用户名: 密码: 验证码:
先驱体转化多孔硅氧碳陶瓷及其复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔陶瓷是材料科学领域中一类倍受关注的新型材料。由于多孔陶瓷具有良好的耐高温、抗热震、高强度、高化学稳定性和高比表面积等优异性能,在过滤器、热交换器、催化剂载体、光电器件及传感器等领域具有重要的应用价值。与传统制备方法相比,先驱体转化制备多孔陶瓷具有烧结温度低、良好的加工性、分子可设计性和分级多孔结构等优点。其中,采用模板法能制备出可设计的孔隙度和孔径分布的多孔陶瓷,且制备工艺简单。
     本研究以多孔陶瓷的设计、制备及性能研究为主旨,通过改变陶瓷前驱体及多孔模板类型,或加入惰性填料,成功制备了多孔SiOC陶瓷及多孔SiOC/BN复合材料,所得多孔陶瓷具有可控的开口气孔率和孔径分布。本论文研究了不同的工艺条件对所得多孔SiOC陶瓷及其复合材料的微观形貌、结构及性能的影响,并分析了多孔结构中纳米线的生长机理。主要研究结果如下:
     以聚氨酯海绵为人工模板、有机硅树脂(R9801)为陶瓷前驱体,浸渍后再烧结制备了多孔SiOC陶瓷。SiOC陶瓷具有蜂窝状的多孔形貌,开口气孔率最高达85%。随着烧结温度的升高,样品中SiOC玻璃相产生相分离向SiO2、SiC纳米晶和SiC纳米线转变。当烧结温度较高或保温时间较长时,多孔SiOC陶瓷具有较好的氮吸附性能,半导体特性和热稳定性。
     以滤纸为生物模板,有机硅树脂为陶瓷前驱体,热压成型后烧结制备了层状多孔SiOC陶瓷,样品保留了滤纸原有的纤维形貌,开口气孔率最高达55%。随着烧结温度的升高,样品的SiOC玻璃相逐渐向SiC转变。层状多孔SiOC陶瓷具有宏孔一介孔分级多孔结构,烧结温度的升高使多孔陶瓷的比表面积和孔容都增大,孔径分布由单峰模式(3—11nm)转为双峰模式(3-4nm和4-23nm)。同时,随着烧结温度的升高,导电性能和热稳定性能都逐渐提高。
     采用木粉为天然生物模板,有机硅树脂为陶瓷前驱体,经浸渍、热压成型、烧结后制备了多孔SiOC陶瓷,开孔气孔率最高达54%。随着烧结温度的升高,样品的比表面积先增大后减小,而孔容逐渐增大,孔径分布由单峰模式(3-4.3nm)转为双峰模式(3-4.5nm和4.5-60nm)。当烧给温度为1300℃时,随着木粉含量的增大,多孔SiOC陶瓷的比表面积逐渐降低,孔体积也减小。随着烧结温度的升高或木粉含量的提高,多孔SiOC陶瓷的导电性能和热稳定性能都提高。
     以含氢硅油为前驱体,二乙烯基苯为交联剂,氯铂酸为催化剂,合成了固体聚硅氧烷,再将木粉与固体聚硅氧烷复合后烧结制备了多孔SiOC陶瓷。多孔SiOC陶瓷的开口气孔率最高为59%。随着烧结温度的升高,多孔陶瓷中形成了β-SiC及较多含量的SiO2。样品的比表面积由6.1m2/g升高至180.5m2/g,孔容也逐渐增大,孔径分布由单峰模式(3—5nm)转为多峰模式(3-4nm、7-9.5nm和10-12nm)。多孔陶瓷的摩擦学性能与材料本身的气孔率和微观结构密切相关。在摩擦过程中,低温下制备的多孔陶瓷的表面较易形成润滑膜,摩擦学性能较好。
     以BN为惰性填料,与木粉和聚硅氧烷混合后热压成型,再高温烧结制备了多孔SiOC/BN复合陶瓷,开口气孔率最高达52%。随着烧结温度的升高,SiC含量逐渐增多;样品的比表面积和孔容都逐渐增大,比表面积最高达81.2m2/g,孔径分布由单峰模式(3-4.5nm)转为双峰模式(2.6-4nm和10.5-25nm)。BN作为良好的润滑剂,加速了表面润滑膜的形成,使多孔陶瓷表现出更好的摩擦学性能。多孔SiOC陶瓷和SiOC/BN陶瓷的摩擦磨损机制主要表现为磨粒磨损。
     在适当的工艺条件下,以不同种类的模板和陶瓷前驱体制备的多孔陶瓷中都能生成纳米线。以海绵为模板,多孔SiOC陶瓷的孔洞中生成了竹节状和链状SiC纳米线。以滤纸为模板,层状多孔SiOC陶瓷的界面通道和孔洞中生长了SiC/SiO2纳米线和SiC纳米线。以木粉和有机硅树脂为原料,多孔SiOC陶瓷中生长了直线状和念珠状SiC纳米线。同时,以木粉和固体聚硅氧烷为原料制备的SiOC陶瓷或多孔SiOC/BN陶瓷的孔结构中都生成了直线状和弯曲状纳米线。所得的纳米线的生长机理主要为气_、液一固(VLS)和气一固(VS)机制。这些纳米线的生成赋予了多孔陶瓷具有分级多孔结构和更良好的性能(如高比表面积)。
     本论文以人工模板和天然生物模板制备了具有不同孔结构的多孔陶瓷,在微观结构和性能上都存在明显差异。以海绵为模板制备的多孔陶瓷可获得较大尺寸的宏孔(200-300μm),且能获得较高的开口气孔率。以滤纸为模板制备的多孔陶瓷具有层状多孔结构,宏孔尺寸也能达100μm。以木粉为模板,有机硅树脂为陶瓷前驱体制备的多孔陶瓷具有最高的比表面积达245m2/g。以木粉与固体聚硅氧烷复合后制备的多孔陶瓷具有良好的摩擦学性能,当以BN为填料时,制备的多孔SiOC/BN陶瓷的摩擦学性能(相同条件下)优于多孔SiOC陶瓷。本研究为多孔陶瓷的研制和相关领域的应用提供了理论依据和应用基础。
Porous material is a new type material that has received much attention in the field of materials science. Porous materials have excellent properties such as good heat-resistance, thermal shock resistance, high strength, high chemical stability and high specific surface area. Therefore, these materials have important applications in filters, heat exchangers, catalyst supports, photoelectric devices and sensors etc. Using the conversion of precursor polymer to prepare porous ceramics has advantages over the traditional methods of ceramic preparation such as the low temperature processing, versatile shaping, designable molecular structure and hierarchical porous structure. The porosity and pore size distribution of the porous ceramics can be designed using the template method, and the preparation technology is very simple.
