用户名: 密码: 验证码:
低伤害耐高温压裂液的研制与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力压裂作为一项油水井增产、增注技术在低渗透油气田投产、增产中显得特别重要,而压裂液的性能直接影响压裂施工的成功与否。
     本文首先通过大量的理论分析研究指出:表面活性剂溶液要具有粘弹性性质,活性剂要具备特定的分子结构,在辅剂存在下才能形成棒状、蠕虫、六角、层状等胶束,溶液出现网状结构满足压裂液的要求。室内合成了CTCB阳离子表面活性剂,建立了CTCB与NaSal的50-80℃清洁压裂液体系。合成了新型双子表面活性剂,优化压裂液配方,建立了抗温性能达到了90-120℃清洁压裂液体系。这两种体系均具有良好的耐剪切性能,拓宽了清洁压裂液应用范围。使用显微镜和SEM观察了主剂CTCB以及CTCB和NaSal在不同浓度下的胶束形态及结构,结果表明在辅剂NaSal存在情况下,胶束体积增大,出现网状结构,体系表现出高聚物溶液的粘弹性性质。实验研究表明,清洁压裂液具有用量少,摩阻小,携砂力强,油井增产显著的特点;而且不需交联剂、破胶剂和其它化学添加剂,对地层伤害小并使充填层保持良好。
     其次,室内合成了三元共聚物压裂液稠化剂CAMPS及交联剂OB-140,优化合成条件及配方。该体系在180℃剪切100min后粘度仍维持在80mPa·s左右,在120-180℃表现出良好的耐温性能和较强的耐剪切性能,满足压裂施工要求。
     室内合成了有机硼、锆TG-401复合交联剂,研制和优化了高温稳定剂。用CAMPS作为稠化剂,该体系在170s~(-1)、200℃条件下连续剪切150min后,粘度仍维持在100mPa·s左右,表明该压裂液体系耐温超过200℃。
     最后,为更好更有效地设计使用压裂液,本文分析研究了压裂施工中压裂液注入对油层和裂缝温度场的变化,建模、编制了预测油层及裂缝温度分布的程序,预测前置液、压裂液进入油层的降温幅度及规律。为压裂液配方设计(稠化、交联、破胶等药剂最低使用浓度)提供理论依据,充分发挥压裂液的抗温、破胶水化返排性能。清洁压裂液和高温压裂液在大庆、辽河油田两个区块进行现场应用,取到非常好的应用效果。
As an important stimulation, hydraulic fracturing is particularly important in putting into production and increasing production of low-permeability oil and gas fields.Performance of the fracturing fluid affects the effect of fracturing directly.
     Firstly based on a large number of theoretical analysis it is pointed out that the surfactant solution should have viscoelastic properties and active agent should have a specific molecular structure to form the micelles of rods, worms, hexagonal, lamellar and so on with the presence of adjuvants. The solution appears net structure so as to meet the requirements for fracturing fluids. We synthesized a CTCB cationic surfactant indoors, established a clean fracturing fluid system of CTCB and NaSal at50-80℃, as well as we synthesized a new Gemini surfactant indoors, optimized the fracturing fluid formulation. Its temperature resistance reaches90-120℃.Both of the systems have good performance of heat resistance and shear resistance, which broaden the application scope of clean fracturing fluid. We observed the micelle morphology and structure of the main agent CTCB as well as CTCB and NaSal at different concentrations by using a microscope and an SEM, results show that the micelle volume was increased, the mesh structure appeared with adjuvants NaSal, the system showed viscoelasticity nature of polymer solution. Experimental studies show that clean fracturing fluid has advantages including little dosage, small friction, strong sand-carrying ability, outstanding well stimulation; and it doesn't need any cross-linking agent, breaker and other chemical additives, it has little formation damage and maintains good condition for the filling layer.
     Secondly, we synthesized thickener terpolymer CAMPS and cross-linking agent OB-140, optimized the synthesis condition and recipes. The viscosity of the system still maintains80mPa·s after100minute shear at180℃.The system shows good performance of heat resistance and shear resistance at120-180℃, which meets the requirements of fracturing.
