [129]R.Y. Hong, J.H. Li, L.L. Chen, et al. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles[J]. Powder Technology,2009,189:426-432.
    [130]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,2007.
    [131]S. Anas, R.V. Mangalaraja, S. Ananthakumar. Studies on the evolution of ZnO morphologies in a thermohydrolysis technique and evaluation of their functional properties [J]. Journal of Hazardous Materials,2010,175:889-895.
    [132]M. Chen, Z.H Wang, D.M. Han, et al. High-sensitivity NO2gas sensors based on flower-like and tube-like ZnO Nanomaterials[J]. Sensors and Actuators B.2011,157:565-574.
    [133]R.K. Dutta, P.K. Sharma, R. Bhargava, et al. Differential Susceptibility of Escherichia coli Cells toward Transition Metal-Doped and Matrix-Embedded ZnO Nanoparticles[J]. Journal of Physical Chemistry B2010,114,5594-5599.
    [134]王小枫.ZnO、Sn02纳米结构材料的水热合成及其应用研究[D].西安:陕西科技大学,2012.
    [135]吴长乐.纳米氧化锌的形貌控制及性能研究[D].武汉:华中科技大学,2008.
    [136]O. Toshiaki, Y.O. Yasuhiro. Antibacterial acitivtiy of ZnO powder with crystallographic orientation[J]. Journal of Material Science,2008,19,1407-1412.
    [137]Zinc Oxide[J]. International Journal of Inorganic Materials,2001,3:643-646.
    [138]A.K. Zak, W.H Majid, H.Z. Wangc, et al. Sonochemical synthesis of hierarchical ZnO nanostructures[J].Ultrason. Sonochem. http://dx.doi.org/10.1016/j.ultsonch.2012.07.001
    [139]W.J. Li, E. W.Shi, W.Z. Zhong. Growth mechanism and growth habit of oxide crystals[J]. Journal of Crystal Growth,1999,203(1-2):186-196.
    [140]M. Muruganandham, I.S. Chen, J.J. Wu. Effect of temperature on the formation of macroporous ZnO bundles and its application in photocatalysis[J]. Journal of Hazardous Materials,2009,172:700-706.
    [141]J. Zhao, Z.G. Jin, X.X. Liu. Growth and morphology of ZnO nanorods prepared from Zn(NO3)2/NaOH solutions[J]. Journal of the European Ceramic Society,2006,26:3745-3752.
    [142]Y.J. Chen, Y.Y. Shih, C.H Ho, et al.. Effect of temperature on lateral growth of ZnO grains grown by MOCVD[J]. Ceramics International,2010,36:69-73.
    [143]李飞,李珍,靳富江,等.表面活性剂对ZnO纳米晶形貌的影响[J].功能材料,2007,38:63-67.
    [144]任柳峰,钟敏,王翰.表面活性剂对氧化锌纳米棒形貌的影响与机理[J].硅酸盐学报,2008,36,3:363-366.
    [145]J. Xie, H. Wanga, M. Duan, et al. Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method[J]. Applied Surface Science,2011,257:6358-6363.
    [146]X.J.Wang,Q.L.Zhang,Q.Wan.Controllable ZnO Architectures by Ethanolamine-Assisted Hydrothermal Reaction for Enhanced Photocatalytic Activity[J]. Journal of Physical Chemistry C,2011,115:2769-2775.
    [147]B.X. Li, Y.F. Wang. Facile Synthesis and Enhanced Photocatalytic Performance of Flower-like ZnO Hierarchical Microstructures[J]. Journal of Physical Chemistry C,2010,114:890-896.
    [148]Y. Xing, X.H. Li, L. Zhang, et al. Effect of TiO2nanoparticles on the antibacterial and physical properties ofpolyethylene-based film[J]. Progress in Organic Coatings,2012,73:219-224.
    [149]L.W. Jia, C. Guo, L.R. Yang, et al. Interaction between Reduced Glutathione and PEO-PPO-PEO Copolymers in Aqueous Solutions:Studied by1H NMR and Spin-Lattice Relaxation[J]. Journal of Physical Chemistry B2011,115:2228-2233.
    [150]G. Applerot, A. Lipovsky, R. Dror, et al. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury[J]. Advanced Materials,2009,19:842-852.
    [151]R. Tankhiwale, S.K. ajpai. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging[J]. Colloids and Surfaces B:Bio interfaces,2012,90:16-20.
    [152]W.N.Wang, W. Widiyastuti, T. Ogi, I. Correlations between Crystallite/Particle Size and Photoluminescence Properties of Submicrometer Phosphors[J]. Chemistry of materials,2007,19:1723-1730.
    [153]段惺,徐晓玲,黄承,等.形貌和光照条件对ZnO抗菌性能的影响[J].功能材料,2010,3(42):496-502.
    [154]N. Talebian, S.M. Amininezhad, M. Doudi. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties[J]. Journal of Photochemistry and Photobiology B:Biology,2013,120:66-73.
    [155]D.F. Shao, D.W. Gao, Q.F. Wei, et al. Structures and properties of the polyacrylonitrile fabric coated with ZnO-Ag composites[J]. Applied Surface Science,2010,257:1306-1309.
    [156]L.H. Li, J.C. Deng, H.R Deng, et al. Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films [J].Chemical Engineering Journal,2010,160:378-382.
    [157]X.T. Yin, W.X. Que, D. Fei, et al. Ag nanoparticle/ZnO nanorods nanocomposites derived by a seed-mediated method and their photocatalytic properties[J]. Journal of Alloys and Compounds,2012,524:13-21.
    [158]N. Ma, X.F. Fan, X. Quan, et al. Ag-TiO2/HAP/Al2O3bioceramic composite membrane: Fabrication, characterization and bactericidal activity[J]. Journal of Membrane Science,2009,336:109-117.
    [159]F. Li, J.F. Wu, Q.H. Qin, et al. A facile method to prepare monodispersed ZnO/Ag core-shell microspheres[J]. Superlattices and Microstructures,2010,47:232-240.
    [160]F. Li, Y.L. Yuan, J.Y. Luo, et al. Synthesis and characterization of ZnO-Ag core-shell nanocomposites with uniform thin silver layers[J]. Applied Surface Science,2010,256:6076-6082.
    [161]S.Y. Gao, X.X. Jia, S.X. Yang, et al. Hierarchical Ag/ZnO micro/nanostructure:Green synthesis and enhanced photocatalytic performance[J]. Journal of Solid State Chemistry,2011,184:764-769.
    [162]R. Georgekutty, M. K. Seery, S.C. Pillai. A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism[J]. Journal of Physical Chemistry,2008,112:13563-13570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700