用户名: 密码: 验证码:
氧化铝模板自还原法制备金属及合金纳米线的表征与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因为在光、电、磁和热方面的诱人特性,金属纳米阵列可以被应用在光电子、微电子、磁场操纵、生物技术、催化和传感器等领域,尤其是在高密度的磁存储介质领域,并成为了目前深入研究的热点。多孔氧化铝(AAO))模板具有制备工艺简单,成本低和可扩孔特性。可以通过气-液-固(VLS)、脉冲激光沉积(PLD)、电沉积、电解沉积的方法等在AAO模板内生长各种金属纳米线,制备阵列结构。然而,这些工艺需昂贵的设备或过程较为复杂,如在多孔模板的辅助电沉积工艺中,电极的使用是必须的,同时需要对孔壁进行复杂的致敏预激活。因此,从基础研究和应用的角度来考虑,发明一种基于AAO模板的简便的方法来制备金属纳米阵列是非常重要的。
     本文的研究目标是开发一种新型简便的方法合成磁性金属,贵金属及其合金纳米线阵列,研究磁性与结构之间的关系。此外,还研究了金属和合金纳米阵列的催化应用。结果总结如下:
     1.将AAO模板放入金属氯化物水溶液中,利用AAO模板背面Al基底还原Ni2+离子,制备了高密度单晶镍纳米线(对于其它金属,如Co、Fe等也同样适用)。当在氧化还原反应过程中施加外磁场,Ni纳米阵列表现出增强的磁各向异性行为。矫顽力和磁滞回线展现出明显的各向异性,如AF//为300Oe,远大于AF⊥(20Oe)。这种新颖的方法,能够简便地制备大面积磁各向异性存储介质。它有如下优点:(1)可以制备电极电位大于铝的金属纳米线;(2)设置简单、操作方便、易于维修;(3)一步法制备;(4)可以方便的施加外磁场,制备磁各向异性的单晶金属纳米线。
     2.纳米催化剂具有很多优点,如高活性、优异的选择性等,然而,这些微小的纳米催化剂从反应混合物中分离和回收较困难,催化剂的活性通常是因结块或浸出而降低。我们使用了上章的方法制备了宏观尺寸的钯纳米线阵列催化剂。Suzuki偶联反应和4-硝基苯酚(4-NP)的还原反应被用来评估纳米催化剂的催化活性。纳米催化剂不仅在铃木反应(1h后高达96%的产率)和4-硝基苯酚的还原反应中(速率常数k为6.5x10-3s-1)表现出了很高的活性,而且还同时解决了纳米催化剂使用中常遇到的分离、稳定性,可重复使用性和浸出问题。特点包括:(1)在我们的系统中,催化剂可以通过用小镊子从该溶液中取走而简单的分离/回收;(2)该催化剂表现出良好的热稳定性,在高温下具有高活性;(3)AAO载体中的Pd纳米线可以多次重复使用,即使在高温下,催化反应的转化率没有明显的下降。在150℃下催化剂可重复使用的能力得以保持。此外,5个周期的动力学研究表明,初始速率和随后的每个周期的反应速率也不会降低;(4)最后,加入到反应混合物中的催化剂没有观察到脱落的现象。第一次反应以及五次反应之后,通过ICP-AES测定,滤液中的Pd含量均低于1ppm,说明小于0.1%的Pd在五个周期后脱落或溶解。
     3.为降低成本,人们通常考虑用纳米结构的钴,镍代替贵金属催化剂,但其活性低,易于被氧化难以解决。组成可控的合金是解决该问题的一种可能途径。我们采用上章的工艺制备了镍钴合金纳米阵列,可以通过简单地改变金属盐溶液的浓度来合成不同组成的金属合金纳米阵列。在无机(K3[Fe(CN)6]/Na2S2O3氧化还原反应)以及有机(还原4-硝基苯酚反应)反应中,镍钴合金纳米催化剂表现出了与贵金属纳米催化剂可比拟的催化活性(对于4-NP还原反应,Ni1Co5的速率常数k为5.24x10-3s-1),易于分离和出色的可重复使用性(10次循环后仍能保持大约92%的活性)的特点。其优异的催化活性被认为是由于镍钻合金表面结构的改变,导致了反应物分子表面吸附、产物分子脱附以及电子转移过程等得以改善造成的。特别是Ni5Co1和Co5Ni1,表现出了较高的催化活性。
The study of metallic nanoarrays has always been the focus of intensive research because of its attractive electrical, optical, magnetic, and thermal properties, which leads to potential applications in microelectronics, optoelectronics, magnetic manipulation, biotechnology, catalysis, and sensors, especially in the field of high density magnetic storage medium. The synthesis of solid templates (e.g., Anodized aluminum oxide (AAO) is simple, low-cost and scalable. And the as-prepared templates can easily achieve excellent long-range order. AAO membrane is one of the templates that are generally used to produce nanoarrays via methods of vapor-liquid-solid (VLS), pulsed laser deposition (PLD), Electro-deposition and Electroless-deposition. However, for the porous-template assisted electrodeposition, electric power is required, whereas for the conventional porous-template-assisted electroless deposition, metallic ions are typically reduced in the presence of organic surfactants, and pore walls of the template are usually modified via a complex sensitization-preactivation process. Therefore, the research about inventing a novel and facile approach to prepare metal nanoarrays is very important from the point of view of science and applications.