     We synthesized organic boron, zirconium TG-401composite cross-linking agent indoors, developed and optimized high temperature stabilizers. Using CAMPS as thickener, the viscosity of the system still maintains100mPa·s after150minute shear at170s-1and200℃.Results show that the fracturing liquid system has a temperature resistant of more than200℃.
     Finally in order to design and use fracturing fluid more effectively, the change of reservoir and crack temperature field when fracturing was analyzed and studied, the model and programs to predict reservoir and crack temperature distribution were established and made, the cooling rate and regular pattern were forecast after pad fluid and fracturing fluid got into the reservoir.The study can provide a theoretical basis for fracturing fluid formulation design(the lowest concentration of thickening, cross-linked,gel breaking pharmacy), give full play to the properties of temperature resistance, gel breaking,hydration and flowing back.Clean fracturing fluid and high temperature resistance fracturing fluid have got very good effects when made field applications in two blocks of Daqing oilfields and Liaohe Oilfield.
引文
[1]肖丹凤.低损伤新型多侧基植物胶压裂液开发与应用[D].东北石油大学博士论文,2010,7.
    [2]江怀友.世界低渗透油气田开发技术现状及展望[J].特种油气藏,2009,16(4):13-18.
    [3]曾凡辉,郭建春,赵金洲,赖未蓉,徐晓辉等.水平井分级压裂优化设计软件研制与应用[J].石油地质与工程,2008,22(1):78-81.
    [4]李曙光,郭大立,赵金洲,等.表面活性剂压裂液机理与携砂性能研究[J].西南石油大学学报(自然科学版),2011,33(3):133-136.
    [5]王兆越.海拉尔贝16区块压裂液微观伤害评价[D].东北石油大学硕士论文,2011(21):51-53.
    [6]王满学,何静,周兴旺,等.清洁压裂液内外相破胶技术研究[J].油田化学,2011,28(4):367-370.
    [7]高春宁,邱平,武平仓,等.表面活性剂对油藏砂岩表面性质的影响[J].武汉大学学报(理学版),2011,57(1):43-46.
    [8]刘治.弱酸性低伤害压裂液的室内研制与研究[D].东北石油大学硕士论文,2012.
    [9]岳建伟.低渗透油气藏压裂井产能研究[D].西南石油学院硕士论文,2004.
    [10]丁里,吕海燕,赵文,等.阴离子表面活性剂压裂液的研制及在苏里格气田的应用[J].石油与天然气化工,2010,39(4):316-319.
    [11]赵振峰,吕宝强,李宪文,等.阴离子表面活性剂压裂液的开发与性能评价[C]//国际压裂酸化大会论文集,西安,2010.
    [12]李林地,张士诚,徐卿莲.无伤害VES压裂液的研制及其应用[J].钻井液与完井液,2011,28(1):52-54.
    [13]胡忠前,马喜平,王红,等.粘弹性蠕虫状胶束及其应用[J].高分子通报,2007(8):24-28.
    [14]马文国,庞军,安明飞,等.新型两性表面活性剂的驱油体系界面特性变化规律研究[J].内蒙古石油化工,2010(14):112-114.
    [15]丁昊明,戴彩丽,由庆,等.耐高温FRK-VES清洁压裂液性能评价[J].油田化学,2011,28(3):318-321.
    [16]Bulat D, Talisman, Chen Y, et al. A faster cleanup, produced-water-compatible fracturing fluid:fluid designs and field case studies[C]. SPE112435,2008.
    [17]吴军.双子表面活性剂的结构特点与表面活性[J].广州化工,2010,38(12):52-55.
    [18]高大鹏,张磊,唐善法,等.双子表面活性剂溶液流变性研究[J].精细石油化工进展,2010,11(9):22-26.
    [19]韩利娟,陈洪,罗平亚.双子表面活性剂的粘度行为[J].物理化学学报,2004,20(7):763-766.
    [20]牛华,娄平均,丁徽,等.新型吉米奇(Gemini)季铵盐(NGA)的研制及其在VES清洁压裂液中的应用[J].石油化工应用,2010,29(7):13-16.
