用户名: 密码: 验证码:
变渗流阻力体系驱油提高采收率实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际的油藏中,由于油层纵向或平面上的非均质性,水驱过程中容易出现注入水的突进和指进现象,造成注入井周围不同方向的生产井受效不均匀,以及油层内部主流线和非主流线上对原油驱替的不均匀。聚合物等化学驱、化学剂调剖、调驱等技术可以大幅改善水驱效果,但仍然受油层非均质性的影响,这些方法应用后仍有大量剩余油在油层内呈不均匀状态分布,即定黏度的驱油剂与非均质的油层之间的矛盾仍然没有解决。本文即在此背景下,提出了变渗流阻力驱油体系提高采收率方法,即在水驱、聚合物等化学剂驱油、调剖技术的基础上,研究能够与油层非均质、压力梯度分布不均匀相适应的各种变渗流阻力驱油体系,不但能够使中高渗透油藏,而且能够使低渗透油藏水驱采收率有较大的提高。
     论文解释了变渗流阻力体系驱油方法能够提高局部压力梯度进而提高采收率的原理,设计了3种不同的变渗流阻力驱油体系,并通过不同实验手段验证了其提高采收率的可行性。为找出变渗流阻力驱油体系与油层之间的适应关系,以聚合物为代表驱油剂,进行了变渗流阻力驱油体系与大庆油田一类油层匹配关系的室内实验。论文首次采用恒速和恒压两种方法相结合的技术思路,将恒速注入计算出的阻力系数、残余阻力系数与恒压实验中得出的注入速度三个参数相结合,制定了驱油剂与油层注入界限的判定标准,总结了相互的匹配关系,并给出了配伍关系图版,为变渗流阻力体系驱油提高采收率方法的现场应用提供了理论指导。
     在研制的可视化平面非均质填砂模型上进行了可直接观察的驱油实验,结果表明,相对于恒定渗流阻力的体系,黏度连续降低的变渗流阻力驱油体系可以获得更大的波及面积。在微观玻璃蚀刻模型和人造非均质岩心上的实验也得到了相同的结果,证明了变渗流阻力方案可以获得更大的波及体积,进而提高水驱或聚驱后的采收率。
     在渗透率分别为100、300、500、700、900和1100×10-3μm2并联的6支人造岩心上,进行了聚合物交替变渗流阻力体系提高采收率的室内实验。通过对比不同交替方式和交替周期方案的分流率、采收率、含水率和压力等参数的变化,考察适合该非均质情况的交替变渗流阻力注入方式。研究发现,交替注入能够增加低渗层吸液量,调整吸液剖面,有效抑制注聚合物过程中剖面返转现象,从而改善非均质油层驱油效果,但交替周期存在一个最佳界限,就实验模拟的非均质油层而言,交替周期在0.2PV时可获得最佳驱油效果。对于交替注入的先后顺序,发现高浓高分聚合物在前的方式好于低分或低浓在前的方式,进而优选出了最佳聚合物交替变渗流阻力注入方式。
     考虑到泡沫体系较好的流度控制和改变渗流阻力的作用,同时兼顾二元体系降低界面张力的作用,采用人造三层非均质岩心对比了一种泡沫和二元体系交替注入变渗流阻力体系不同交替方式的驱油效果,进而优选了这种泡沫和二元体系交替注入的最佳注入方式。在此基础上,利用微观玻璃蚀刻模型的驱油实验,通过采集不同变渗流阻力驱油体系在孔隙模型中的渗流过程图像,对比了聚合物、聚合物与空气交替和二元与泡沫交替的驱油效果,发现聚合物空气交替和二元与泡沫交替注入相对于单一聚合物驱均能够提高化学驱阶段采收率,并大幅度降低聚驱阶段聚合物用量。分析了二元与泡沫交替孔隙中渗流过程,认为空气与聚合物、二元复合体系与泡沫交替注入都使聚合物注入渗流阻力发生变化,起到了更好的流度控制作用。但由于二元复合体系与泡沫交替在驱替过程中起到调驱作用的同时,又起到洗油的作用,驱油效果好于聚合物空气体系。
     按照优选的聚合物分子量和浓度,在模拟大庆油田一类油层油藏条件下,采用人造三层非均质岩心,对比了聚合物黏度连续降低、聚合物交替、二元与泡沫交替及三元复合驱等体系的驱油效果,结果表明黏度连续降低的方案化学驱采收率最高,证明黏度连续降低变渗流阻力体系在一类油层适用,并且经济上可行。
Due to the vertical and plane heterogeneity of oil layer in reservoir, it is easy to lead tothe dashing and fingering of injected water and resulting in different directional producersaround injection well respond differently and nonuniform displacement in main streamlineand distributary streamline. Chemical flooding like polymer flooding, profile control anddisplacement can improve water flooding effect greatly. But due to the reservoir heterogeneity,there are still a large number of uneven remaining oil in oil layers after these methods wereapplied. There is a paradox between oil displacing agent with certain viscosity andheterogeneous oil layers. Under this background, this paper proposes a kind of enhanced oilrecovery method of oil displacement system with adjustable flowing resistance. Someresearches are conducted on many kinds of oil displacement system with adjustable flowingresistance on the basis of water flooding, chemical flooding like polymer flooding and profilecontrol, which can be adapted to heterogeneous oil layers and uneven pressure gradientdistribution. This method not only enhances oil recovery of water flooding in middle and highpermeability reservoir, but also enhances that in low permeability reservoir.
