用户名: 密码: 验证码:
MFI结构层状分子筛的合成、结构修饰与催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对MFI结构分子筛,进行了新型层状ZSM-5、TS-1、Sn-MFI的设计合成与改性,以期提高沸石分子筛催化活性中心的可接近度,改善大分子反应物或产物在其孔道内的扩散性能,从而扩大MFI结构分子筛的应用范围,具体进行了以下几个方面的研究:
     第一部分,以Gemini型双头季铵盐的双功能表面活性剂作结构导向剂(SDA),在类似于常规TS-1水热合成的体系中,成功制备了层状TS-1分子筛(LTS-1)。详细考察了合成过程中的关键因素-结构导向剂的用量,对最终产品的影响,所得分子筛样品的催化性能通过环己烯、环庚烯、环辛烯、环十二烯以及丙烯的环氧化反应进行了表征,并与常规TS-1分子筛、Ti-Beta、Ti-MWW及Ti-MCM-41进行了比较。结果表明,在其它条件相同的情况下,合成体系中结构导向剂的用量对最终样品的结晶度有很大的影响,用量太低或太高均不利用于分子筛的完全晶化,通过优化实验条件,我们成功合成出了结晶度高、Ti在分子筛骨架中的配位状态好的层状TS-1分子筛,LTS-1不仅具有2nm晶胞厚度的超薄形貌,同时拥有孔径大约为3.2nm的介孔孔道,这些显著特征一方面使更多的活性位点暴露出来,另一方面也有利于大分子在晶内的传输,因此对催化大分子的反应十分有利。在以大分子叔丁基过氧化氢(TBHP)为氧化剂,大分子烯烃为反应底物的环氧化反应中,LTS-1的催化性能与Ti-MCM-41相当,并且明显高于其它几种分子筛。在丙烯与异丙苯过氧化氢环氧化制备环氧丙烷的CHPO (cumene hydroperoxide propylene oxide)反应中,环氧丙烷的产率可达20%,选择性达99%,而参比的几种催化剂中,性能最好的Ti-MCM-41环氧丙烷的产率也只有7.2%。
     第二部分,我们以层状ZSM-5为前驱体,通过在酸性条件下,利用有机硅烷插层扩孔的新结构改性方法,成功制备出了同时具有10元环与12元环的新型IEZ-LZSM-5。详细考察了有机硅烷类型与用量、插硅反应温度、酸浓度以及乙醇用量等因素对最终样品结构的影响。通过苯的烷基化、间二甲苯的异构/歧化、正己烷的裂解三个反应考察了扩孔后的分子筛IEZ-LZSM-5的孔结构及催化性能。在苯与异丙醇的烷基化反应中,与其它催化剂相比,IEZ-LZSM-5具有最高的反应活性及良好的目标产物异丙苯的选择性,在8h的连续反应过程中,IEZ-LZSM-5的催化活性下降很慢,苯转化率保持在57%~60%,异丙苯的选择性一直在69-74%。在正己烷的裂解反应中,相同温度下,IEZ-LZSM-5的转化率高于LZSM-5,这应该归于IEZ-LZSM-5的强酸位增加,因为正己烷的裂解反应主要在强酸位上进行。而IEZ-LZSM-5具有更高的丙烯选择性则应归因于IEZ-LZSM-5沸石的扩孔结构,降低了丙烯在沸石颗粒上的停留时间,抑制了氢转移反应的发生。在间二甲苯的异构/歧化反应中,可以通过p/o(对二甲苯/邻二甲苯)的值来判断分子筛的孔径大小,譬如:因为邻二甲苯在12元环分子筛中扩散的速度高于在10元环分子筛中,因此12元环分子筛的邻位产物更多,12元环分子筛的p/o将小于10元环分子筛。结果表明,IEZ-LZSM-5及LZSM-5的p/o介于Beta与CZSM-5之间,并且IEZ-LZSM-5的p/o比LZSM-5更小,这与它们的孔道结构是一致的。间二甲苯的异构的同时会发生双分子的歧化反应,i/d异构/歧化)值可以作为分子筛内部孔体积的一个指标,如果孔体积较大,将会有较多的间二甲苯发生歧化反应,i/d值会相应较小,结果表明i/d值按从大到小的顺序为:CZSM-5>LZSM-5>IEZ-LZSM-5>Beta,而这几种分子筛的孔径正是按照以上顺序逐步增大的。
     第三部分,采用液固相同晶置换法,成功合成出层状钛硅分子筛LTS-1-PS。以六氟钛酸为钛源,详细考察了各种合成条件包括置换反应时间、温度、前驱体的种类、投料配比(Si/Ti)、不同固液比等因素对最终合成的样品的影响。样品的催化性能通过正己烯及环己烯的环氧化反应进行了表征,LTS-1-PS与常规TS-1对正己烯催化性能相当,但是在以大分子TBHP作氧化剂的大分子环己烯的环氧化反应中,LTS-1-PS表现出远远高于后者的活性。同时,一个有趣的现象是,后补钛合成的LTS-1-PS在以30%H202为氧化的反应体系中表现出优于水热合成得到的LTS-1,这可能归于前者具有更疏水的表面。
     第四部分,采用液固相同晶置换法以及固相离子交换法,分别成功合成出层状锡硅分子筛LSn-MFI-SLR及LSn-MFI-SSRo详细考察了前驱体种类、投料配比(Si/Sn)、反应介质等因素对最终合成的样品的影响,样品的催化性能通过B-V氧化反应进行了表征。结果表明,两种方法得到的催化剂对金刚烷酮均具有很好的氧化性能,但是,液固相方法得到的材料性能更好些,这应归因于在前者的分子筛骨架中Sn的状态更好。
The dissertation is aiming at improving the degree of accessibility of the active sites in zeolites, and improving the diffusion rate of bulky reactants or products with larger kinetic diameter inside zeolite channels, which will expand the range of application of zeolites. New Layered ZSM-5, TS-1and Sn-MFI were synthesized or structurally modified further.