     In this work, the design, preparation and properties of the porous ceramics were as the research targets, porous SiOC ceramics and porous SiOC/BN composites were successfully prepared by changing the preceramic precursors and templates, or adding the inert filler. These porous ceramics displayed the controlled open porosity and pore size distribution. The effects of the technological parameters on the morphologies, microstructures and properties of the SiOC ceramics and their composites were observed. Furthermore, the growth mechanism of the nanowires in the pores was investigated. The main results were as follows:
     Porous SiOC ceramics were prepared by sintering after impregnation, using the polyurethane sponge as the template and silicone resin as the preceramic precursor. These SiOC ceramics displayed the honeycombed porous structure, and the open porosity of the samples was up to85%. With the increase of the sintering temperature, the SiOC glassses of the samples showed the phase separation, and were converted into SiO2, SiC nanocrystalline and SiC nanowires. When the sintering temperature was higher or the holding time was longer, the porous SiOC ceramics showed good N2absorption property, semiconductor property and thermal stability.
     Laminated porous SiOC ceramics were prepared by sintering after hot-pressing, using the filter paper as the bio-template and silicone resin as the preceramic precursor. These SiOC ceramics retained the fiber morphology of the filter paper, and the open porosity of the samples was up to55%. With the increase of the sintering temperature, the SiOC glassses of the samples were converted into SiC. Laminated porous ceramics showed the hierarchical porous structure with macro-and mesoporous. The increase of the temperature resulted in the increase of the specific surface area and pore volume, and the pore size distribution was converted from unimodal (3-11nm) into bimodal pattern (3-4nm and4-23nm). Furthermore, with increasing the temperature, the electrical conductivity and thermal stability were improved.
     Porous SiOC ceramics were obtained through impregnating, hot-pressing and sintering, using the wood powders as the natural bio-template and silicone resin as the preceramic precursor. The open porosity of the samples was up to54%. With increasing the temperature, the specific surface area of the samples increased first and then decreased, and the pore volume increased. The pore size distribution was converted from unimodal (3-4.3nm) into bimodal pattern (3-4.5nm and4.5-60nm). When the temperature was1300℃, with the increase of the amount of the wood powders, the specific surface area and pore volume of the samples decreased. With the increase of the temperature or amount of the wood powders, the electrical conductivity and thermal stability were improved.
     Solid polysiloxanes were synthetized from poly (methylhydrosiloxane) as the precursor, divinylbenzene as the crosslinking agent and chloroplatinic acid (H2PtCl6) as the catalyst. Then the porous SiOC ceramics were prepared by sintering the composites of the wood powders and solid polysiloxanes The open porosity of the porous SiOC ceramics was up to59%. With the increase of the sintering temperature, the β-SiC and a large amount of SiO2in the porous ceramics were observed. The specific surface area of the samples was from6.1m2/g up to180.5m2/g, and the pore volume increased gradually. And the pore size distribution was converted from unimodal (3-5nm) into multimodal distribution (3-4nm,7-9.5nm and10-12nm). The tribological performances of the porous composite ceramics were closely related to the porosity and microstructures of the material itself. The tribological performances of the porous ceramics obtained at a lower temperature were better due to the formation of the lubricating film during the friction process.
     Porous SiOC/BN composite ceramics were prepared by sintering the mixtures of the wood powders, solid polysiloxanes and BN as the inter filler, through hot pressing process. The open porosity of these ceramics was up to52%. With the increase of the temperature, the amount of SiC of the samples increased. The specific surface area and pore volume of the samples both increased, and the specific surface area was up to81.2m2/g. And the pore size distribution was converted from unimodal (3-4.5nm) into bimodal pattern (2.6-4nm and10.5-25nm). BN as a good lubricant could accelerate the formation of the lubrication film on the surface of the samples, which made the porous ceramics show better tribological properties. The wear mechanism of these porous SiOC and SiOC/BN ceramics was abrasive wear mechanism.
     The nanowires can be formed in the porous SiOC ceramics using different types of templates or polyceramic precursors under proper technological conditions. The bamboo-like and chain-like nanowires were formed in the porous structure of the ceramics using the sponge as the template. SiC/SiO2nanowires and SiC nanowires were formed in the interfacial channels and pores of the porous ceramics using the filter paper as the template. The straight and bead-like SiC nanowires were formed in the porous ceramics prepared from wood powders and silicone resin. Meanwhile, the straight and curve nanowires could be formed in the porous structure of the SiOC ceramics and SiOC/BN ceramics from wood powders and solid polysiloxanes. The growth mechanism of these nanowires was vapor-liquid-solid (VLS) and vapor-solid (VS) growth model. The generation of these nanowires gave the porous ceramics hierarchical porous structure and more excellent performances (such as high specific surface area).