     The main objective of this dissertation is to develop a novel and facile way to synthesize magnetic, noble metal and their alloy nanoarrays, and investigate the relationship between their magnetic parameters and structures. Furthermore, the pratical applications of metal and alloy nanoarrys will be discussed. The main parts of the as-obtained results are summarized as fellow:
     1. By infiltrating aqueous solutions of metal chloride salts into native AAO templates and reduced by Al sheet on the backside of AAO template, high density single crystalline Ni (so does other metal, such as Co, Fe etc) nanowires with an excellent surface coverage can be prepared via a novel simple synthesis route, in which Ni2+ions were reduced by Al substrate of AAO. When a magnetic field was applied during the redox reaction, the Ni nanoarrays exhibit an enhanced magnetic anisotropy behavior due to the single crystalline nanostructure of Ni nanoarrays. It is shown that the coercivity field and squareness are distinct for different directions, especially the coercivity of AF//(300Oe) is much larger than AF(?)(20Oe). By this novel approach, the problem of large area preparation and magnetic anisotropy for HDMDS media might be solved effectively. This process has its advantages as follows:(1) metal nanowires whose electrode potential is greater than that of aluminum can be prepared;(2) the system is simple to set up, easy to operate, easy to repair, and durable for industrialization;(3) one-pot reaction process for preparation of large-area uniform nanostructure arrays;(4) single crystalline metal nanowires with high magnetic anisotropy can be prepared.
     2. Nanocatalysts enjoy several advantages such as excellent activity, great selectivity, and high stability over conventional catalyst systems; however, isolation and recovery of these tiny nanocatalysts from the reaction mixture are not easy and the activity of the catalyst is usually reduced due to agglomeration or leaching. We developed the previous method to prepare palladium nanowire array catalysts at macroscopic size. Suzuki coupling reaction and4-nitrophenol (4-NP) reduction reaction were employed to study the catalytic activity of the nanocatalysts. The nanocatalysts not only demonstrate good activity in both Suzuki reaction (up to96%yield after1h) and4-NP reduction (the rate constant k is determined to be6.5x10-3s-1), but also simultaneously addresses the separation, stability, reusability and leaching issues commonly encountered in nanocatalysts:(1) In our system, the catalysts can be easily separated/recovered simply by taken away from the solution with tweezers.(2) Ths catalysts demonstrated great thermal stability with high activity at elevated temperatures.(3) The AAO supported Pd nanowires can be reused several times with no obvious decrease of conversion rate and selectivity even at high temperatures. The reusability capability of the catalyst is maintained at150℃. Moreover, the kinetic studies of five cycles showed that the initial rates and the subsequent rates of each cycles were not reduced.(4) Finally, leaching of the catalysts into the reaction mixture was not observed. The Pd content in the filtrate after the first reaction as well as after five cycles were all determined to be lower than1ppm by ICP-AES, indicating<0.1%of Pd leaching even after five cycles.
     3. Nanostructured Co, Ni and their alloys are of great interest in the catalysis area considering their low cost and high activity in varieties of reactions. It is crucial to develop synthetic methods that produce metal or alloy nanocatalysts with tunable size, shape, and composition (for alloys) in order to improve their catalytic performance. A Ni-Co alloy nanoarray can also be derived from the same method. This method can generate metal alloy nanoarrays with excellently controlled elemental combinations and ratios by simply changing concentration of the metal salts solution. The Ni-Co alloy nanocatalysts demonstrated good activity even as much better noble nanocatalysts (for4-NP reductions, the rate constant k can be up to5.24×10-3s-1by Ni1Cos) due to the synergistic effects, which are subject to surface electronic states,of Ni-Co alloy, easy separation and excellent reusability (displays ca.92%activity after10cycles.) in both inorganic (the redox reaction of K3[Fe(CN)6]/Na2S2O3) and organic reactions (reduction of4-NP). Especially, the alloys of Ni5Co1and Co5Ni1exhibit better catalytic activity than others.