     In the first part of this dissertation, a lamellar titanosilicate (LTS-1) was hydrothermally synthesized by employing a bifunctional surfactant as the structure-directing agent (SDA). The effect of concentration of SDA on the crystallinity of the final product was examined in details, and the catalytic performance of the obtained zeolite sample was investigated in the epoxidation of cyclohexene, cycloheptene, cyclooctene, cyclododecene and propylene. The samples were highly crystalline materials when the concentration of SDA met0.04≤C22-6-6(OH)2/SiO2≤0.08(molar ratio). As-synthesized LTS-1possessed a multilayer structure, which was constructed from a collection of2-nm zeolite nanosheets and interlayer SDA molecules. Removing the intercalated organic species induced irregular layer stacking to a certain extent, leading to intracrystal mesopores of ca.3.2nm in diameter. In the epoxidation of bulky olefin with tert-butyl hydroperoxide (TBHP) as the oxidant, the catalytic performance of the LTS-1and Ti-MCM-41is comparable, and is significantly higher than that of others. In the epoxidation of propylene using cumene hydroperoxide (CMHP) as the oxidant in the innovative CHPO(cumene hydroperoxide propylene oxide) process, the reaction was highly selective independent of titanosilicates, giving PO as the sole product (>99%), but CTS-1,Ti-Beta, and Ti-MWW showed an extremely low PO yield. However, LTS-1was highly active, showing a20%PO yield even higher than that of Ti-MCM-41. Based on TOF, the activity of LTS-1was about four times as high as that of mesoporous Ti-MCM-41, implying that LTS-1with mesoporosity is a promising catalyst useful for the CHPO process.
     In the second part, interlayer expanded IEZ-ZSM-5with10-membered ring (MR) and12MR pore was prepared by a new postsynthesis method, that is silylating as-synthesized samples with EtOMe2Si-O-SiMe2OEt in1M HCl/(EtOH+H2O). The effects of postsynthesis conditions such as acid concentration, temperature, different organosilanes and their amount and the amount of ethanol on the structure of final samples were investigated in details.The catalytic performance and pore structure of IEZ-LZSM-5were investigated in the alkylation of benzene, m-xylene isomerization/disproportionation, m-hexane cracking.In the alkylation reaction of benzene with isopropanol, IEZ-LZSM-5showed the highest reaction activity and good selectivity to cumene. During the TOS of8h, the catalytic activity of IEZ-LZSM-5decreased very slowly, and the benzene conversion was from57%to60%, while the selectivity to cumene was in the69-74%. In the cracking of the n-hexane, at the same temperature, the activity of IEZ-LZSM-5was higher than that of LZSM-5, due to the stronger acid sites of the IEZ-LZSM-5. IEZ-LZSM-5showed a higher selectivity to propylene should be attributed to12-MR pores formed in IEZ-LZSM-5, which inhibited the occurrence of hydrogen transfer reactions. In m-xylene isomerization/disproportionation reactions, the p/o ratio of IEZ-LZSM-5and LZSM-5droped between the Beta and CZSM-5, and the p/o ratio of IEZ-LZSM-5is smaller than that of LZSM-5. The i/d ratio changed in descending order: CZSM-5> LZSM-5> IEZ-LZSM-5> Beta. These results are highly correlated with their pore and channel structure.