    [21]朱红军,牛华,娄平均,等.含双子表面活性剂酸性清洁压裂液的合成与性能[J].精细石油化工进展,2011,12(10):5-8.
    [22]李爱山,杨彪,马利成,等VES-SL粘弹性表面活性剂压裂液的研究及现场应用[J].油气地质与采收率,2006,13(6):97-100.
    [23]刘建坤,郭和坤,李海波,等.低渗透储层水锁伤害机理核磁共振实验研究[J].西安石油大学学报:自然科学版,2010,25(5):46-49.
    [24]孙军昌,郭和坤,刘卫,等.低渗火山岩气藏可动流体T2截止值实验研究[J].西南石油大学学报:自然科学版,2010,25(4):109-114.
    [25]刘易非,黄海.压裂液滤液对特低渗透储层驱油效率的影响[J].油气地质与采收率,2007,14(1):92-97.
    [26]黄波,马收,刘言亭,等.腰英台油田特低渗透油藏压裂技术研究及应用[J].油气地质与采收率,2007,14(4):101-102.
    [27]罗兆,李炎林,吴丽蓉,等.一种新型弱酸性压裂液的室内研究[J].新疆石油科技,2010:01:78-90.
    [28]刘洪升,刘耀旭,杨洪,等.碱敏储层压裂损害机理与保护技术研究及应用[J].断块油气层,2004,05:56-60.
    [29]李升芳.高温压裂液室内研究[J].小型油气藏,2006.
    [30]刘友权.CT低伤害水基压裂液的研制及应用[J].石油与天然气化工,2006,35(5).
    [31]龙政军.压裂液添加剂对压裂液性能及效果的影响分析[J]..石油天然气化工,2000:(6).
    [32]Bradley D M, Norbert H. Seawater in polymer-free fluids optimizes offshore fracturing[J]. World Oil,2000,11:12-13.
    [33]李秀花.近期国内外水基压裂液发展概况[J].石油与天然气化工,2002,24(1):12-17.
    [34]王启民.大庆油田开发地质论文集[C].北京:石油工业出版社,2000:152-162.
    [35]Diego G L, Patricia F, Tania R, et al. Ionic liquids as demulsifiers of water-in-crude oil emulsions:study of the microwave effect[J]. Energy and Fuels,2010,24(6):3610-3615.
    [36]Lemos R C B, Da S, Elisangela B, et al. Demulsification of water-in-crude oil emulsions using ionic liquids and microwave irradiation[J]. Energy and Fuels,2010,24(8):4439-4444.
    [37]丁云宏,罗英俊.难动用储量开发压裂酸化技术[M].石油工业出版社,2005:2-4.
    [38]林永茂,向丽,黄禹忠.新型泡沫压裂液研究及应用[J].钻采工艺,2010,04:80-82.
    [39]刘洪升,刘耀旭,杨洪,张红.碱敏储层压裂损害机理与保护技术研究及应用[J].断块油气田,2010,01:46-56.
    [40]王博涛,刘欢,刘峰,等.羧甲基酸性压裂液在安塞油田的应用[J].石油化工应用,2004,11(5):72-74
    [41]王丽伟,卢拥军,单文文.瓜尔胶低分子量化降解条件研究[J].油田化学,2006,01:62-72
    [42]陈进,刘蜀知,钟双飞.压裂液吸附对煤层损害的实验研究及影响因素分析[J].西部探矿工程,2008,01:77-79.
    [43]赵建平,何世云,宋永华.压裂井预防砂刺的综合措施研究及应用效果评价[J].油气井测试,2008,02:12-19.
    [44]魏杰然.微裂缝发育储层压裂技术研究与应用[J].石油钻采工艺,2009,03:90-98.
    [45]吉毅,李宗石,乔卫红.瓜尔胶的化学改性[J].日用化学工艺,2005,02:77-82.
    [46]马少云.低渗透油藏阴离子清洁压裂液体系研究[D].陕西:陕西科技大学,2011.
    [47]罗兆,李彦林,邹永明,等.一种新型弱酸性压裂液的室内研究[J].新疆石油科技,2010,1:48-52.