     This paper explains the theory of enhanced oil recovery of variable seepage resistance oildisplacement system for enhancing regional pressure gradient and formulates differentadjustable flowing resistance oil displacement system. The possibility of enhanced oilrecovery by this method is confirmed through different experiments. In order to find out thematching relationship between adjustable flowing resistance oil displacement system and thecondition of oil layer, some laboratory tests were conducted by using polymer as arepresentative oil displacing agent. This paper takes constant speed and pressure combinationas technical route firstly, the criterion of matching relationship between oil displacing agentand the condition of oil layer were formulated by combing resistance coefficient and residualresistance factor from constant speed injection and injection speed from constant pressureinjection together. The matching relationship plate was given, which provided theoreticalguide for field application of adjustable flowing resistance oil displacement system.
     A kind of visual sand-packs model of plane heterogeneity was developed and some oildisplacing experiments were conducted, that can be observed directly. The results show that,in contrast to constant seepage resistance system, adjustable flowing resistance oildisplacement system with continuously reduced viscosity can achieve larger swept area.Based on above, it can be confirmed qualitatively that adjustable flowing resistance oildisplacement scenarios can obtain larger swept volume and enhance oil recovery by waterflooding or polymer flooding further.
     Some laboratory tests are carried on six parallel cores with polymer alternatively injectedadjustable flowing resistance oil displacement system. The permeability of these six cores are 100,300,500,700,900and1100×10-3μm2respectively. Compare with flow ratio, oil recovery,water cut and pressure of different alternate pattern and alternate cycle scenarios, a suitablealternate adjustable flowing resistance injection pattern was studied. It can be concluded thatalternate cyclic injection can increase fluid suction volume of low permeability layer to adjustprofile and can refrain unfavorable profile change to improve displacing effect ofheterogeneous oil layers. But there should be a optimal range of alternate cycle, whenalternate cycle is0.2PV, best oil displacing effect can be obtained for the heterogeneous oillayers we studied in the experiments. For the sequence of alternate injection, it can beconcluded that scenario with high molecular weight and high concentration in first is betterthan that of low molecular weight and low concentration in first. Further optimal alternatelyadjustable flowing resistance injection pattern was screened.
     Taking into account the good mobility control and variable seepage resistance andreducing interfacial tension of foam system, some experiments are carried out to determinethe oil displacing effect of different alternate pattern between foam system and binary systemon artificial three-layer heterogeneous cores and then a optimal alternate pattern betweenfoam system and binary system is determined. On the basis of this, some displacingexperiment were conducted by making use of microscopic etched glass model and manyimages of different variable seepage resistance oil displacement system flowing in the modelare collected. Comparing displacing effect of polymer flooding, polymer and air alternateinjection and binary system and foam system alternate injection, it can be concluded that incontrast to polymer flooding, polymer and air alternate injection and binary system and foamsystem alternate injection can enhance oil recovery and reduce the amount of polymerconsumed greatly. It was analysed of the seepage difference between polymer and air systemand polymer and foam system. Both of them can make injection seepage resistance change,but the oil displacing effect of the latter is better than the former and it can be confirmedfurther that variable seepage resistance oil displacement system can enhance oil recovery.