     In the third part, layered titanium silicalite LTS-1-PS was synthesized by liquid-solid isomorphous substitution reaction with H2TiF6. Various synthetic conditions such as temperature, time of isomorphous substitution reaction, type of precursor, solid-liquid ratio, ratio of titanium to silica and the amount of acid used for pretreatment of the precursor were investigated. The catalytic activity of the samples was examined n the epoxidation of n-hexene and cyclohexene. LTS1-PS and conventional of TS-1showed a considerable activity, but in the epoxidation of cyclohexene using TBHP as the oxidant, LTS-1-PS showed far higher activity than that of the latter. Meanwhile, an interesting phenomenon was observed, in the epoxidation of n-hexene and cyclohexene using30%H2O2as the oxidant, LTS-1-PS exhibit higher activity than that of samples hydrothermal synthesized, which may be attributed to more hydrophobic surface of the former.
     In the fourth part, layered Tin-silicalite LSn-MFI-PS, which included LSn-MFI-SLR and LSn-MFI-SSR, was synthesized by liquid-solid isomorphous substitution or solid-phase ion-exchange. Various synthetic conditions such as type of precursor, ratio of Tin to silica and the reaction medium were investigated. The catalytic activity of the samples was examined in the B-V oxidation. LSn-MFI-PS-SLR synthesized by liquid-solid isomorphous substitution showed a slightly higher than that of LSn-MFI-PS-SLR synthesized by solid-phase ion exchange, which should be attributed to more tetrahedral coordination Sn in the former.
引文
[1]J. N. Armor, Catal. Today,2010,163(1):3.
    [2]C. Perego, A. Carati, J. Cejka, et al. (Eds.), Zeolites:From Model Materials to Industrial Catalysts, Singapore:Transworld Research Network,2008, p.357.
    [3]P.T. Anastas, M.M. Kirchhoff, T.C. Williamson, Appl. Catal. A,2001,221,3.
    [4]A. Corma, Chem. Rev.,1997,97,2373.
    [5]B. Yilmaz, U. Muller, Top. Catal.,2009,52,888.
    [6]A. Gedeon, P. Massiani, F. Babormeau (Eds.), Studies in Surface Science and Catalysis,2008,174, p43.
    [7]J. Cejka and H. Bekkum (Eds.), Studies on Surfece Science and Catalysis,2005,157, pi.
    [8]R. Rinaldi, F. Schutz, Energy Enviroa Sci.,2009,2,610.
    [9]徐如人,庞文琴,于吉红等,分子筛与多孔材料化学,北京:科学出版社,2004,P5.
    [10]G T. Kokotailo, S.L. Lawton, D.H. Olson, et al., Nature,1978,272,438.
    [11]郑海涛,楼辉,李影辉等,高等学校化学学报,2005,26,285.
    [12]陈会英,李永刚,陈为等,分子催化,2005,19,83.
    [13]王清遐,蔡光宇,周智远等,催化学报,1982,3(4):284.
    [14]岳瑛,沈文霞,颜贻春等,高等学校化学学报,1992,13(12):1503.
    [15]S. D. Kim, S. H. Noha, K. H. Seong, Microporous and Mesoporous Materials,2004,72,185.
    [16]H. Pan, Q. Pan, Y. Zhao, Ind Eng. Chem. Res.,2010,49,7294.
    [17]M. Guisnet, J. P. Gilson, Zeolites for Cleaner Technologies, London:Imperial College Press,2002, p8.
    [18]杨抗震,周钰明,张一卫,分子催化,2007,21(3):220.
    [19]H. B. Stephen, US patent 6680418,2004.
    [20]B.Valle,A.Alonso,A.Atutxa,et al.,Catal.Today,2005,106,115.
    [21]H. B. Stephen, S. Reuel, A. W. William, US 6613951,2003.
    [22]龙英才,程晓维,汪靖等,中国专利200710047972,2007.
    [23]梁金花,任晓乾,南京工业大学学报,2004,26(6):15.
    [24]C. J. H. Jacobsen, C. Madsen, J. Houzvicka, et al., J. Am. Chem. Soc.,2000,122,7116.