    [48]刘友权,唐永帆,王小红,等.低伤害水基压裂液的研究[J].石油与天然气化工,2006,05:59-69.
    [49]顾宏新.羧甲基羟丙基瓜尔胶的制备与表征[D].四川:四川大学出版社,2007.
    [50]王文雄,赵文,马强.华庆白257区压裂施工参数优化[J].科学技术与工程,2011,11(35):8885-8888.
    [51]梁文利,赵林,辛素云.压裂液技术研究新进展[J].断块油气藏,2009,16(1):95-99.
    [52]杨兵,黄贵存,李尚贵.川西高温压裂液室内研究[J].石油钻采工艺,2009,01:50-52.
    [53]辛军,郭建春,赵金洲.新型超高温压裂液体系研制与评价[J].钻井液与完井液,2009,06:70-78.
    [54]曹方起.粘土稳定剂的研究进展[J].内蒙古石油化工,2009,18:90-99.
    [55]黄进军,罗平亚,等.随钻防漏堵漏技术研究[J].断块油气藏,2009,16(1),:95-99.
    [56]梁文利,赵琳,辛素云.压裂液技术研究新进展[J].日用化学工业,2002,32(1):38-42.
    [57]刘新全,易明新,赵金钰,等.粘弹性表面活性剂(VES)压裂液[J].油田化学,2001,18(3):272-277.
    [58]王满学,刘易非.低伤害清洁压裂液VES-1的研制与应用[J].石油与天然气化工,2004,33(3):188-190.
    [59]Hoddch, SA, etc. using on expert system to select the optimal fracturing fluid and treatment volume [C]. SPE26188,1988.
    [60]张红,刘洪升,王俊英,等.裂缝性储层压裂改造HL-05降滤失剂研究与应用[J].钻采工艺,2005,05:88-98.
    [61]韩松,张浩,张凤娟,等.大庆深层致密气藏高温压裂液的研制与应用[J].大庆石油学院学报,2006,01:50-52.
    [62]于涛,丁伟,罗洪君.油田化学剂[M].北京:石油工业出版社,2002.
    [63]卢拥军.九十年代国外压裂液技术发展的新动向[J].石油与天然气化工1998,27:112-18.
    [64]丁里,杜彪,赵文,等.新型酸性压裂液的研制及应用[J].石油与天然气化工2009,01:89-92.
    [65]罗兆,李彦林,邹永明.一种新型弱酸性压裂液的室内研究[J].新疆石油科技,2010,01:41-48.
    [66]陈和平,徐家业,张群正.破乳剂发展的新方向[J].石油与天然气化工2001,30(2):92-95.
    [67]管保山,王晓东.清洁压裂液流变特性与工艺研究[M].2002年流变学进展,北京:中国科学技术出版社.2002.
    [68]李曙光.表面活性剂压裂液机理、压裂设计及评估技术研究[D].西南石油学院博士学位论文.2005:2-29.
    [69]Mu J H, Li G Z. The formation of wormlike micelles in anionic surfactant aqueous solutions in the presence of bivalent counterion [J]. Chemical Physics Letters,2001,345(12):100-104.
    [70]Mu J H, Li G Z. Rheology of viscoelastic anionic micellar solutions in the presence of a multivalent counterions[J]. Colloid and Polymer Science,2001,279(9):872-878.
    [71]Zhiqing Lin, Bin Lu, Jacques L. etal. Influence of surfactant concentration and counterion to surfactant ratio on rheology of wormLike micelles[J]. J. Colloid and Interface Sci,2001,239(2):542-554.
    [72]王晓康.水基清洁压裂液的制备及性能研究[D].兰州理工大学硕士论文,2011,5.
    [73]李静,沈明欢.Gemini表面活性剂的研究进展[J].河北化工,2006,29(4):2-6.
    [74]江怀友,李治平,钟太贤,齐仁理,李勇,等.世界低渗透油气田开发技术现状与展望[J].特种油气藏,2009,16(4):13-17.
    [75]陈荣圻.Gemini表面活性剂及其合成与应用[J].印染助剂,2006,23(2):1-9.