引文
1. A. P. Li, F. Muller, A. Birner, K. Nielsch and U. Gosele, J. Appl.Phys.,1998,84,6023-6026.
    2. G. M. Whitesides, J. P. Mathias and C. T. Seto, Science,1991,254,1312-1319.
    3. C. B. Murray, C. R. Kagan and M. G. Bawendi, Science,1995,270,1335-1338.
    4. L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, Physical Review E,2003,67.
    5. A. R. Parker, V. L. Welch, D. Driver and N. Martini, Nature,2003,426,786-787.
    6. H. Ghiradella, Applied Optics,1991,30,3492-3500.
    7. B. A. Grzybowski and G. M. Whitesides, Journal of Chemical Physics,2002,116, 8571-8577.
    8. A. Winkleman, B. D. Gates, L. S. McCarty and G. M. Whitesides, Adv. Mater.,2005,17, 1507-1511.
    9. D. H. Gracias, J. Tien, T. L. Breen, C. Hsu and G. M. Whitesides, Science,2000,289, 1170-1172.
    10. Y. J. Sun and G. C. Walker, J. Phys. Chem B,2002,106,2217-2223.
    11. Zheng and H. O. Jacobs, Advanced Functional Materials,2005,15,732-738.
    12.任恕.膜受体与传感器.北京:科学出版社,1996.
    13. S. G. Zhang, Biotechnology Advances,2002,20,321-339.
    14. C. L. D. Gibb and B. C. Gibb, Journal of Supramolecular Chemistry,2001,1,39-52.
    15. X. M. Yang, C. Liu, J. Ahner, J. Yu, T. Klemmer, E. Johns and D. Weller,J. Vac. Sci. Technol. B,2004,22,31-34.
    16. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Appl. Phys. Lett.,1995,67,3114-3116.
    17. Haisma, M. Verheijen, K. vandenHeuvel and J. vandenBerg, J.Vac.Sci.Technol.B,1996,14, 4124-4128.
    18. M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt and C. G. Willson, in Emerging Lithographic Technologies Iii, Pts 1 and 2, ed. Y. Vladimirsky, Editon edn.,1999, vol.3676, pp.379-389.
    19. T. K. Whidden, D. K. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur and G. M. Whitesides, Nanotechnology,1996,7,447-451.
    20. Y. Igaku, S. Matsui, H. Ishigaki, J. Fujita, M. Ishida, Y. Ochiai, H. Namatsu, M. Komuro and H. Hiroshima, Japanese J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, 2002,41,4198-4202.
    21. Tan, A. Gilbertson and S. Y. Chou, J. Vac.Sci.Technol.B,1998,16,3926-3928.
    22. S. Hosaka, H. Sano, M. Shirai and H. Sone, Appl. Phys. Lett.,2006,89.
    23. Y. C. Sui, D. R. Acosta, J. A. Gonzalez-Leon, A. Bermudez, J. Feuchtwanger, B. Z. Cui, J. O. Flores and J. M. Saniger, J. Phys. Chem B,2001,105,1523-1527.
    24. D. Routkevitch, T. Bigioni, M. Moskovits and J. M. Xu, J. Phys. Chem,1996,100, 14037-14047.
    25. C. C. Lin, T. J. Juo, Y. J. Chen, C. H. Chiou, H. W. Wang and Y. L. Liu, Desalination,2008, 233,113-119.
    26. Q. H. Xie, J. L. Brown, R. L. Jones, J. E. Van Nostrand and K. D. Leedy, Appl. Phys. Lett., 2000,76,3082-3084.
    27. M. S. Sander and L. S. Tan, Adv.Funct. Mater.,2003,13,393-397.
    28. M. D. Dickey, E. A. Weiss, E. J. Smythe, R. C. Chiechi, F. Capasso and G. M. Whitesides, ACS Nano,2008,2,800-808.
    29. S. Fournier-Bidoz, V. Kitaev, D. Routkevitch, I. Manners and G. A. Ozin, Adv. Mater.,2004, 16,2193-2194.
    30. G. Xia, S. Wang and S. J. Jeong, Nanotechnology,2010,21.
    31. Y. Sun and S. R. Forrest, Nature Photonics,2008,2,483-487.
    32. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, Nature, 2009,459,234-238.
    33. A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito and Y. Kuwahara, Appl. Phys. Lett.,2010,96.
    34. F. F. Cao, J. W. Deng, S. Xin, H. X. Ji, O. G. Schmidt, L. J. Wan and Y. G. Guo, Adv. Mater., 2011,23,4415-4416.
    35. T. Durkop, S. A, Getty, E. Cobas and M. S. Fuhrer, Nano Letters,2004,4,35-39.
    36. A. C. Fisher, L. M, Peter, E. A. Ponomarev, A. B. Walker and K. G. U. Wijayantha, J. Phys. Chem B,2000,104,949-958.
    37. L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun and P. D. Yang, Inorg. Chem.,2006,45, 7535-7543.
    38. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem B,2003,107,7426-7433.
    39. G. L. Liu and L. P. Lee, Appl. Phys. Lett.,2005,87.
    40. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang and Y. L. Wang, Adv. Mater.,2006,18,491-495.
    41. L. M. Chen, L. B. Luo, Z. H. Chen, M. L. Zhang, J. A. Zapien, C. S. Lee and S. T. Lee, J. Phys. Chem C,2010,114,93-100.