    [25]I. Schmidt, A. Boisen, E. Gustavsson, et al., Chem. Mater.,2001,13,4416.
    [26]A. Boisen, I. Schmidt, A. Carlsson, et al., Chem. Commun.,2003,958.
    [27]A. H. Janssen, I. Schmidt, C. J. H. Jacobsen, et al., Microporous Mesoporous Mater.,2003,65,59.
    [28]A. Sakhtivel, S. J. Huang, W. H. Chen, et al., Chem. Mater.,2004,16,3168.
    [29]Y. Tao, H. Kanoh, K. Kaneko, J. Am. Chem. Soc.,2003,125,6044.
    [30]L. F. Wang, C. Y. Yin, Z. C. Shan, et al., Colloids Surf. A,2009,340,126.
    [31]L. F. Wang, Z. Zheng, Z. C. Shan, et al., Microporous Mesoporous Mater.,2010,131,58.
    [32]H. Wang, T. J. Pinnavaia, Angew. Chem. Int. Ed,2006,45,7603.
    [33]J. J. Zhao, Z. L. Hua, Z. C. Liu, et al., Chem. Commun.,2009,7578.
    [34]M. Choi, H. S. Cho, R. Srivastava, et al.,Nat. Mater.,2006,5,718.
    [35]M. Choi, K. Na, J. Kim, et al., Nature,2009,461,246.
    [36]K. Na, C. Jo, J. Kim, et al., Science,2011,333,328.
    [37]F. S. Xiao, Acta Pet. Sin.,2006,22,9.
    [38]D. Freude, J. Klinowski, H. Hamdam, Chem. Phys. Lett.,1988,149,355.
    [39]G. Garralong, V. Fornes, A. Corma, Zeolites,1988,8,268.
    [40]M. Ogura, S. Shinomiya, J. Tateno, et al., Appl. Catal. A,2001,219,33.
    [41]L. Su, L. Liu, J. Zhuang, et al., Catal. Lett.,2003,91,155.
    [42]J.C. Groen, J.C. Jansen, J.A. Moulijn, et al., J. Phys. Chem. B,2004,108,13062.
    [43]J.C. Groen, L.A.A. Peffer, J.A. Moulijn, et al., Chem. Eur. J.,2005,11,4983.
    [44]J.C. Groen, L.A.A. Peffer, JA. Moulijn, et al., Colloids Surf. A,2004,241,53.
    [45]J.C. Groen, J.A. Moulijn, J. Perez-Ramirez,Ind. Eng. Chem. Res.,2007,14,4193.
    [46]G. S. Zhu, S. L. Qiu, F. F. Gao, et al., J. Mater. Chem.,2001,11,1687.
    [47]A. G. Dong, Y. J. Wang, D. J. Wang, et al., Microporous Mesoporous Mater.,2003,64,69.
    [48]C.R.Xiong, D.Coutinho, K. J. Balkus, Microporous Mesoporous Mater.,2005,86,14.
    [49]Z. Shan, W. E. J. van Kooten, O. L. Oudshoorn, et al., Microporous Mesoporous Mater.,2000,34,81.
    [50]G. B. F. Seijger, O. L. Oudshoorn, W. E. J. van Kooten, et al., Microporous Mesoporous Mater.,2000, 39,195.
    [51]F. Scheffler, A. Zampieri, W. Schwieger, et al., Adv. Appl. Ceram.,2005,104,43.
    [52]C. S. Mei, Z. C. Liu, Z. K. Xie, et al., J. Mater. Chem.,2008,18,3496.
    [53]Y. R. Wang, M. Lin, A. Tuel, Microporous Mesoporous Mater.,2007,102,80.
    [54]P. Vasiliev, F. Akhtar, J. Grins, et al., ACS Appl. Mater. Interfaces,2010,2,732.
    [55]Q. Lei, T. B. Zhao, F. Y. Li, et al., Chem. Commun.,2006,1769.
    [56]T. B. Zhao, X. Xu, Y. C. Tong, et al., Catal. Lett.,2010,136,266.
    [57]X. Y. Yang, G Tian, L. H. Chen, et al., Chem.-Eur. J.,2011,17,14987.
    [58]Y. Zhao, W. Tan, H. Wu, Catalysis Today,2011,160,179.
    [59]Anil Wali, J Mol Catal A,1996,109(2):149.
    [60]罗国华,王学勤,王祥生,催化学报,1998,9(1):53.
    [61]V. Tomasoeie, Z. Gomzi, S. Zrnceeevic, Applied Catalysis B:Environmental,1998,18,233.
