用户名: 密码: 验证码:
石墨烯及其复合材料的制备、性质及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是一种二维纳米材料,仅由一个原子层厚的单层石墨片构成。这种材料潜力巨大,集多种优异特性于一身,具有超强的导电、导热性能及机械强度,超高的载流子迁移率、透光性及巨大的比表面积。在很多方面,比如透明导电薄膜、电子器件、能源存储、催化、生物医药等展现出巨大的应用前景。本论文从合成、性质、应用等出发,开展了还原石墨烯及其薄膜的低温制备、非氧化直接剥离石墨、制备石墨烯复合凝胶及纤维等工作,具体研究内容和结果如下:
     采用钠-氨溶液低温还原方式,实现了氧化石墨烯及其薄膜的高效还原。金属钠在液氨中产生高活性的溶剂电子可以有效消除含氧基团、恢复π共轭结构,石墨烯含氧量只有5.6wt%,单层石墨烯的迁移率高达123cm2V/s。利用红外光谱考察了氧化石墨烯的含氧官能团在不同还原时间的演变,并推测了电子还原的反应机制。通过直接溶液浸泡的方式,制备了石墨烯透明导电薄膜,过程只要几分钟,在80%透光率下,其平面膜阻只有350Ω/平方。还制备了石墨烯-碳纳米管复合薄膜。制备了基于还原石墨烯的超电容,比电容达263F/g。利用还原石墨烯负载铂作为甲醇催化的催化剂,发现其催化效果明显增强。
     借助研磨过程,金属钠“引爆”插入石墨层间的硫酸分子,产生迅速而猛烈的化学能释放,可以实现石墨的直接剥离。它不经过氧化-还原过程从而保证其高质量。原子力显微镜和高分辨电镜可以证明成功制备出了单层石墨烯,通过衍射斑点可以证明石墨烯的结晶性很好,晶格完美。红外、拉曼、电子能谱显示石墨烯的氧化程度很低、缺陷少,具有高品质。利用剥离石墨烯制备了透明导电薄膜,其透光率85%,膜阻~760Ω/square。还制备了石墨烯基超电容,其比电容值为120F/g。利用高品质的石墨烯作为负载贵金属Pt纳米颗粒的载体,进行催化甲醇氧化的实验,显示了很好的催化活性和抗碳质残余物的沉积的能力。此外,还实现了利用金属钠的气氛对石墨的直接剥离。
     通过对氧化石墨烯和聚乙烯醇混合物的直接化学还原,制备了石墨烯-聚乙烯醇复合凝胶,改进了石墨烯的分散性,提高了其载荷的传输性能。通过热拉伸或直接拉伸的方式,制备了石墨烯-聚乙烯醇复合纤维,并且应用微装配的音叉器件评估了复合纤维的力学性能。发现仅添加0.68vol%的石墨烯,聚合物复合材料的杨氏模量提高200%。通过对石墨烯复合物的热性质研究,发现添加石墨烯可以极大提高复合物的热稳定性。复合材料中石墨烯拉曼光谱振动频带的位移表明石墨烯和聚合物之间存在相互作用。
Graphene is a two-dimensional nanomaterial, consisted of only one atom thick layer of graphite. This material has great potential in various applications, due to its excellent features in a high electrical and thermal conductivity, high mechanical strength, high carrier mobility, high transparency and huge specific surface area. Graphene shows a great prospect in many ways, such as transparent conductive film, electronic devices, energy storage, catalysis, bio-medicine, etc.. In this dissertation, we focus on the synthesis, properties, applications of graphene, including low temperature reduction of graphene, direct exfoliation of graphite, and preparation of graphene composite material. The main innovative work and specific research results are summarized as follows:
     Highly reduced graphene oxide (RGO) and RGO film were prepared by Na-NH3solution. The solvated electrons in Na-NH3solution can effectively facilitate the de-oxygenation of GO and the restoration of π-conjugation to produce RGO samples with an oxygen content of5.6wt%at low temperature. Electrical characterization of single RGO flakes demonstrates a high hole-mobility of123cm2/Vs. To probe the fundamental mechanism for the reduction of GO with solvated electrons, we have carried out detailed Fourier transform infrared spectroscopy (FTIR) study to monitor the evolution of the functional groups in GO during the reduction process. Additionally, we show that the pre-formed GO thin film can be directly reduced to form RGO film with a combined low sheet resistance (~350Ω/square with~80%transmittance) in few minutes. We also have fabricated the graphene-carbon nanotube composite films using this method. We have prepared the RGO-based ultracapacitors with specific capacitance of263F/g and produced the Pt/RGO composites as high-efficient catalyst for methanol oxidation.