    42. Z. L. Huang, G. W. Meng, Q. Huang, Y. J. Yang, C. H. Zhu and C. L. Tang, Adv. Mater., 2010,22,4136-4139
    43. J. M. Foley, M. J. Price, J. I. Feldblyum and S. Maldonado, Energy Environ. Sci.,2012,5, 5203-5220.
    44. G. L. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin, Nature,1998,393,346-349.
    45. X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng and L. X. Zhao, Chem. Mat., 2001,13,2511-2515.
    46. Y. T. Pang, G. W. Meng, Q. Fang and L. D. Zhang, Nanotechnology,2003,14,20-24.
    47. E. C. Dickey, O. K. Varghese, K. G. Ong, D. W. Gong, M. Paulose and C. A. Grimes, Sensors,2002,2,91-110.
    48. X. D. Wang, J. H. Song, J. Liu and Z. L. Wang, Science,2007,316,102-105.
    49. S. Xu, Y. G. Wei, J. Liu, R. Yang and Z. L. Wang, Nano Letters,2008,8,4027-4032.
    50. Y. Qin, X. D. Wang and Z. L. Wang, Nature,2008,451,809-813.
    51. H. Chik and J. M. Xu, Mater. Sci. Eng. R-Rep.,2004,43,103-138.
    52. R. C. Furneaux, W. R. Rigby and A. P. Davidson, Nature,1989,337,147-149.
    53. H. Masuda and K. Fukuda, Science,1995,268,1466-1468.
    54. F. Keller, M. S. Hunter and D. L. Robinson, Journal of the Electrochemical Society,1953, 100,411-419.
    55. Osulliva.Jp and G. C. Wood, Proc. R. Soc. Lond. A,1970,317,511-543.
    56. S. Z. Chu, K. Wada, S. Inoue, M. Isogai and A. Yasumori, Adv. Mater.,2005,17,2115-2119.
    57. W. Lee, R. Ji, U. Gosele and K. Nielsch, Nat. Mater.,2006,5,741-747.
    58. Y. B. Li, M. J. Zheng, L. Ma and W. Z. Shen, Nanotechnology,2006,17,5101-5105.
    59. M. L. Tian, S. Y. Xu, J. G. Wang, N. Kumar, E. Wertz, Q. Li, P. M. Campbell, M. H. W. Chan and T. E. Mallouk, Nano Letters,2005,5,697-703.
    60. A. Blondel, J. P. Meier, B. Doudin and J. P. Ansermet, Appl. Phys. Lett.,1994,65, 3019-3021.
    61. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister and U. Gosele, J. Appl. Phys.,2002,91,3243-3247.
    62. X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao and Y. Q. Mao, J. Mater. Chem.,2001,11, 1732-1734.
    63. Y. Peng, H. L. Zhang, S. L. Pan and H. L. Li, J. Appl. Phys.,2000,87,7405-7408.
    64. H. Zeng, M. Zheng, R. Skomski, D. J. Sellmyer, Y. Liu, L. Menon and S. Bandyopadhyay, J. Appl. Phys.,2000,87,4718-4720.
    65. L. Sun, P. C. Searson and C. L. Chien, Appl. Phys. Lett.,1999,74,2803-2805.
    66. K. Liu, C. L. Chien, P. C. Searson and Y. Z. Kui, Appl. Phys. Lett.,1998,73,1436-1438.
    67. G. Yi and W. Schwarzacher, Appl. Phys. Lett.,1999,74,1746-1748.
    68. G. W. Meng, A. Y. Cao, J. Y. Cheng, A. Vijayaraghavan, Y. J. Jung, M. Shima and P. M. Ajayan, J. Appl. Phys.,2005,97.
    69. X. Y. Yuan, G. S. Wu, T. Xie, Y. Lin and L. D. Zhang, Nanotechnology,2004,15,59-61.
    70. Z. Miao, D. S. Xu, J. H. Ouyang, G. L. Guo, X. S. Zhao and Y. Q. Tang, Nano Letters,2002, 2,717-720.
    71. Y.K.Su, C. M. Shen, H. T. Yang, H. L. Li and H. J. Gao, Transactions ofNonferrous Metals Society of China,2007,17,783-786.
    72. C. A. Huber, T. E. Huber, M. Sadoqi, J. A. Lubin, S. Manalis and C. B. Prater, Science,1994, 263,800-802.
    73. J. Heremans, C. M. Thrush, Y. M. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus and J. F.
    74. H. Chik, J. Liang, S. G Cloutier, N. Kouklin and J. M. Xu, Appl. Phys. Lett.,2004,84, 3376-3378.
    75. C. H. Bae, S. M. Park, S. C. Park and J. S. Ha, Nanotechnology,2006,17,381-384.
    76. B. B. Lakshmi, C. J. Patrissi and C. R. Martin, Chem. Mat.,1997,9,2544-2550.
    77. G. E. J. Poinern, N. Ali and D. Fawcett, Materials,2011,4,487-526.
    78. G. A. Somorjai, H. Frei and J. Y. Park, J. Am. Chem. Soc.,2009,131,16589-16605.
    79. M. Beller, H. Fischer, K. Kuhlein, C. P. Reisinger and W. A. Herrmann, Journal of Organometallic Chemistry,1996,520,257-259.