    [62]王桂茹,精细石油化工,1993,1,12.
    [63]M. Taramasso, G Perego, B. Notari, US Patent 4 410 501,1983.
    [64]H. C. Xin, J. Zhao, S. T. Xu, et al., J. Phys. Chem. C,2010,114,6553.
    [65]J. Zhou, Z. L. Hua, X. Z. Cui, et al., Chem. Commun.,2010,46,4994.
    [66]K. Na, C. Jo, J. Kim, ACS Catal.,2011,1,901.
    [67]Y. J. Wang, Y. Tang, X. D. Wang, et al., Chem. Lett.,2001,1118.
    [68]Y. J. Lee, J. S. Lee, Y. S. Park, et al., Adv. Mater.,2001,13,1259.
    [69]Y. R. Wang, A. Tuel, Microporous Mesoporous Mater.,2008,113,286.
    [70]L. H. Chen, X. Y. LL G. Tian, et al., Angew. Chem. Int. Ed.,2011,50,11156.
    [71]A. Auroux, A. Gervasini, E. Jorda, Stud. Surf. Sci. Catal.,1994,84,653.
    [72]C. Perego, A. Carati, P. Ingallina, et al., Appl. Catal. A Gen.,2001,221,63.
    [73]赵琦,韩秀文,刘秀梅等,催化学报,1999,20(1),55.
    [74]G. Ricchiardi, A. Damin, S. Bordiga, et al., J. Am. Chem. Soc.,2001,123,11409.
    [75]卢冠忠,化工生产与技术,1999,2,13.
    [76]A. J. H. P. van der Pol., A. J. Verduyn., J. H. C. Van Hooff., Appl. Catal. A,1992,92,113.
    [77]T. Tatsumi, M. Nakamura, S. Negishi, J. Chem. Soc. Chem. Commun.,1990,476.
    [78]P. Roffia, G. Leofanti, A. Cesana, et al., Stud. Surf. Sci. Catal.,1990,55,43.
    [79]D.R.C. Huybrechts, L. De Bruycker, P. A. Jacobs., Nature,1990,345,240.
    [80]A. Tuel, J. Diab, P. Gelin, et al., J. Mol. Catal.,1990,63 (1),95.
    [81]H. Ichihashi, Appl. Catal.,2005,47,190.
    [82]T. A. Nijhuis, M. Makkee, J. A. Moulijn, Ind. Eng. Chem.Res.,2006,45,3447.
    [83]F. Cavani, J. H. Teles, ChemSusChem,2009,2,508.
    [84]R. J. Saxton, J. G. Zajecek, G. L.Crocco, US 5374747,1994.
    [85]R. J. Saxton, J. G. Zajecek, G. L. Crocco, US 5412122,1995.
    [86]R. J. Saxton, J. G. Zajecek, G. L. Crocco, US 5412122,1997.
    [87]J. Buchler, M. Schmidt, G. Prescher, US 4973718,1990.
    [88]M. G. Clerici, Erdol Erdgas Kohle,2006,122 (6):OG77.
    [89]K. Weissermel, H. J. Arpe, Industrial Organic Chemistry, Wiley:New York,1997, p273.
    [90]EPA, The Presidential Green Chemistry Challenge Awards Program:Summary of 2010 Award Entries and Recipients, http://www.epa.gov/greenchemistry.
    [91]M. G. Clerici, P. Ingallina, J. Catal.,1993,140,71.
    [92]N.K. Mai, V. Ramaswamy, PR. Rajamohanan, Microporous Materials,1997,12,331.
    [93]P. S. Niphadkar, M. S. Kotwal, S. S. Deshpande, Materials Chemistry and Physics,2009,114,344.
    [94]H. Y. Luo, L. Bui, W. R. Gunther, ACS Catal.,2012,2,2695.
    [95]黄靓,李静霞,戴维林等,石油化工,2007,2,15.
    [96]A. Berkessel, M. R. M. Andreae, Tetrahedron Letter,2001,42(12):2293.
    [97]C. S. Pande, N. Jain, Synth. Commun.,1989,19(7-8):1271.
    [98]S. I. Muranhashi, Y. Oda, T. Naota, Tetrahedron Lett.,1992,33(49):7557.
    [99]T. mokuchi, M. Kanazaki, T. Sugimoto, et al., Synlett,1994, (12):1037.
    [100]J. A. Guzman, V. Mendoza, E. Garcia, et al., Synth. Commun.,1995,25(14):2121.