     Porous ceramics prepared by different types of templates or ceramic precursors showed obvious differences in microstructures and properties. The porous SiOC ceramics prepared from sponge can obtain larger macropores (200-300μm) and open porosity. And the porous SiOC ceramics prepared from filter paper have laminated porous structure and the size of the macropores is up to100μm. The highest specific surface area of the porous SiOC ceramic obtained from wood powders as the template and silicone resin as the preceramic precursor is up to245m2/g. Furthermore, the porous SiOC ceramics show the good tribological performances. The porous SiOC/BN ceramics have the better tribological performances than that of SiOC ceramics (in the same process). This work provides the theoretical basis and application foundation for the development of the porous ceramics and the application of the related fields.
引文
[1]朱时珍,赵振波.多孔陶瓷材料的制备技术.材料科学与工程[J].1996,14(3):33-39.
    [2]曾令可,胡动力,税安泽,等.多孔陶瓷制备新工艺及其进展[J].中国陶瓷.2008,44(7):7-11.
    [3]钱军民,催凯,艾好,等.多孔陶瓷制备技术研究进展[J].兵器材料科学与工程,2005,28(5):60-64.
    [4]Ma Y, Ma Q S, Suo J, et al. Low-temperature fabrication and characterization of porous SiC ceramics using silicone resin as binder[J]. Ceramics International.2008,34(2):253-255.
    [5]Zhu S, Ding S, Xi H A, et al. Low-temperature fabrication of porous SiC ceramics by preceramic polymer reaction bonding[J]. Materials letters.2005,59(5):595-597.
    [6]曾令可,王慧,罗民华.多孔功能陶瓷制备与应用[M].北京:化学工业出版社.2006:13.
    [7]Him T, Goto T, Leeb, et al. Microstructure control and mechanical properties of fibrous Al2O3/ZrO composites fabricated by extrusion process. Scripta Materialia.2005,52(8): 725-729.
    [8]Li F S, Zhou W C, Hu H J, et al. High performance porous Si3N4 ceramics prepared by coated pore forming agent method[J]. Ceramics International.2009,35(8):3169-3173.
    [9]Eom J H, Kim Y W, Song I H, et al. Processing and properties of polysiloxane-derived porous silicon carbide ceramics using hollow microspheres as templates[J]. Journal of the European Ceramic Society.2008,28(5):1029-1035.
    [10]Shibuya M, Takahashi T, Koyama K. Microcellular ceramics by using silicone preceramic polymer and PMMA polymer sacrificial microbeads[J]. Composites Science and Technology. 2007,67(1):119-124.
    [11]Gregorova E, Pabst W. Porous ceramics prepared using poppy seed pore-forming agent[J]. Ceramics International.2007,33(7):1385-1388.
    [12]Schwartzwalder K, Somess A V. Method of making porous ceramic articles[P]. US Patent: US 30900941,1963-05-21.
    [13]Ohzaway, Yoshimura M, Nakane K, et al. Preparation of high temperature filter by Partial densification of carbonized cotton wool with SiC[J]. Materials Science and Engineering A. 1998,242(1-2):26-31.
    [14]Bao X, Nangrejo M R. Edirisinghe M J. Preparation of silicon carbide foams using polymeric precursor solutions [J]. Journal of Materials Science.2000,35(17):4365-4372.
    [15]朱新文等.孔结构可控的网眼多孔陶瓷的制备[J].无机材料学报.2002,17(1):79-85.
    [16]赵俊亮,付涛,徐可为.有机泡沫浸渍法制备多孔经基磷灰石生物活性复相陶瓷[J].中国陶瓷.2003,39(1):4-7.
    [17]蒲锡鹏,邱发贵,刘学建,等.两次离心挂浆工艺制备网眼多孔陶瓷[J].无机材料学报. 2005,20(6):1431-1437.
    [18]Studart A R, Gonzenbach U T, Tervoort E, et al. Processing routes to macroporous ceramics: a review[J]. Journal of the American Ceramic Society.2006,89(6):1771-1789.
    [19]Wang C, Wang J, Park C B. Cross-linking behavior of a polysiloxane in preceramic foam processing[J]. Journal of Materials Science.2004,39(15):4913-4915.
    [20]Takahashi T, Munstedt H, Colombo P, et al. Thermal evolution of a silicone resin/polyurethane blend from preceramic to ceramic foam[J]. Journal of Materials Science. 2001,36(7):1627-1639.
    [21]Yoon B H, Lee E J, Kim H E, et al. Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution[J]. Journal of the American Ceramic Society. 2007,90(6):1753-1759.
    [22]Yoldas B E. Alumina gels that form porous transparent Al2O3[J]. Journal of Materials Science.1975, (10):1856-1862.
    [23]沈军,王珏,甘礼华,等.溶胶—凝胶法制备SiO2气凝胶及其特性研究[J].无机材料学报.1995,10(1):69-75.
    [24]Jin G Q, Guo X Y. Synthesis and characterization of mesoporous silicon carbide[J]. Microporous and Mesoporous Materials.2003,60(1-3):207-212.
    [25]Yuan X, Xu S, Lu J, et al. Facile synthesis of ordered mesoporous y-alumina monoliths via polymerization-based gel-casting [J]. Microporous and Mesoporous Materials.2011, 138(1-3):40-44.
    [26]Sepulveda P, Qrtega F S, Innocentini M D M, et al. Properties of highly porous hydroxyapatite obtained by the gel-casting of foams[J]. Journal of the American Ceramic Society.2000,83(12):3021-3024.
    [27]Ortega F S, Sepulveda P, Pandolfelli V C. Monomer systems for the gel-casting of foams[J]. Journal of the European Ceramic Society.2002,22(9-10):1395-1401.
    [28]Popper D. Special Ceramics, New York:Academic press, New York,1965, P87
    [29]Yajima S, Hayashi J, Omori M, et al. Development of a silicon carbide fibre with high tensile strength[J]. Nature.1976,261:683-685.
    [30]陈朝晖.先驱体结构陶瓷[E].长沙:国防科学技术大学出版社,2003.