    1. T. W. McDaniel, J. Phys.:Condens. Matter,2005,17, R315-R332.
    2. R. F. Service, Science,2006,314,1868-1870.
    3. A. Kikitsu, Y. Kamata, M. Sakurai and K. Naito, Ieee Transactions on Magnetics,2007,43, 3685-3688.
    4. J. Jia-Yang and D. B. Bogy, Microsystem Technologies,2005,11,950-957.
    5. S. D. Bader, Reviews of Modern Physics,2006,78,1-15.
    6 B. D. Terris and T. Thomson, J. Phys. D:Appl. Phys.,2005,38, R199-R222.
    7 S. B. Darling and S. D. Bader, J. Mater. Chem.,2005,15,4189-4195.
    8. J. K. W. Yang, Y. Chen, T. Huang, H. Duan, N. Thiyagarajah, H. K. Hui, S. H. Leong and V. Ng, Nanotechnology,2011,22,385301-385301.
    9. H. Chik, J. Liang, S. G Cloutier, N. Kouklin and J. M. Xu, Appl. Phys. Lett.,2004,84, 3376-3378.
    10. C. H. Bae, S. M. Park, S. C. Park and J. S. Ha, Nanotechnology,2006,17,381-384.
    11. G W. Meng, A. Y. Cao, J. Y. Cheng, A. Vijayaraghavan, Y. J. Jung, M. Shima and P. M. Ajayan, J. Appl. Phys.,2005,97.
    12. D. D. Li, R. S. Thompson, G. Bergmann and J. G Lu, Adv. Mater.,2008,20,4575-4578.
    13. W. C. Yoo and J. K. Lee, Adv. Mater.,2004,16,1097-1101.
    14. G. Xia, S. Wang and S.-J. Jeong, Nanotechnology,21.5
    15. X. Y. Yuan, G S. Wu, T. Xie, Y. Lin and L. D. Zhang, Nanotechnology,2004,15,59-61.
    16. Q. L. Xu, G W. Meng, X. B. Wu, Q. Wei, M. G Kong, X. G. Zhu and Z. Q. Chu, Chem. Mater.,2009,21,2397-2402.
    1. A. T. Bell, Science,2003,299,1688-1691.
    2. D. R. Rolison, Science,2003,299,1698-1701.
    3. D. J. Cole-Hamilton, Science,2003,299,1702-1706..
    4. H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe and O. M. Yaghi, Nature,2004,427,523-527.
    5.P. T. Anastas and M. M. Kirchhoff, Accounts Chem. Res.,2002,35,686-694.
    6. J. H. Clark, Green Chem.,1999,1,1-8.
    7. D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J, L. Leazer, R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A. Zaks and T. Y. Zhang, Green Chem., 2007,9,411-420.
    8. D. Astruc, Inorg. Chem.,2007,46,1884-1894.
    9. N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev.,2008,37,123-150.
    10. Y. V. Geletii, B. Botar, P. Koegerler, D. A. Hillesheim, D. G. Musaev and C. L. Hill, Angew. Chem.-Int. Edit.,2008,47,3896-3899.
    11. S. Diez-Gonzalez, N. Marion and S. P. Nolan, Chem. Rev.,2009,109,3612-3676..
    12. D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev.,2008,108,3351-3378.
    13. A. S. K. Hashmi and G. J. Hutchings, Angew. Chem.-Int. Edit.,2006,45,7896-7936.
    14. N. T. S. Phan, M. Van Der Sluys and C. W. Jones, Adv. Synth. Catal,2006,348,609-679..
    15. D. Astruc, F. Lu and J. R. Aranzaes, Angew. Chem.-Int. Edit.,2005,44,7852-7872.
    16. G. A. Somorjai, H. Frei and J. Y. Park, J. Am. Chem. Soc.,2009,131,16589-16605.
    17. M. Beller, H. Fischer, K. Kuhlein, C. P. Reisinger and W. A. Herrmann, Journal of Organometallic Chemistry,1996,520,257-259.