    [101]R. Bernini, A. Coratti, G. Fabrizib, et al., Tenahedron Lett,2003,44(50):8991.
    [102]R. Bemini, E. Mineione, M. Cortese, et al., Tetrahedron Lett,2003,44(26):4823.
    [103]A. Corma, L. T. Nemeth, Nature,2001,412:423.
    [104]章文,上海化工,2005,300(8):44.
    [105]史建公,卢冠忠,曹钢,当代石油石化,2001,9,7.
    [106]魏文德主编,有机化工原料大全,北京:化学工业出版社,1990.
    [107]白桦,杭州化工,2007,37(1):8.
    [108]K. S. N. Reddy, B. S. Rao, V. P. Shiralkar, Applied Catalysis A:General,1993,95(1),53.
    [109]赵仁殿,金彰礼,陶志华等主编,芳烃工业,北京:化学工业出版社,2001,1,94.
    [110]Q. L. Chen, Z. K. Xie, Journal of Natural Gas Chemistry,2001,10(1):61.
    [111]F. Gorra, L. L. Breekenridge, W. M. Guy, et al., Oil Gas J.,1992, (41):60.
    [112]J. A. Johnson, C. M. Roeseler, T. J. Stoodt, Hydrocarbon Eng.,1997,9,59.
    [113]N. Y. Chon, W. W. Kaeding, F. G. Dwyel, J Am Chem Soc,1979,101(22):6783.
    [114]雷燕湘,当代石油石化,2007,15(4):38.
    [115]李大鹏,应用化工,2012,41(6):254.
    [116]陈硕,王定博,吉媛媛等,石油化工,2011,40(2):217.
    [117]李影辉,曾群英,万书宝等,现代化工,2005,25(3):23.
    [118]P. Schwab, R. Schulz, S. Huber, US,6580009,2003.
    [119]董群,张钢强,李金玲等,化学工业与工程技术,2011,32(1):35.
    [120]P. K. Niccum, National Petrochemical & Refiners Association,2001,21(34):52.
    [121]张建国,宋昭峥,丁宏霞等,现代化工,2006(6):5.
    [122]周保国,乙烯工业,2011,23(2):10.
    [123]陈建九,史海英,汪泳,精细石油化工进展,2000,1(12):25.
    [124]代炳新,王新生,河南化工,2010,27(4):25.
    [125]L. W. Miller, US 6166282,2000.
    [126]张玉卓,煤炭经济研究,2012,32(2):5.
    [127]M. Conte, B. Xu, T. E. Davies, Microporous and Mesoporous Mater.,2012,164(1):207.
    [1]M. Taramasso, G Perego, B. Notari, US Patent 4410501,1983.
    [2]G. Bellussi, M.S. Rigutto, Stud Surf. Sci. Catal.,2001,137,911.
    [3]P. Ratnasamy, D. Srinivas, H. Knozinger, Adv. Catal.,2004,48,1.
    [4]L.J. Davies, P. McMorn, D. Bethell, et al, J. Catal.,2001,198,319.
    [5]A. Bhaumik, P. Mukherjee, R. Kumar, J. Catal.,1998,178,101.
    [6]A. Tuel, Zeolites,1995,15,236.
    [7]T. Blasco, M.A. Camblor, A. Corma, et al., J. Phys. Chem. B,1998,102,75.
    [8]J. Le Bars, J. Dakka, R.A. Sheldon, Appl. Catal. A Gen.,1996,136,69.
    [9]T. Tatsumi, N. Jappar, J. Phys. Chem. B,1998,102,7126.
    [10]P. Wu, T. Komatsu, T. Yashima, J. Phys. Chem.,1996,100,10316.
    [11]Y. Kubota, Y. Koyama, T. Yamada, et al., Chem. Commun.,2008,46,6224.
    [12]K. J. Balkus, A. G Gabrielov, S. I. Zones, Stud Surf Sci Catal,1995,97,519.
    [13]T. Blasco, A. Corma, M.T. Navarro, et al., J. Catal.,1995,156,65.
    [14]P. Wu, T. Tatsumi, T. Komatsu, et al., Chem. Mater.,2002,14,1657.
    [15]J.C. Groen, T. Bach, U. Ziese, et al., J. Am. Chem. Soc.,2005,127,10792.
    [16]J.C. Groen, L.A.A. Peffer, J.A. Moulijn, et al., Micropor. Mesopor. Mater.,2004,69,29.
    [17]J.C. Groen, J.C. Jansen, J.A. Moulijn, et al., J. Phys. Chem. B,2004,108,13062.