    [31]马青松.聚硅氧烷先驱体转化制备陶瓷基复合材料研究[D].长沙:国防科学技术大学博士学位论文.2003.
    [32]Zeschky J, Hofner T, Arnold C, et al. Polysilsesquioxane derived ceramic foams with gradient porosity[J]. Acta Materialia.2005,53(4):927-937.
    [33]Akkas H, Ovecoglu M, Tanoglu M. Silicon oxycarbide-based composites produced from pyrolysis of polysiloxanes with active Ti filler[J]. Journal of the European Ceramic Society. 2006,26(15):3441-3449.
    [34]Martinez-Crespiera S, Ionescu E, Kleebe H J, et al. Pressureless synthesis of fully dense and crack-free SiOC bulk ceramics via photo-crosslinking and pyrolysis of a polysiloxane[J]. Journal of the European Ceramic Society.2011,31(5):913-919.
    [35]雍成钢,谢凯,盘毅,等.以聚硅氮烷为原料高温热解制备Si/C/N纳米微粉[J].硅酸盐学报.2000,28(5):491-493.
    [36]楚增勇,冯春祥,宋永才,等.先驱体转化法连续SiC纤维国内外研究与开发现状[J].无机材料学报,2002,17(2):193-201.
    [37]Wang C B, Goto T, Tu R, et al. Preparation of silicon oxycarbide films by laser ablation of SiO/3C-SiC multicomponent targets[J]. Applied Surface Science.2010,257(5):1703-1706.
    [38]Vakifahmetoglu C, Menapace I, Hirsch A, et al. Highly porous macro- and micro-cellular ceramics from a polysilazane precursor[J]. Ceramics International 2009,35(8):3281-3290.
    [39]Nangrejo M R, Bao X, Edirisinghe M J. Preparation of silicon carbide-silicon nitride composite foams from pre-ceramic polymers[J]. Journal of the European Ceramic Society. 2000,20(11):1777-1785.
    [40]Yang W, Miao H, Xie Z, et al. Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor[J]. Chemical Physics Letters.2004,383(5-6):441-444.
    [41]Cai K F, Zhang A X, Yin J L. Ultra thin and ultra long SiC/SiO2 nanocables from catalytic pyrolysis of poly(dimethyl siloxane)[J]. Nanotechnology.2007,18(48):485601-485606.
    [42]Ma Q S, Chen Z H, Zheng W W, et al. Processing and characterization of three-dimensional carbon fiber-reinforced Si-O-C composites via precursor pyrolysis[J]. Materials Science and Engineering A.2003,352(1-2):212-216.
    [43]Xu T, Ma Q, Chen Z. Mechanical property and microstructure evolutions of Cf/SiOC composites with increasing annealing temperature in reduced pressure environment[J]. Ceramics International.2011,38(1):605-611.
    [44]Manoj Kumar BV, Kim Y W. Processing of polysiloxane-derived porous ceramics:a review[J]. Science and Technology of Advanced Materials.2010,11(4):044303-044318.
    [45]Yajima S, Hayashi, Omori M. Continuous silicon carbide fiber of high tensile strength[J]. Chemistry Letters.1975,9:931-934.
    [46]Yajima S, Okamura K, Hayashi J, et al. Synthesis of continuous SiC fibers with high tensile strength[J]. Journal of the American Ceramic Society.1976,59(7-8):324-327.
    [47]Cranstone W R I, Bushnell-Watson S M, Sharp J H. Synthesis and characterization of polysilane precursors for silicon carbide fibers[J]. Journal of Materials Research.1995, 10(10):2659-2667.
    [48]Hemida A T, Birot M, Pillot J P, et al. Synthesis and characterization of new precursors to nearly stoichiometric SiC ceramics:Part 1 the copolymer route[J]. Journal of Materials Science.1997,32(13):3475-3483.
    [49]Bao X, Nangrejo M R, Edirisinghe M J. Synthesis of silicon carbide foams from polymeric precursors and their blends[J]. Journal of Materials Science.1999,34(11):2495-2505.
    [50]于晓东,王扬卫,马青松,等.SiC多孔陶瓷的低温制备与表征[J].稀有金属材料与工程.2007,36(Z1):587-589.
    [51]Colombo P, Hellmann J R. Ceramic foams from preceramic polymers[J]. Materials Research Innovations.2002,6(5-6):260-272.
    [52]Sepulveda P, Binner J G P. Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers[J]. Journal of the European Ceramic Society.1999, 19(12):2059-2066.
    [53]Kim Y W, Jin Y J, Eom J H, et al. Engineering porosity in silicon carbide ceramics[J]. Journal of materials science.2010,45(10):2808-2815.
    [54]Segatelli M, Pires A, Yoshida I. Synthesis and structural characterization of carbon-rich SiCxOy derived from a Ni-containing hybrid polymer[J]. Journal of the European Ceramic Society.2008,28(11):2247-2257.
    [55]Wang K, Gunthner M, Motz G, et al. High performance environmental barrier coatings, Part Ⅱ:Active filler loaded SiOC system for superalloys[J]. Journal of the European Ceramic Society.2011,31(15):3011-3020.
    [56]Colombo P. Conventional and novel processing methods for cellular ceramics[J]. Philosophical Transactions of the Royal Society A.2006,364(1838):109-124.
    [57]Colombo P, Mera G, Riedel R, et al. Polymerderived-ceramics:40 years of research and innovation in advanced ceramics[J]. Journal of the American Ceramic Society.2010,93(7): 1805-1837.
    [58]Vakifahmetoglu C, Pippel E, Woltersdorf J, et al. Growth of one-dimensional nanostructures in porous polymer-derived ceramics by catalyst-assisted pyrolysis. part Ⅰ:iron catalyst[J]. Journal of the American Ceramic Society.2010,93(4):959-968.