     According to the optimal molecular weight and concentration of polymer, someexperiments are carried out to determine the oil displacing effect among continuouslyreducing polymer viscosity method and alternate injection of polymer and binary system andfoam system alternate injection and ASP flooding and so on by using artificial three-layerheterogeneous cores simulating the condition of typeⅠreservoir of Daqing oilfield. Theresults show that the oil recovery by continuously reducing polymer viscosity method ishighest, which illustrates that the variable seepage resistance system of continuously reducingpolymer viscosity is suitable for typeⅠreservoir and is feasible economically.
引文
[1]秦积舜,李爱芬.油层物理学[M].东营:石油大学出版社,2001:13-16.
    [2]韩大匡.多层砂岩油藏开发模式[M].北京:石油工业出版社,1999:114-117.
    [3]沈平平.提高采收率技术进展[M].北京:石油工业出版社,2006:16-46.
    [4]郭万奎,程杰成,廖广志.大庆油田三次采油技术研究现状及发展方向[J].大庆石油地质与开发2002,21(3):1-6.
    [5]王志武,刘恒,高树棠.三次采油技术及矿场应用[M].上海:上海交通大学出版社,1995:25-45
    [6]徐艳梅.水驱-聚驱后气水交替提高采收率研究[D].西南石油学院硕士学位论文,2005.
    [7] Bachlls, Shaw J.C. Estimation of oil recovery and CO2Storage capacity in CO2EORincorporating the effect of underlying aquifers[J].SPE89340.
    [8] Agustssenh, Grinestafr GH.A study of IOR by CO2injection in the GullfaksField[J].SPE89338.
    [9]江怀友,沈平平,陈立滇,等.北美石油工业二氧化碳提高采收率现状研究[J].中国能源,2007,29(7):30-34.
    [10]刘新,钟显东,秦佳,等.国内外混相气驱提高采收率技术[J].中外科技情报,2006(20):20-32.
    [11] Mohammed-Singh,lorna J.,Ashok K..Lessons From Trinidad`s CO2ImmisciblePilotProjects1973-2003[C].SPE89364.
    [12]赵明国.特低渗透油藏CO2驱室内实验及数值模拟研究[D].大庆石油学院博士论文.2008.
    [13]马涛,汤达祯,蒋平,等.注CO2提高采收率技术现状[J].油田化学,2007,24(4):379-383.
    [14]缪明富,彭子成,钟国利.利用CO2资源提高气田开发效益[J].石油与天然气化工,2005,34(6):470-481.
    [15] Moritis G.Special report enhanced oil recovery [J]. Oil&Gas Journal,2002(8):53-65.
    [16]眭纯华,厉华,毕新忠.世界三次采油现状及发展趋势.国外油田工程,2010,26(12):13-16.
    [17]石油信息.世界领先的加拿大烃类混相驱[J].大庆石油地质与开发,2003,22(4):52.
    [18] Jia, N. Moore, G.. Mehta, S. A.. Compositional Changes and RheologicalProperties of Athabasca Bitumen under CO2/O2Mixtures Associated with CarbonDioxide Flooding/Sequestration Process [J]. Ind. Eng. Chem. Res.,2007,46(1):365-368.
    [19] Litong Zhao, David H.S. Law. Prediction of fluid phase behaviors in a CO2-EORprocess in Weyburn field, Saskatchewan, Canada[J].Greenhouse Gas ControlTechnologies,2005(7):2069-2073.
    [20]李殿文.前苏联的表面活性剂稀体系驱油[J].油田化学,1993,10(2):188-194.
    [21]马世伦,赵学孟,郭玉娟,等.注浓硫酸提高原油采收率[J].国外油田工程,1993(1):7-9.
    [22]庞彦明,郭洪岩,杨知盛,等.国外油田注气开发实例[M].北京:石油工业出版社,2001:115-117.
    [23] F.John Fayers, R.I.Hawes, J.D.Mathews.Some Aspects of the Potential Applicationof Surfactants or CO2as EOR Processes in North Sea Reservoirs[J].Journal ofPetroleum Technology.1981.9:1617-1627.
    [24] Madhav M.Kulkarni,Dandina N.Rao.Experimental investigation of miscible andimmiscible Water-Alternating-Gas (WAG) process performance[J].Journal of PetroleumScience and Engineering,2005,48(1):1-20.