    [18]K. Egeblad, M. Kustova, S.K. Klitgaard, et al., Micropor. Mesopor. Mater.,2007,101,214.
    [19]Y. Tao, H. Kanoh, K. Kaneko, J. Am. Chem. Soc.,2003,125,6044.
    [20]A. Sakthivel, S. Huang, W. Chen, et al., Chem. Mater.16 (2004) 3168.
    [21]M. Choi, H.S. Cho, R. Srivastava, et al., Nat. Mater.,2006,5,718.
    [22]M. Choi, K. Na, J. Kim, et al., Nature 2009,461,246.
    [23]P. Wu, T. Tatsumi, T. Komatsu, et al., J. Phys. Chem. B,2001,105,2897.
    [24]G. Ricchiardi, A. Damin, S. Bordiga, et al., J. Am. Chem. Soc.,2001,123,11409.
    [25]F. Boccuzzi, S. Coluccia, G Ghiotti, et al., J. Phys. Chem.,1978,82,1298.
    [26]E. Astorino, J.B. Peri, R.J. Willey, et al., J. Catal.,1995,157,482.
    [27]Y. Wang, Y. Liu, X. Li, et al., J. Catal.,2009,266,258.
    [28]L. Wang, Y. Liu, W. Xie, et al., J. Phys. Chem. C,2008,112,6132.
    [29]J. Bu, H.K. Rhee, Catal. Lett.,2000,66,245.
    [30]Y. Cheneviere, F. Chieux, V. Caps, et al., J. Catal.,2010,269,161.
    [31]Z. Zhao, Y. Liu, H. Wu, et al., J. Porous Mater.,2010,17,399.
    [32]W. Fan, P. Wu, T. Tatsumi, J. Catal.,2008,256,62.
    [33]N. Igarashi, K. Hashimoto, T. Tatsumi, Micropor. Mesopor. Mater.,2007,104,269.
    [34]P. Wu, H. Sugiyama, T. Tatsumi, Stud. Surf. Sci. Catal.,2003,146,613.
    [35]M. Ishino, J. Yamamoto, Catalysts Catal. (Shokubai),2006,48,511.
    [1]W. B. Fan, P. Wu, S. Namba, et al., Angew. Chem. Int. Ed.,2004,43,236.
    [2]J. F. Ruan, P. Wu, B. Slater, et al., Angew. Chem. Int. Ed.,2005,44,2.
    [3]S. Inagaki, T. Yokoi, T. Tatsumi, Chem. Commun.,2007,5188.
    [4]P. Wu, J. F. Ruan, L. L. Wang, J. AM. CHEM. SOC.,2008,130,8178.
    [5]T. Ikeda, S. Kayamori, J. Phys. Chem. C,2010,114,3466.
    [6]H. Gies, U. Muller, T. Tatsumi, et al., Chem. Mater.,2011,23,2545.
    [7]H. Gies, U. Muller, T. Tatsumi, et al., Chem. Mater.,2012,24,1536.
    [8]M. Choi, K. Na, J. Kim, et al., Nature,2009,461,246.
    [9]E. Astorino, J.B. Peri, R.J. Willey, et al., J. Catal.,1995,157,482.
    [10]Y. Wang, Y. Liu, X. Li, et al., J. Catal.,2009,266,258.
    [11]A. Corma, F.J. Llopis, C. Martinez, et al., Journal of Catalysis,2009,288,9.
    [12]P. Prokesova, N. Zilkova, T. Bein, et al., Applied Catalysis A:General,2005,281,85.
    [13]K. Beschmann, L. Riekert, Journal of catalysis,1993,141(2):548.
    [14]A. Cortes, A. Corma, Journal of catalysis,1978,51(3):338.
    [15]A. Corma, E. Sastre, Journal of catalysis,1991,129,177.
    [16]A. Cortes, A. Corma, I. Nebot, et al., Journal of catalysis,1979,57,444.
    [17]R. M. G. Roberts, Journal of Organic Chemistry,1982,47(21):4050.
    [18]康承琳,龙军,顾昊辉,石油学报(石油加工),2012,28(4):533.
    [19]W.O. Haag, R.M. Dessau,8th International Congress on Catalysis, Berlin,2-6 July 1984, p305.
    [20]F.C. Jentoft, B.C. Gates, Top. Catal.,1997,4,1.
    [21]H. Abrevaya, The 40th Anniversary of International Zeolite Conference,2007, p1244.