    [59]Vakifahmetoglu C, Colombo P, Carturan S M, et al. Growth of one-dimensional nanostructures in porous polymer-derived ceramics by catalyst-assisted pyrolysis. Part Ⅱ: cobalt catalyst[J]. Journal of the American Ceramic Society.2010,93(11):3709-3719.
    [60]马彦,马青松,陈朝辉.先驱体转化法制备多孔陶瓷的发展现状[J].材料工程.2007,3:62-66.
    [61]段力群.硅树脂转化制备粉体SiOC微/介孔陶瓷研究[D].长沙:国防科学技术大学硕士学位论文.2010.
    [62]马彦.先驱体转化法制备多孔陶瓷研究[D].长沙:国防科学技术大学硕十学位论文.2006.
    [63]王浩.先驱体高分子/模板技术制备有序多孔非氧化物陶瓷[D].长沙:国防科学技术大学博士学位论文.2004.
    [64]Colombo P. Materials science:In praise of pores[J]. Science,2008,322,381-383.
    [65]Colombo P. Engineering porosity in polymer-derived ceramics[J]. Journal of the European Ceramic Society.2008,28(7):1389-1395.
    [66]Colombo P, Modesti M. Silicon oxycarbide roams from a silicone preceramic polymer and polyurethane[J]. Journal of Sol-Gel Science and Technology,1999,14(1):103-111.
    [67]Schmidt H, Koch D, Grathwohl G, et al. Micro-macro porous ceramics from preceramic precursors[J]. Journal of the American Ceramic Society.2001,84(10):2252-2255.
    [68]Colombo P, Modesti M. Silicon oxycarbide ceramic foams from a preceramic polymer[J]. Journal of the American Ceramic Society.1999,82(3):573-578.
    [69]P. Colombo, R. John, Hellmann, L. David, Shelleman. Thermal shock behavior of silicon oxycarbide foams[J]. Journal of the American Ceramic Society.2002,85(9):2306-2312.
    [70]Colombo P, John R H, David L, et al. Mechanical properties of silicon oxycarbide ceramic foams[J]. Journal of the American Ceramic Society.2001,84(10):2245-2251.
    [71]Colombo P, Griffoni M, Modesti M. Ceramic foams from a preceramic polymer and polyurethanes:preparation and morphological investigations[J]. Journal of Sol-Gel Science and Technology.1998,13(1-5):195-199.
    [72]Zeschky J, Goetz-Neunhoefferb F, Neubauerb J, et al. Preceramic polymer derived cellular ceramics[J]. Composites Science and Technology.2003,63(16):2361-2370.
    [73]Zeschky J, Hofner T, Arnold C, et al. Polysilsesquioxane derived ceramic foams with gradient porosity [J]. Acta Materialia.2005,53(4):927-937.
    [74]Zeschky J, Lo J, Hofner T, et al. Mg alloy infiltrated Si-O-C ceramic foams[J]. Materials Science and Engineering A.2005,403(1-2):215-221.
    [75]P. Colombo, G R. Tatiana, M. Scheffler, et al. Conductive ceramic foams from preceramic polymers[J]. Journal of the American Ceramic Society.2001,84(10):2265-2268.
    [76]Vakifahmetoglu C, Colombo P, Pauletti A, et al. SiOC ceramic monoliths with hierarchical porosity[J]. International Journal of Applied Ceramic Technology.2010,7(4):528-535.
    [77]Vakifahmetoglu C, Balliana M, Colombo P. Ceramic foams and micro-beads from emulsions of a preceramic polymer. Journal of the European Ceramic Society.2011,31(8):1481-1490.
    [78]Vakifahmetoglu C, Colombo P. A direct method for the fabrication of macro-porous SiOC ceramics from preceramic polymers. Advanced Engineering Materials.2008,10(3):256-259.
    [79]田浩.硅树脂转化制备高孔隙率SiOC多孔陶瓷研究[D].长沙:国防科学技术大学硕士学位论文.2011.
    [80]Hao T, Ma Q S. Effects of exterior gas pressure on the structure and properties of highly porous SiOC ceramics derived from silicone resin[J]. Materials Letters.2012,66(1):13-15.
    [81]Hao T, Ma Q S. Effects of heating rate on the structure and properties of SiOC ceramic foams derived from silicone resin[J]. Ceramics International.2012,38(3):2101-2104.
    [82]Kim Y W, Kim S H, Wang C M, et al. Fabrication of microcellular ceramics using gaseous dioxide[J]. Journal of the American Ceramic Society.2003,86 (12):2231-2233.
    [83]Kim Y W, Kim S H, Xu X, et al. Fabrication of porous preceramic polymers using carbon dioxide[J]. Journal of Materials Science Letters.2002,21(21):1667-1669.
    [84]Kim Y W, Park C B. Processing of microcellular preceramics using carbon dioxide[J]. Composites Science and Technology.2003,63(16):2371-2377.
    [85]Kim Y W, Kim S H, Song I H, et al. Fabrication of open-cell, microcellular silicon carbide ceramics by carbothermal reduction[J]. Journal of the American Ceramic Society.2005, 88(10):2949-2951.
    [86]Jang D H, Kim Y W, Song I H, et al. Processing of highly porous, open-cell, microcellular silicon carbide ceramics by expansion method using expandable microspheres[J]. Journal of the Ceramic Society of Japan.2006,114(6):549-553.
    [87]Eom J H, Kim Y W, Song I H, et al. Microstructure and properties of porous silicon carbide ceramics fabricated by carbothermal reduction and subsequent sintering process[J]. Materials Science and Engineering A.2007,464(1-2):129-134.
    [88]Chae S H, Kim Y W. Effect of inert filler addition on microstructure and strength of porous SiC ceramics[J]. Journal of Materials Science.2009,44(5):1404-1406.
    [89]Eom J H, Kim Y W. Effect of additive composition on microstructure and strength of porous silicon carbide ceramics[J]. Journal of Materials Science.2009,44(16):4482-4486.