    18. K. Chattopadhyay, R. Dey and B. C. Ranu, Tetrahedron Lett.,2009,50,3164-3167.
    19. Z. Chen, Z. M. Cui, F. Niu, L. Jiang and W. G. Song, Chem. Commun...2010,46, 6524-6526.
    20. X. R. Ye, Y. H. Lin, C. M. Wang, M. H. Engelhard, Y. Wang and C. M. Wai, J. Mater. Chem.,2004,14,908-913.
    21. R. Narayanan and M. A. El-Sayed, J. Am. Chem. Soc.,2003,125,8340-8347.
    22. K. R. Gopidas, J. K. Whitesell and M. A. Fox, Nano Letters,2003,3,1757-1760.
    23. A. K. Diallo, C. Ornelas, L. Salmon, J. R. Aranzaes and D. Astruc, Angew. Chem.-Int. Edit., 2007,46,8644-8648.
    24. S. Ko and J. Jang, Angew. Chem.-Int. Edit.,2006,45,7564-7567.
    25. A. Fihri, M. Bouhrara, B. Nekoueishahraki, J. M. Basset and V. Polshettiwar, Chem. Soc. Rev.,2011,40,5181-5203.
    26. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara and J.-M. Bassett, Chem. Rev., 2011,111,3036-3075.
    27. M. L. Kantam, S. Roy, M. Roy, B. Sreedhar and B. M. Choudary, Adv. Synth. Catal.,2005, 347,2002-2008.
    28. G. W. Kabalka, R. M. Pagni and C. M. Hair, Org. Lett.,1999,1,1423-1425.
    29. D. Kudo, Y. Masui and M. Onaka, Chem. Lett.,2007,36,918-919.
    30. A. Cwik, Z. Hell and F. Figueras, Org. Biomol. Chem.,2005,3,4307-4309.
    31. B. M. Choudary, S. Madhi, N. S. Chowdari, M. L. Kantam and B. Sreedhar, J. Am. Chem. Soc.,2002,124,14127-14136.
    32. A. Gniewek, J. J. Ziolkowski, A. M. Trzeciak, M. Zawadzki, H. Grabowska and J. Wrzyszcz, J. Catal,2008,254,121-130.
    33. D. D. Das and A. Sayari, J. Catal.,2007,246,60-65.
    34. W. Q. Fu, L. Zhang, T. D. Tang, Q. P. Ke, S. Wang, J. B. Hu, G. Y. Fang, J. X. Li and F. S. Xiao, J.Am. Chem. Soc.,2011,133,15346-15349.
    35. L. Liu, S. H. Yoo, S. A. Lee and S. Park, Nano Letters,2011,11,3979-3982.
    36. C. Perego and R. Millini, Chem. Soc. Rev.,2013.1039/c2cs35244c
    37. R. B. Bedford, U. G. Singh, R. I. Walton, R. T. Williams and S. A. Davis, Chem. Mat., 2005,17,701-707.
    38. Rothenberg, G. Catalysis:Concepts and Green Application; Wiley-VCH Verlag GmbH & Co. KGaA:Weinheim,2008; p135-p137
    39. Y. H. Chen, H. H. Hung and M. H. Huang, J. Am. Chem. Soc.,2009,131,9114-9121.
    40. K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem.-Int. Edit.,2005,44,4442-4489.
    41. A. Schatz, T. R. Long, R. N. Grass, W. J. Stark, P. R. Hanson and O. Reiser, Adv. Funct. Mater.,2010,20,4323-4328.
    42. S. A. Zhou, M. Johnson and J. G. C. Veinot, Chem. Commun.,2010,46,2411-2413.
    43.Y. Jang, J. Chung, S. Kim, S. W. Jun, B. H. Kim, D. W. Lee, B. M. Kim and T. Hyeon, Phys. Chem. Chem. Phys.,2011,13,2512-2516.
    44. M. Y. Zhu and G. W. Diao, J. Phys. Chem. C.,2011,116,1626-1626.
    45. Y. T. Liao, L. S. He, J. Huang, J. Y. Zhang, L. Zhuang, H. Shen and C. Y. Su, ACS Appl.Mater. Interfaces.,2011,2,2333-2338.
    46. Z. H. Guan, J. L. Hu, Y. L. Gu, H. J. Zhang, G. X. Li and T. Li, Green Chem.,2012,14, 1964-1970.
    47. S. Moussa, A. R. Siamaki, B. F. Gupton and M. S. El-Shall, ACS Catal.,2012,2,145-154.
    48. S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su and W. Wang, J. Am. Chem. Soc.,133,19816-19822.
    49. Z P. Zhang, Z. H. Weng, J. Guo and C. C. Wang, Chem. Mat.,2011,23,5243-5249.
    50. J. Zhi, D. P. Song, Z. W. Li, X. Lei and A. G. Hu, Chem. Commun.,2011,47,10707-10709.
    51. C M. Cargnello, N. L. Wieder, P. Canton, T. Montini, G. Giambastiani, A. Benedetti, R. J. Gorte and P. Fornasiero, Chem. Mat.,2010,23,3961-3969.