    [25]李士伦,孙雷,郭平,等.再论我国发展注气提高采收率技术[J].天然气工业,2006,26(12):30-34.
    [26] R.Castro,G.Maya, D.Mercado,M.Trujillo, C.Soto,H.Pérez.EnhancedOil Recovery (EOR) Status–Colombia. SPE139199.
    [27] Pautz, J.F., R.A., BDM-Oklahoma Inc./NIPER; C.M. Nautiyal,U.S.DOE.Comparison ofActual Results of EOR Field Projects to Calculated Resultsof EOR Predictive Models. SPE22763.
    [28] Saad M, Sunil L. Kokal, EOR Potential in the Middle East: Current and FutureTrends.SPE143287.
    [29] Yassin, A.A.M.Enhanced Oil Recovery in Malaysia.SPE17693.
    [30] Hon Vai Yee, Wan Nurul Adyani W Razak.Enhanced Oil Recovery Potential OfHeavy-Oil Fields In Africa.SPE108513.
    [31]韩大匡.中国油气田开发现状、面临的挑战和技术发展方向[J].中国工程科学,2010,12(5):51-57.
    [32]牛金刚.大庆油田聚合物驱提高采收率技术的实践与认识[J].大庆石油地质与开发,2004,23(5):91-93.
    [33]程杰成,廖广志,杨振宇,等.大庆油田三元复合驱矿场试验综述[J].大庆石油地质与开发,2001,20(2):46-49.
    [34]岳青山.采油用水溶性聚合物[M].北京:石油工业出版社,1992.
    [35]王德民,王刚,吴文祥等,黏弹性驱替液所产生的微观力对驱油效率的影响[J].西安石油大学学报(自然科学版),2008,20(01):45-51.
    [36]程杰成,王德民,吴军政,李群等.驱油用聚合物的分子量优选[J].石油学报,2000,21(1):102-106.
    [37]隋军,廖广志,牛金刚.大庆油田聚合物驱油动态特征及驱油效果影响因素分析[J].大庆石油地质与开发,1999,18(5):17-20.
    [38]王启民,廖广志,牛金刚.聚合物驱油技术的实践与认识[J].大庆石油地质与开发,1999,21(04):11-15.
    [39]卢祥国,高振环,赵小京,等.聚合物驱油之后剩余油分布规律研究[J].石油学报,1996,17(4):55-61.
    [40]卢祥国,高振环,闫文华,等.聚合物驱油效果及其影响因素的实验研究[J].油气采收率技术,1995,2(4):1-5
    [41]曹瑞波,丁志红,刘海龙,等.低渗透油层聚合物驱渗透率界限及驱油效果实验研究[J].大庆石油地质与开发,2005,24(5):71-73.
    [42]赵长久,韩培慧,李新峰.聚合物驱注入压力探讨[J].油气采收率技术,1997(02)
    [43]石志成,卢祥国.预交联体膨聚合物调剖驱油机理及效果评价[J].大庆石油学院学报,2007,31(3):28-31.
    [44]兰玉波,杨清彦,李斌会.聚合物波及系数和驱油效率实验研究[J].石油学报,2006,27(1):64-69.
    [45]杨付林,杨希志,王德民,等.高质量浓度聚合物驱油方法[J].大庆石油学院学报,2003,27(4):24-28.
    [46]吴文祥,张涛,胡锦强.高浓度聚合物注入时机及段塞组合对驱油效果的影响[J].油田化学,2005,22(4):332-336.
    [47]葛际江,张贵才,蒋平,等.驱油用表面活性剂的发展[J].油田化学,2007,24(3):287-291.
    [48] B.Vonnegut. Rev. Sci. Instr.1942,11(6):11-16.
    [49]郭东红.表面活性剂驱的驱油机理与应用[J].精细石油化工进展,2002,3(7):35-41.
    [50]杨清彦,宫文超,贾忠伟.大庆油田三元复合驱驱油机理研究[J].大庆石油地质与开发,1999,18(3):24-26.
    [51]张逢遇,卢艳,韩建斌.表面活性剂及其复配体系在三次采油中的应用[J].石油与天然气化工,1999,28(2):130-132.
    [52]鞠野.一元/二元/三元驱油体系微观驱油机理研究[D].大庆石油学院硕士论文,2006.