    [90]Eom J H, Kim Y W, Song I H, et al. Processing and properties of polysiloxane-derived porous silicon carbide ceramics using hollow microspheres as templates[J]. Journal of the European Ceramic Society.2008,28(5):1029-1035.
    [91]Chae S H, Kim Y W, Song I H, et al. Porosity control of porous silicon carbide ceramics[J]. Journal of the European Ceramic Society.2009,29(13):2867-2872.
    [92]Fukushima M, Zhou Y, Miyazaki H, et al. Microstructural characterization of porous silicon carbide membrane support with and without alumina additive[J]. Journal of the American Ceramic Society.2006,89(5):1523-1529.
    [93]Grande T, Sommerset H, Hagen E, et al. Effect of weight loss on liquid-phase -sintered silicon carbide[J]. Journal of the American Ceramic Society.1997,80(4):1047-1052.
    [94]Eom J H, Kim Y W, Kim K J. Suppression of free Si formation during liquid phase sintering of polysiloxane-derived porous silicon carbide ceramics[J]. Journal of the Ceramic Society of Japan.2010,118(1374):102-106.
    [95]Kim Y W, Eom J H, Wang C, et al. Processing of porous silicon carbide ceramics from carbon-filled polysiloxane by extrusion and carbothermal reduction[J]. Journal of the American Ceramic Society.2008,91(4):1361-1364.
    [96]Eom J H, Kim Y W, Narisawa M. Microstructural development of macroporous silicon carbide ceramics during annealing[J]. Journal of Ceramic Processing Research.2008,9(2): 176-179.
    [97]Suttor D, Kleebe H J, Ziegler G. Formation of mullite from filled siloxanes[J]. Journal of the American Ceramic Society.1997,80(10):2541-2548.
    [98]Kolitsch U, Seifert H J, Ludwig T, et al. Phase equilibria and crystal chemistry in the Y2O3-Al2O3-SiO2 system[J]. Journal of Materials Research 1999,14(2):447-455.
    [99]Kim Y W, Kim H D, Park C B. Processing of microcellular mullite[J]. Journal of the American Ceramic Society.2005,88(12):3311-3315.
    [100]Song I H, Kim M J, Kim H D, et al. Processing of microcellular cordierite ceramics from a preceramic polymer[J]. Scripta Materialia.2006,54(8):1521-1525.
    [101]Jang D H, Kim Y W, Song I H, et al. Processing of cellular glasses using glass microspheres[J]. Journal of the American Ceramic Society.2006,89(10):3262-3265.
    [102]戴春岭,王先友,黄庆华,等.新型多孔碳材料—碳化物骨架碳[J].化学进展.2008,20(1):42-47.
    [103]张瑞军,周斌.一种新型碳材料一碳化物衍生碳的研究进展[J].燕山大学学报,2011,35(4):283-289.
    [104]Vakifahmetoglu C, Presser V, Yeon S H, et al. Enhanced hydrogen and methane gas storage of silicon oxycarbide derived carbon[J]. Microporous and Mesoporous Materials.2011, 144(1-3):105-112.
    [105]高飞,吕晋军,刘维民.碳化物衍生碳与石墨的摩擦磨损性能比较[J].摩擦学学报,2007,27(2):102-105.
    [106]Presser V, Heon M, Gogotsi Y. Carbide-derived carbons-from porous networks to nanotubes and graphene[J]. Advanced Functional Materials.2011,21(5):810-833.
    [107]Chmiola J, Yushin G, Dash R, et al. Effect of pore size and surface area of carbide derived carbons on specific capacitance[J]. Journal of Power Sources.2006,158(1):765-772.
    [108]Ersoy D A, McNallan M J, Gogotsi, Y. Carbon coatings produced by high temperature chlorination of silicon carbide ceramics[J]. Material Research Innovations.2001,5(2): 55-62.
    [109]Soraru G D, Pena-Alonso R, Kleebe H J. The effect of annealing at 1400℃ on the structural evolution of porous C-rich silicon (boron) oxycarbide glass[J]. Journal of the European Ceramic Society.2012,32(8):1751-1757.
    [110]Biasetto L, Pena-Alonso R, Soraru G D, et al. Etching of SiOC ceramic foams[J]. Advances in Applied Ceramics.2008,107(2):106-110.
    [111]Osswald S, Portet C, Gogotsi Y, et al. Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide[J]. Journal of Solid State Chemistry.2009,182(7): 1733-1741.
    [112]Yeon S H, Osswald S, Gogotsi Y, et al. Enhanced methane storage of chemically and physically activated carbide-derived carbon[J]. Journal of Power Sources.2009,191(2): 560-567.
    [113]Yeon S H, Reddington P, Gogotsi Y, et al. Carbide-derived-carbons with hierarchical porosity from a preceramic polymer[J]. Carbon.2010,48(1):201-210.
    [114]Rose M, Kockrick E, Senkovska I, et al. High surface area carbide-derived carbon fibers produced by electrospinning of polycarbosilane precursors[J]. Carbon.2010,48(2):403-407.
    [115]Oschatz M, Kockrick E, Rose M, et al. A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications[J]. Carbon.2010,48(14):3987-3992.
    [116]Krawiec P, Geiger D, Kaskel S. Ordered mesoporous silicon carbide (OM-SiC) via polymer precursor nanocasting[J]. Chemical Communications.2006,23:2469-2470.
    [117]Krawiec P, Schrage C, Kockrick E, et al. Tubular and rodlike ordered mesoporous silicon (oxy)carbide ceramics and their structural transformations[J]. Chemistry of Materials.2008, 20(16):5421-5433.
    [118]Nangrejo M R, Bao X, Edirisinghe M J. The structure of ceramic foams produced using polymeric precursors[J]. Journal of Materials Science Letters.2000,19(9):787-789.
    [119]Nangrejo M R, Edirisinghe M J. Porosity and strength of silicon carbide foams prepared using preceramic polymers[J]. Journal of Porous Materials.2002,9(2):131-140.