    52. J. C. Park, E. Heo, A. Kim, M. Kim, K. H. Park and H. Song, J. Phys. Chem. C.,2011,115, 15772-15777
    53. S. Singha, M. Sahoo and K. M. Parida, Dalton Trans.,2011,40,7130-7132.
    54. A. Modak, J. Mondal, M. Sasidharan and A. Bhaumik, Green Chem.,2011,13,1317-1331.
    55. H. Q. Yang, Y. W. Wang, Y. Qin, Y. Z. Chong, Q. Z. Yang, G. Li, L. Zhang and W. Li, Green Chem.,2011,13,1352-1361.
    56. C. X. Yang, A. K. Manocchi, B. Lee and H. M. Yi, J. Mater. Chem.,2011,21,187-194.
    57. S. M. Chergui, A. Ledebt, F. Mammeri, F. Herbst, B. Carbonnier, H. Ben Romdhane, M. Delamar and M. M. Chehimi, Langmuir,2010,26,16115-16121
    58. R Li, Q. Chen, P. Zhang, P. Zhang, H. Zhong and Y. Huang, J. Mater. Chem.,2012.,22, 22750-22755.
    59. X. F. Lu, Y. P. Xue, G D. Nie and C. Wang, Catal. Lett.,2012,142,566-572.
    60. X. F. Lu, X. J. Bian, G D. Nie, C. C. Zhang, C. Wang and Y. Wei, J. Mater. Chem.,2012,22, 12723-12730.
    61. K.Jiang, H. X. Zhang, Y. Y. Yang, R. Mothes, H. Lang and W. B. Cai, Chem. Commun., 2011,47,11924-11926.
    62..Z.Jin, M. D. Xiao, Z. H. Bao, P. Wang and J. F. Wang, Angew. Chem.-Int. Edit.,2012,51, 6406-6410.
    63. R. Bhandari and M. R. Knecht, Langmuir,2012,28,8110-8119.
    64. R Bhandari and M. R. Knecht, Acs Catalysis,2011,1,89-98.
    65. H. Q. Li, L. N. Han, J. Cooper-White and I. Kim, Green Chem.,2012,14,586-591.
    66.王培铭,许慰乾材料研究方法, 科学出版社2005
    67. Fleischm.M, P. J. Hendra and McQuilla.Aj, Chem, Phys, Lett.,1974,26,163-166.
    68 D. L. Jeanmaire and R. P. Vanduyne, J, Electroanal, Chem,1977,84,1-20.
    69. H. X. Xu, J. Aizpurua, M. Kall and P. Apell, Phys, Rev. E,2000,62,4318-4324.
    70. A. Campion and P. Kambhampati, Chem. Soc. Rev.,1998,27,241-250.
    71. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith and R. M. Simmons, Science,1999,283, 1689-1695.
    1. G. A. Somorjai and Y. Li, Introduction to surface chemistry and catalysis, Wiley,2010.
    2. F. Tao, M. E. Grass, Y. W. Zhang, D. R. Butcher, J. R. Renzas, Z. Liu, J. Y. Chung, B. S. Mun, M. Salmeron and G. A. Somorjai, Science,2008,322,932-934.
    3. F. Tao, M. E. Grass, Y. W. Zhang, D. R. Butcher, F. Aksoy, S. Aloni, V. Altoe, S. Alayoglu, J. R. Renzas, C. K. Tsung, Z. W. Zhu, Z. Liu, M. Salmeron and G. A. Somorjai, J. Am. Chem. Soc.,2010,132,8697-8703.
    4. Tao, F., Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chem. Soc. Rev.2012,41 (24),7977-7979.
    5. F. Tao, S. R. Zhang, L. Nguyen and X. Q. Zhang, Chem. Soc. Rev.,2012,41,7980-7993.
    6. S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. D. Yang and G. A. Somorjai, Nat. Mater., 2009,8,126-131.
    7. B. Lim, M. J. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. M. Lu, Y. M. Zhu and Y. N. Xia, Science,2009,324,1302-1305.
    8. D. V. Talapin, J. S. Lee, M. V. Kovalenko and E. V. Shevchenko, Chem. Rev.,2010,110, 389-458.
    9. D. Kumar, M. S. Chen and D. W. Goodman, Catalysis Today,2007,123,77-85.
    10. F. Gao, Y. L. Wang and D. W. Goodman, J. Am. Chem. Soc.,2009,131,5734-5735.
    11..Xu, T. White, P. Li, C. H. He, J. G. Yu, W. K. Yuan and Y. F. Han, J. Am. Chem. Soc.,2010, 132,10398-10406.
    12. J. K. Edwards, E. Ntainjua, A. F. Carley, A. A. Herzing, C. J. Kiely and G. J. Hutchings, Angew. Chem.-Int. Edit.,2009,48,8512-8515.
    13. M. O. Nutt, K. N. Heck, P. Alvarez and M. S. Wong, Applied Catalysis B-Environmental, 2006,69,115-125.
    14. A. M. Venezia, V. La Parola, G. Deganello, B. Pawelec and J. L. G. Fierro, J. Catal,2003, 215,317-325.
    15. A. Hugon, L. Delannoy, J. M. Krafft and C. Louis,J. Phys. Chem. C,2010,114, 10823-10835.
    16. A. F. Lee, C. J. Baddeley, C. Hardacre, R. M. Ormerod, R. M. Lambert, G. Schmid and H. West, J. Phys. Chem.,1995,99,6096-6102.