    [22]B.G. Anderson, R.R. Schumacher, R. van Duren, et al., J. Mol. Catal. A:Chem.,2002,181,291.
    [1]K. Na, C. Jo, J. Kim, et al., ACS Catal.,2011,1,901.
    [2]J. G. Wang, L. Xu, K. Zhang, et al., Journal of Catalysis,2012,288,16.
    [3]B. Kraushar, J. H. C. Vant Hoff, Catal. Lett.,1988,1,88.
    [4]P. Wu, T. Komatsu, T. Yashimal, J. Catal.,1997,168,400.
    [5]S. Krijnen, P. Sanchez, J. H. C. van Hooff, Micropor. Mesopor.Mater.,1999,31,163.
    [6]H. Xu, Y. T. Zhang, H. H. Wu, et al., Journal of Catalysis,2011,281,263.
    [7]D. Levin, C.D. Chang, S. Luo, et al.,2000, US 6 114 551.
    [8]X.S. Liu, J.M. Thomas, J. Chem. Soc. Chem. Commun.,1985,12,1544.
    [9]P. Wu, T. Tatsumi, Chem. Commun,2002,1,1026.
    [10]谢伟,岳超超,赵松等,液固相置换法高性能Ti-MWW分子筛及催化性能的研究,十五届全国分子筛学术会议论文集,墙报,2009.
    [11]J. Dwyer, K. Karim, J. Chem. Soc. Chem. Commun.,1991,13,905.
    [12]K. Karim, J. Dwyer, J. Mater. Chem.,1991,2,1161.
    [13]K. Na, M. Choi, W. Park, et al., J. AM. CHEM. SOC.,2010,132,4169.
    [1]A. J. Ragauskas, Science,2006,311,484.
    [2]C. H. Christensen, J. Rass-Hansen, C. C. Marsden, et al., ChemSusChem,2008,1,283.
    [3]P. N. R.Vennestrom, C. M. Osmundsen, C. H. Christensen, et al., Angew. Chem. Int. Ed.,2011,50, 10502.
    [4]M. Moliner, Y. Roman-Leshkov, M. E. Davis, Proc. Natl Acad. Sci.,2010,107,6164.
    [5]Y. Roman-Leshkov, M. Moliner, J. A. Labinger, et al., Chem. Int. Ed.,2010,49,8954.
    [6]E. Nikolla, Y. Roman-Leshkov, M. Moliner, et al., ACS Catal.,2011,1,408.
    [7]E. Taarning, S. Saravanamurugan, M. S. Holm, et al. ChemSusChem,2009,7,625.
    [8]M. Sasidharan, Y. Kiyozumi, N. K. Mal, et al., Microporous Mesoporous Mater,2009,126,234.
    [9]M. Boronat, A. Corma, M. Renz, J. Phys. Chem. B,2006,110,21168.
    [10]M. Boronat, A. Corma, M. Renz, et al., Chem. Eur. J.,2006,12,7067.
    [11]M. Boronat, P. Concepcion, A. Corma, et al., J. Catal.,2005,234,111.
    [12]A. Corma, L. T. Nemeth, M. Renz, Nature,2001,412,423.
    [13]M. S. Holm, S. Saravanamurugan, E. Taarning, Science,2010,328,602.
    [14]P. Li, G. Liu, P. Wu, J. Phys. Chem. C,2011,115,3663.
    [15]A.E. Palomares, J.G. Prato, F.E. Imbert., Appl. Catal. B:Environ.,2007,75,88.
    [16]AK. Shah, N. H. Khan, G. Sethia, et al., Applied Catalysis A:General,2012,419-420,22.
    [17]H. Ceri, C. Sabrina, H. Ive, Angew. Chem. Int. Ed.,2012,51,11736.
    [18]L. Li, C. Stroobants, K. Lin, Green Chem.,2011,13,1175.
    [19]F. Clippel, J. Am. Chem. Soc,2012,134,10089.
    [20]V. Ramaswamy, P. Shah, K. Lazar, Catal. Surv. Asia,2008,12,283.
    [21]G. Q. Liu, J. G. Jiang, B. T. Yang., Microporous and Mesoporous Mater.,2013,165,210.
    [22]N. K. Mal, V. Ramaswamy, Microporous Mater.,1997,12,331.
    [23]S. N. Prashant, S. K. Mehejabeen, S. D. Shilpa, Materials Chemistry and Physics,2009,114,344.
    [24]H. Y. Luo, L. Bui, W. R. Gunther, et al., ACS Catal.,2012,2,2695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700