    [120]Zollfrank C, Kladny R, Sieber H, et al. Biomorphous SiOC/C-ceramic composites from chemically modified wood templates[J]. Journal of the European Ceramic Society.2004, 24(2):479-487.
    [121]Herzog A, Klingner R, Vogt U, et al. Wood-derived porous SiC ceramics by sol infiltration and carbothermal reduction. Journal of the American Ceramic Society.2004,87(5):784-793.
    [122]White R A, White E W, Weber J N. Replamineform:a new process for preparing porous ceramic, metal, and polymer prosthetic materials[J]. Science.1972,176(4037):922-924.
    [123]Skinner D P, Newnham R E, Cross L E. Flexible composite transducers[J]. Materials Research Bulletin.1978,13(6):599-607.
    [124]Travitzky N, Windsheimer H, Fey T, et al. Preceramic paper-derived ceramics[J]. Journal of the American Ceramic Society.2008,91(11):3477-3492.
    [125]Vogt U F, Gyorfy L, Herzog A, et al. Macroporous silicon carbide foams for porous burner applications and catalyst supports[J]. Journal of Physics and Chemistry of Solids.2007, 68(5-6):1234-1238.
    [126]刘洪丽,钟文武,吴明忠.裂解温度对聚硅氧烷制备SiOC泡沫陶瓷性能的影响[J].佳木斯大学学报.2007,25(1):49-51.
    [127]刘洪丽,钟文武,高品,等.纳米SiC填料对SiOC泡洙陶瓷性能的影响[J].铸造技术.2008,29(5):597-600.
    [128]刘洪丽,钟文武,宋春梅,等.采用聚硅氮烷制备SiCN泡沫陶瓷[J].稀有金属材料与工程.2007,36(z1):538-541.
    [129]Colombo P, Bernardo E. Macro and microcellular porous ceramics from preceramic polymers[J]. Composites Science and Technology.2003,63(16):2353-2359.
    [130]Yuan X, Jin H, Yan X, et al. Synthesis of ordered mesoporous silicon oxycarbide monoliths via preceramic polymer nanocasting[J]. Microporous and Mesoporous Materials.2012, 147(1):252-258.
    [131]Greil P. Biomorphous ceramics from lignocellulosics[J]. Journal of the European Ceramic Society.2001,21(2):105-118.
    [132]Zollfrank C, Kladny R, Sieber H, et al. Manufacturing of anisotropic ceramics from preceramic polymers and wood[J]. Ceramic Transactions.2002,114:43-46.
    [133]Vakifahmetoglu C. Fabrication and properties of ceramic 1D nanostructures from preceramic polymers:a review[J]. Advances in Applied Ceramics.2011,110(4):188-204.
    [134]Martin C R. Membrane-based synthesis of nanomaterials[J]. Chemistry of Materials.1996, 8(8):1739-1746.
    [135]Huczko A. Template-based synthesis of nanomaterials. Applied Physics A:Materials Science & Processing.2000,70(4):365-376.
    [136]Yen H, Jou S, Chu C. Si-O-C nanotubes from pyrolyzing polycarbosilane in a mesoporous template[J]. Materials Science and Engineering B.2005,122(3):240-245.
    [137]Forsthoefel K M, Pender M J, Sneddon L G. Chemical precursor routes to nanostructured non-oxide ceramics, functional nanostructured materials through multiscale assembly and novel patterning techniques[J]. MRS Proceedings.2002,728,59-64.
    [138]Otoishi S, Tange Y. Effect of a catalyst on the formation of SiC whiskers from polycarbosilane. nickel ferrite as a catalyst[J]. Bulletin of the Chemical Society of Japan. 1999,72(7):1607-1613.
    [139]Otoishi S, Tange Y. Growth rate and morphology of silicon carbide whiskers from polycarbosilane[J]. Journal of Crystal Growth.1999,200(3-4):467-471.
    [140]Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Applied Physics Letters.1964,4(5):89-90.
    [141]Jou S, Hsu CK. Preparation of carbon nanotubes from vacuum pyrolysis of polycarbosilane[J]. Materials Science and Engineering B.2004,106(3):275-281.
    [142]Zhu S, Xi H A, Li Q, et al. In situ growth of β-SiC nanowires in porous SiC ceramics[J]. Journal of the American Ceramic Society.2005,88(9):2619-2621.
    [143]Yao X, Tan S, Huang Z, et al. Growth mechanism of β-SiC nanowires in SiC reticulated porous ceramics[J]. Ceramics International.2007,33(6):901-904.
    [144]Yoon B H, Chee-Sung P, Kim H E, et al. In situ synthesis of porous silicon carbide (SiC) ceramics decorated with SiC Nanowires[J]. Journal of the American Ceramic Society.2007, 9(10):3759-3766.
    [145]Zheng J, Kramer M J, Akinc M. In situ growth of SiC whisker in pyrolyzed monolithic mixture of AHPCS and SiC. Journal of the American Ceramic Society.2000,83(12): 2961-2966.
    [146]Scheffler M, Pippel E, Woltersdorf J, et al. In situ formation of SiC-Si2ON2 micro-composite materials from preceramic polymers[J]. Materials Chemistry and Physics.2003,80 (2): 565-572.
    [147]Li G Y, Li X D, Wang H, et al. Ultra long SiC nanowires with fluctuating diameters synthesized in a polymer pyrolysis CVD route[J]. Solid State Sciences.2009,11(12): 2167-2172.
    [148]温广武,李峰,韩兆祥,等.从SiBONC陶瓷粉体中生长p-SiC纳米线[J].稀有金属材料与工程.2008,37(3):561-564.
    [149]Park J K, Park J H, Park J W, et al. Preparation and characterization of porous cordierite pellets and use as a diesel particulate filter[J]. Separation and Purification Technology.2007, 55(3):321-326.