    17. M. B. Cortie and A. M. McDonagh, Chem. Rev.,2011,111,3713-3735.
    18. G. Xia, S. Wang and S. J. Jeong, Nanotechnology,2010,21.485302.
    19. C. Fang and M. Q. Zhang, J. Mater. Chem.,2009,19,6258-6266.
    20. A. Ito, M. Shinkai, H. Honda and T. Kobayashi,J. Biosci. Bioeng.2005,100,1-11.
    21. Q. L. Liao, R. Tannenbaum and Z. L. Wang, J. Phys. Chem. B,2006,110,14262-14265.
    22. F. Y. Cheng, H. Ma, Y. M. Li and J. Chen, Inorg. Chem.,2007,46,788-794.
    23. P. Lu, T. Teranishi, K. Asakura, M. Miyake and N. Toshima, J. Phys. Chem. B 1999,,1999, 103,9673-9682.
    24. M. Chen, J. P. Liu and S. H. Sun, J. Am. Chem. Soc.,2004,126,8394-8395.
    25. E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, J. Am. Chem. Soc.,2002,124,11480-11485.
    26. G. Ennas, A. Falqui, G. Paschina and G. Marongiu, Chem. Mat.,2005,17,6486-6491.
    27. G. Mattei, C. D. Fernandez, P. Mazzoldi, C. Sada, G. De, G. Battaglin, C. Sangregorio and D. Gatteschi, Chem. Mat.,2002,14,3440-3447.
    28. T. Yamauchi, Y. Tsukahara, K. Yamada, T. Sakata and Y. Wada, Chem. Mat.,2011,23, 75-84.
    29. M. H. Rashid, M. Raula and T. K. Mandal, J. Mater. Chem.,2011,21,4904-4917.
    30. M. Raula, M. H. Rashid, S. Lai, M. Roy and T. K. Mandal, ACS Appl.Mater. Interfaces., 2012,4,878-889.
    31. H. Li, J. Y. Liao, Y. C. Du, T. You, W. W. Liao and L. L. Wen, Chem. Commun.,2013,49, 1768-1770.
    32 K. J. Carroll, S. Calvin, T. F. Ekiert, K. M. Unruh and E. E. Carpenter, Chem. Mat.,2010, 22,2175-2177.
    33. X. W. Wei, X. M. Zhou, K. L. Wu and Y. Chen, Crystengcomm,2011,13,1328-1332.
    34. Ahmed, S. Sharma, K. V. Ramanujachary, S. E. Lofland and A. K. Ganguli, J. Colloid Interface Sci.,2009,336,814-819.
    35. G. Viau, F. FievetVincent and F. Fievet, Solid State Ionics,1996,84,259-270.
    36 H. Zhang, T. Yao, Z. H. Sun, Y. Y. Li, Q. H. Liu, F. C. Hu, Z. Y. Pan, B. He, Z. Xie and S. Q. Wei,J. Phys.Chem. C,2010,114,13596-13600.
    37. M. J. Hu, Y. Lu, S. Zhang, S. R. Guo, B. Lin, M. Zhang and S. H. Yu, J. Am. Chem. Soc., 2008,130,11606-11607.
    38. H. Li and S. J. Liao, J. Mater. Chem.,2009,19,5207-5211.
    39. C. D. Gu and J. P. Tu, Langmuir,2011,27,10132-10140.
    40. G. A. Somorjai, H. Frei and J. Y. Park, J. Am. Chem. Soc.,2009,131,16589-16605.
    41. M. Beller, H. Fischer, K. Kuhlein, C. P. Reisinger and W. A. Herrmann, J. Organomet. Chem.,1996,520,257-259.
    42. T. Massalski, J. Murray, L. Bennett, H.Baker Binary Alloy Phase Diagrams Second Edition
    43. S. Wunder, F. Polzer, Y. Lu, Y. Mei and M. Ballauff, J. Phys. Chem.,2010,114, 8814-8820.
    44. H.-L. Jiang and Q. Xu, J. Mater. Chem.,2011,21,13705-13725.
    45. D. Jana, A. Dandapat and G. De, Langmuir,2010,26,12177-12184.
    46. M. A. Mahmoud, C. E. Tabor, M. A. El-Sayed, Y. Ding and Z. L. Wang, J. Am. Chem. Soc., 2008,130,4590-4591.
    47. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki and T. Nakagiri, Appl. Phys. Lett.,1990,56, 2379-2380.
    48.都有为、徐明祥、吴坚等,物理学报,199241(1),149
    49. Z. Q. Qiu, Y. W. Du, H. Tang and J. C. Walker, J. Appl. Phys.,1988,63,4100-4104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700