    [53]闫义田,王克亮,王娟,等.表面活性剂对三元复合体系界面张力影响研究[J].石油与天然气化工,2006,35(03):224-228.
    [54]陈丽文.驱油用石油磺酸盐界面张力与驱油效果研究[J].油气田地面工程,2009,28(09):19-20.
    [55]韩冬,沈平平.表面活性剂驱油原理及应用[M]北京:石油工业出版社,2001,199-208.
    [56] Hongdu Huang, W. H. Donnellan, J. H. Jones. Ultralow oil-water IFTs usingneutralized oxidized hydrocarbons as surfactants[J].1990,67(6):406-411.
    [57] G. Eimund, Soness Clas, H. pererik, et al. Branched EtherSurfactant and Their Usein an Enhanced Oil Recovery Process[P].WO9115289,1991
    [58] Burdon R F, Chang H L, Cook E L, et al. Oil Recovery by Alkaline-surfactant Waterflooding[P].DE3822834,1990.
    [59] Rosen M.J,Gemini. Anew generation of surfacetants.Chemtech.1993,23(3):30-33
    [60] Naser-El-Din H A, Tayor K C. Interfacial behavior of crude oil/alkali system in thepresent of partially hydrolysed poly-acrylamide. Colloids surfaces A:Physicochem. Eng, Aspects.1993.
    [61] Li Ganzuo, Lin Yuan, Xu Guiying. Enhanced oil recovery using natural sodiumcarboxylate surfactant systems for the typical midcontinent crude oil. in: Proceedingsof34th IUPAC Congress[P]. Beijing Review:1995,1240-1245.
    [62]刘仁强.聚驱后无碱驱油体系提高采收率机理研究[D].大庆石油学院硕士论文,2007.
    [63]周润才.表面活性剂/聚合物驱油的基本原理[J].国外油田工程,1995(03):9-12.
    [64] R.A. Bradford,J.D. Mpasmpton,P.R. Hollis. Operational Problems in NorthBurbank Unit Surfactant Polymer Project[J]. SPE7799.
    [65] C.Z.Yang. Adjustment of Surfactant/Polymer Interaction Surfactant/PolymerFloodingWith Polyelectrolytes[J]. SPE14931.
    [66]吴文祥,张玉丰,胡锦强,等.聚合物及表面活性剂二元复合体系驱油物理模拟实验[J].大庆石油学院学报,2005,29(06):98-100.
    [67]李孟涛,刘先贵,杨孝君.无碱二元复合体系驱油试验研究[J].石油钻采工艺,2004,26(05):73-76.
    [68]李柏林,程杰成.二元无碱驱油体系研究[J].油气田地面工程,2004(06):16.
    [69]叶仲斌,施雷庭,杨建军,等.聚表二元驱油体系界面流变性研究[J].西南石油学院学报,2002,24(06):60-63.
    [70]夏惠芬,张新春,马文国,等.超低界面张力的二元驱油体系对水驱残余油启动和运移机理[J].西安石油大学学报(自然科学版),2008,23(06):55-58.
    [71] YANG C Z.Adjustment of surfactant/polymer interaction surfactant/polymer floodingwith polyelectrolytes.SPE14931.
    [72]李治龙,钱武鼎.我国油田泡沫流体应用综述[J].石油钻采工艺,1993,15(6):88-94.
    [73]刘泽凯,闵家华.泡沫驱油在胜利油田的应用[J].油气采收率技术,1996,3(3):24-29.
    [74] Beyer A. H, Millhone R.S, Foote R.W. Flow Behavior of Foam as a WellCirculating Fluid [J].SPE2986.
    [75] Stone H. L. Vertical Conformance in all Alternation Water-Miscible Gas Flood[J].SPE11130.
    [76] Righi E.F, Royo J, Gentil.P.J et al. Experimental Study of Tertiary Immiscible WAGinjection [J].SPE89360.
    [77]廖广志,李立众,孔繁华,等.常规泡沫驱油技术[M].北京:石油工业出版社,1999:239-256.
    [78]李宾飞.氮气泡沫调驱技术及其适应性研究[D].中国石油大学硕士学位论文,2007.
    [79]赵金省.聚驱后等流度泡沫驱油提高采收率技术研究[D].中国石油大学博士学位论文,2008.
    [80]周阳.水驱后多段塞等流度驱油方法研究[D].中国石油大学硕士学位论文,2009.