    [150]王小华,曾令可,罗民华.用于汽车尾气净化的多孔陶瓷[J].中国陶瓷工业.2004,11(5):45-53.
    [151]Deville S, Saiz E, Nalla R K, et al. Freezing as a path to build complex composites[J]. Science.2006,311(5760):515-519.
    [152]Ong J L, Appleford M, Oh S, et al. The characterization and development of bioactive hydroxyl apatite coatings[J]. Journal of the Minerals Metals & Materials Society.2006,58(7): 67-69.
    [153]Feng Y L, Wang S J, Feng B, et al. Development of an auto test system for humidity sensors[J]. Sensors and Actuators A:Physical.2009,152(1):104-109.
    [154]Pan J M, Yan X H, Cheng X N, et al. Preparation of SiC nanowires-filled cellular SiCO ceramics from polymeric precursor[J]. Ceramics International.2012,38(8):6823-6829.
    [155]Segatelli M, Pires A, Yoshida I. Synthesis and structural characterization of carbon-rich SiGxOy derived from a Ni-containing hybrid polymer[J]. Journal of the European Ceramic Society.2008,28(11):2247-2257.
    [156]Ferrari A C, Robertson J(谭平恒,李峰,成会明译).碳材料的拉曼光谱一从纳米管到金刚石[M].北京:化学工业出版社,2007.
    [157]Tuinstra F, Koenig J L. Raman spectrum of graphite[J], Journal of Chemical Physics.1970, 53(3):1126-1130
    [158]Karlin S, Colomban Ph. Raman study of the chemical and thermal degradation of as-received and sol-gel embedded Nicalon and Hi-Nicalon SiC fibers used in ceramic matrix composites[J], Journal of Raman Spectroscopy.1997,28(4):219-228.
    [159]Kleebe H J, Turquat C, Soraru G D. Phase separation in an SiCO glass studied by transmission electron microscopy and electron energy-loss spectroscopy[J]. Journal of the American Ceramic Society.2001,84(5):1073-1080.
    [160]Zhong Y, Shaw L L, Manjarres M, et al. Synthesis of silicon carbide nanopowder using silica fume[J]. Journal of the American Ceramic Society.2010,93(10):3159-3167.
    [161]Saito M, Nagashima S, Kato A. Crystal growth of SiC whisker from the SiO(g)-CO System[J]. Journal of Materials Science Letters.1992,11(7):373-376.
    [162]Yuan F, Wang H J, Jin Z H. Fabrication of SiC nano-threads within carbon felt[J]. Journal of Inorganic Materials,2007,22(3):418-422.
    [163]Hao Y J, Wagner J B, Su D S, et al. Beaded silicon carbide nanochains via carbothermal reduction of carbonaceous silica xerogel[J]. Nanotechnology.2006,17(12):2870-2874.
    [164]Wang H T, Xie Z P, Yang W Y, et al. Morphology control in the vapor-liquid-solid growth of SiC nanowires[J]. Crystal Growth & Design.2008,8(11):3893-3896.
    [165]Sun D L, Yu X C, Liu W J, et al. Laminated biomorphous SiC/Si porous ceramics made from wood veneer[J]. Materials & Design.2012,34:528-532.
    [166]Windsheimer H, Travitzky N, Hofenauer A, et al. Laminated object manufacturing of preceramic-paper-derived Si-SiC composites[J]. Advanced Materials.2007,19(24): 4515-4519.
    [167]Fu X L, Peng Z J, Zhu N, et al. Aligned Si3N4@SiO2 coaxial nanocables derived from a polymeric precursor[J]. Nanotechnology.2010,21(24):245603-245609.
    [168]严自力,刘杰,张建春,等.碳化硅木质陶瓷的研究进展[J].硅酸盐学报.2008,36(12): 1797-1802.
    [169]钱军民,王继平,金志浩.木材陶瓷和si粉原位反应烧结制备多孔SiC的研究[J].硅酸盐学报.2003,31(7):635-640.
    [170]Qian J M, Wang J P, Qiao G J, et al. Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing[J]. Journal of the European Ceramic Society.2004,24(10-11):3251-3259.
    [171]Sun B H, Fan T X, Zhang D. Production of morph-genetic TiC/C ceramic[J]. Materials Letters.2004,58(5):798-801.
    [172]Rambo C R, Cao J, Rusina O, et al. Manufacturing of biomorphic (Si, Ti, Zr)-carbide ceramics by sol-gel processing[J]. Carbon.2005,43(6):1174-1183.
    [173]Radovanovice E, Gozzi M F, Goncalves M C, et al. Silicon oxycarbide glasses from silicone networks[J]. Journal of Non-Crystalline Solids.1999,248(1):37-48.
    [174]Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J], Physical Review B.2000,61(20):14095-14107.
    [175]徐天恒.聚硅氧烷转化SiOC陶瓷微观结构的演变与改性[D].长沙:国防科学技术大学博士学位论文.2011.
    [176]Brequel H, Parmentier J, Walter S, et al. Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses[J]. Chemistry of Materials.2004,16(13):2585-2598.
    [177]Wang T, Fan T, Zhang D, et al. Fabrication and the wear behaviors of the carbon/aluminum composites based on wood templates[J]. Carbon.2006,44(5):900-906.
    [178]Lee J L, Hetcht N L, Mah Tai-Il, et al. In situ processing and properties of SiC/MoSi2 nanocomposites. Journal of the American Ceramic Society.1998,81(2):421-424.
    [179]Chew K W, Sellinger A, Laine R M. Processing aluminium nitride-silicon carbide composites via polymer infiltration and pyrolysis of polymethylsilane, a precursor to stoichiometric silicon. Journal of the American Ceramic Society.1999,82(4):857-866.
    [180]李永清,陈朝辉,张长瑞,等.先驱体转化法制备SiC/Si3N4复相陶瓷异型件—成型工艺研究.宇航材料工艺,1996,26(6):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700