    [76]卢拥军,方波,房鼎业,等.粘弹性表面活性剂压裂液VES-70工艺性能研究[J].油田化学.2004,21(2):121-125.
    [77]Larson R G. The structure and rheology of complex fluids[M]. New York: Oxford University Press,2009.
    [78]Khatory A, Lequeux F, Kern F, etal. Linear and nonlinear viscoelasticity of semi dilute solutions of wormLike micelles at high salt content[J]. Langmuir,1993,9:1456-1456.
    [79]李铁阳,陈新萍,范振忠.季胺盐型双子表面活性剂18-2-18的合成[J].科学技术与工程.2010,10(7):1792-1796.
    [80]黄贵存马飞李洪波孙勇.超高温压裂液配方体系研究[J].石油与天然气化工,2011,40(2):186-189.
    [81]李东华,许小明,周文婷,等.季胺盐型Gemini表面活性剂的胶束化动力研究[J].高等学校化学学报,2006,27(10):1927-1931.
    [82]卢拥军,方波,房鼎业.粘弹性胶束压裂液的形成与流变性质[J].油田化学,2003,20(4):328-328.
    [83]胡忠前,马喜平,王红,等.粘弹性蠕虫状胶束及其应用[J].高分子通报.2007,(8):22-27.
    [84]Zana, R. Advances in Colloid and interfacial science[J]. SPE38039,1997,11:19-21.
    [85]贺承祖,华明琪.压裂液对储层的损害及抑制方法[J].钻井液与完井液,2003,20(1):17-21.
    [86]杨振周,周广才,卢拥军,等.粘弹性清洁压裂液的作用机理和现场应用[J].钻井液与完井液.2005,22(1):48-49.
    [87]贾振福,郭拥军,苟文雨,等.清洁压裂液的研究与应用[J].精细石油化工进展.2005,6(5):2-5.
    [88]刘俊,郭拥军,刘通义.粘弹性表面活性剂研究进展[J].钻井液与完井液.2003,20(3):47-50.
    [89]Furlow W. New down hole fracturing fluid works without polymers[J] Offshore.1999,59(6):66-69.
    [90]Pitoni E. Polymer-free fracturing fluid revives shut-in well[J]. World Oil.1999,9(3):21-25.
    [91]张国红,李曙光.一种新型压裂液的现场应用及分析[J].新疆石油科技.2001,11(2):10-13.
    [92]陈馥,王安培.无聚合物清洁压裂液的实验室研究[J].精细化工.2002,19(8):20-22.
    [93]徐志国,方波.清洁胶束压裂液延缓形成的性能[J].华东理工大学学报(自然科学版).2003,29(4):21-24.
    [94]严玉忠,舒玉华.粘弹性表面活性剂胶束体系及其流变特性[J].油田化学.2003,20(3):62-67.
    [95]刘新全,易新明.粘弹性表面活性剂(VES)压裂液[J].油田化学.2001,18(3):272-277.
    [96]Jachnik R P, Green P. Horiazontal well drill-in fluid utilize in alcohol ethoxylate[J]. Colloid Polym Sci.1999,27(1):27-35.
    [97]Giovanni S. Seawater streamLines polymer free fracturing[J]. Oil&Gas Journal.2000,(7):52-56.
    [98]Gwne D R, Arthur S. Viscoelastic surfactants rheology control without polymer or particulates[J]. ACS Symp.1994,57(8):352-369.
    [99]李干佐,隋华.表面活性剂研究新近展[J].日用化学工业.1999,(1):22-26.
    [100]谢磊,胡勇有.聚合铝与有机高分子复合絮凝剂水解-聚合历程及结构形貌研究[J].环境化学.2007,26(1):40-41.
    [101]曾凡辉,水平井压裂模拟模型及软件研制[D].西南石油大学硕士论文.2006(31).
    [102]邓敦夏,深层超高温储层压裂改造关键技术研究[D].西南石油大学博士论文,2009(75).
    [103]兰中孝,范振忠.清洁压裂液在奈曼油田的应用[J].科学技术与工程,2010,10(18),4468-4488.
    [104]张子明,辽河油田外围低孔低渗储层压裂改造技术研究[D],中国石油大学硕士论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700