    [81]袁庆峰,巢华庆,任玉林,等.水驱砂岩油田开发分析[J].石油勘探与开发,1989,16(6):56-63.
    [82]李道品.低渗透油田开发[M].北京:石油工业出版社,1999.
    [83]曾大乾,李淑贞.中国低渗透砂岩储层类型及地质特征[J].石油学报,1994,15(1):38-45.
    [84]郭尚平,田根林,王芳,等.聚合物驱后进一步提高采收率的四次采油问题[J].石油学报,1997,18(4):49-53.
    [85]巢华庆.大庆油田提高采收率研究与实践[M].北京:石油工业出版社,2006.
    [86]夏惠芬,王德民,王刚,等.聚合物溶液在驱油过程中对盲端类残余油的弹性作用[J].石油学报,2006,27(2):72-76.
    [87]宋考平,李世军,方伟,等.用荧光分析方法研究聚合物驱后微观剩余油变化[J].石油学报,2005,26(2):92-95.
    [88]王志伟.聚驱后等流度平行多段塞提高采收率方法研究[D].中国石油大学硕士学位论文,2009.
    [89]庞宗威,程杰成,高秀兰,等.聚合物驱数值模拟渗流参数的测定研究[J].油田化学,1993,(10):41-45.
    [90]吴文祥,侯吉瑞,张云祥,等.聚合物分子量对聚合物驱油效率的影响[J].油田化学,1996,13(3):244-247.
    [91]卢祥国,高振环.聚合物分子量与岩心渗透率配伍性[J].油田化学,1996,13(1):72-75.
    [92]陈鹏,邵振波,刘英杰.中、低渗透率油层聚合物相对分子质量的确定方法[J].大庆石油地质与开发,2005,24(3):95-96.
    [93]朱怀江,刘强,沈平平,等.聚合物分子尺寸与渗透率界限及驱油效果实验[J].石油勘探与开发,2006,33(5):609-613.
    [94]李子甲,闫长辉,陈青,等.大庆油田北一二排西部二类油层注入聚合物相对分子质量的确定[J].大庆石油地质与开发,2006,25(6):91-91,114.
    [95]赵建伟,张书远,姚恒申.应用地层堵塞机理优选注聚参数[J].断块油气田,2010,17(2):222-224.
    [96] FU Cheng,HUANG Bin.The experiment study for matching relation between polymermolecular weight and permeability,2011International Conference on Multi-fieldCoupling Theory of Rock and Soil Media and Its Applications in Development andUtilization of Resources
    [97] HUANG Bin,FU Cheng, and LIU Haibo. Experimental Analysis of PolymerInjection Ability under Constant Pressure and Speed. International Conference onManufacturing Engineering andAutomation,2391-2394.
    [98]宋考平,任刚,夏惠芬,等.变粘度聚合物驱提高采收率方法[J].东北石油大学学报,2010,34(5):71-74.
    [99]曹瑞波.聚合物驱剖面返转现象形成机理实验研究[J].油气地质与采收率,2009,1(64):71-73.
    [100]曹瑞波,韩培慧,孙刚.变黏度聚合物段塞交替注入驱油效果评价[J].石油钻采工艺,2011,33(6):88-91.
    [101]曹瑞波.聚合物驱剖面返转现象形成机理实验研究[J].油气地质与采收率,2009,16(04):71-73
    [102]王冬梅,韩大匡,侯维虹,等.聚合物驱剖面返转类型及变化规律[J].大庆石油地质与开发,2007,26(04):96-99.
    [103]曹瑞波,韩培慧,侯维虹.聚合物驱剖面返转规律及返转机理[J].石油学报,2009,30(02):267-270.
    [104] Bin HUANG, Kao Ping SONG, KunYANG, Xu SU. Evaluation on Effect ofAlternating Injection Polymer Flooding in Heterogeneous Reservoir.2nd/2012International Conference on Energy, Environment and Sustainable Development.
    [105]王刚.粘弹性无碱二元体系提高采收率机理研究[D].大庆石油学院博士论文.2009.
    [106]王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报,2000,21(9):45-51.
    [107]夏惠芬,王德民,刘仲春,等.粘弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60-65
    [108]夏惠芬,王德民,侯吉瑞,等.粘弹性聚合物溶液对驱油效率的影响[J].大庆石油学院学报,2002,26(2):109-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700