     High quality graphene was prepared by direct exfoliation of the graphite without oxidizing and damaging the graphene sheets through a grinding-assisted chemical bursting-process when the pre-intercalated oleum was ignited by sodium. The definitive evidence that the as-made graphene sheets are only a single atomic layer thickness was observed with atomic force microscopy (AFM) and high-resolution TEM (HRTEM). The high quality of the graphene sheets were supported by selected area electron diffraction (SAED), Raman, FTIR, and X-ray photoelectron spectroscopy (XPS), which also demonstrate our graphene samples with less defects or oxides. Using the exfoliated graphene, we are able to fabricate high performance graphene-based ultracapacitors (120F/g), transparent conductive film (~760Ω/square with~85%transmittance) and Pt/graphene nanocomposites as high-efficient catalyst for methanol oxidation. In addition, we slao use the vapor of the metallic sodium to directly exfoliate the oleum pre-intercalated graphite.
     By in situ chemical reduction of the graphite oxide (GO) mixed with poly(vinyl alcohol)(PVA), we successfully fabricated reduced graphene oxide (rGO)-PVA composite hydrogels with improved dispersion and load transfer in their composites. The rGO-PVA composite wires were made by thermal-drawing or by directly drawing from rGO-PVA dispersion and their mechanical properties were rapidly evaluated using a microfabricated tuning fork device. It was found that the Young's modulus of the polymer composites increase by ca.200%with only0.68vol%addition of the rGO. The thermal properties of the composites were studied by differential scanning calorimetry (DSC), and it was observed that the addition of graphene to PVA highly improves the thermal stability of the composites. Raman spectroscopy revealed the existence of an interaction between the graphene and the polymer via the shift in the vibration bands of the graphene in the composites.
引文
[1]Kroto H W, Heath J R, Obrien S C, et al.1985. C60:Buckminsterfullerene[J]. Nature, 318:162-163.
    [2]Iijima S.1991. Helical microtubules of graphitic carbon[J]. Nature,354:56-58.
    [3]Novoselov K S, Geim A K, Morozov S V, et al.2004. Electric field effect in atomically thin carbon films[J]. Science,306:666-669.
    [4]Hirsch A.2010. The era of carbon allotropes[J]. Nature Mater,9:868-870.
    [5]Lu X K, Yu M F, Huang H, et al.1999. Tailoring graphite with the goal of achieving single sheets[J]. Nanotechnology,10:269-272.
    [6]Novoselov K S, Geim A K, Morozov S V, et al.2005. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,438:197-200.
    [7]Zhang Y B, Tan Y W, Stormer H L, et al.2005. Experimental observation of the quantum hall effect and berry's phase in graphene[J]. Nature,438:201-204.
    [8]Dreyer D R, Ruoff R S, Bielawski C W.2010. From conception to realization:An historical account of graphene and some perspectives for its future[J]. Angew Chem Int Ed, 49:9336-9344.
    [9]Van Noorden R.2006. Moving towards a graphene world[J]. Nature,442:228-229.
    [10]Seo J, Jun Y, Park S, et al.2007. Two-Dimensional Nanosheet Crystals[J]. Angew Chem Int Ed,46:8828-8831.
    [11]Geim A K, Novoselov K S.2007. The rise of graphene[J]. Nature Mater,6:183-191.
    [12]Meyer J C, Geim A K, Katsnelson M I, et al.2007. The structure of suspended graphene sheets[J]. Nature,446:60-63.
    [13]Lee C, Wei X D, Kysar J W, et al.2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,321:385-388.
    [14]Stankovich S, Dikin D A, Dommett G H B, et al.2006. Graphene-based composite materials[J]. Nature,442:282-286.
    [15]Nair R R, Blake P, Grigorenko A N, et al.2008. Fine structure constant defines visual transparency of graphene. Science,320:1308-1308.
    [16]Ni Z H, Wang H M, Kasim J, et al.2007. Graphene thickness determination using reflection and contrast spectroscopy[J]. Nano Lett,7:2758-2763.
    [17]Bolotin K I, Sikes K J, Jiang Z, et al.2008. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun,146:352-355.
    [18]Kim K S, Zhao Y, Jang H, et al.2009. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,457:706-710.
    [19]Balandin A A, Ghosh S, Bao WZ, et al.2008. Superior thermal conductivity of single-layer Graphene[J]. Nano Lett,8:902-907.
    [20]Novoselov K S, Jiang D, Schedin F, et al.2005. Two-dimensional atomic crystals[J]. Proc Natl Acad Sci,102:10451-10453.
    [21]Berger C, Song Z M, Li T B, et al.2004. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics[J]. J Phys Chem B, 108:19912-19916.
    [22]Berger C, Song Z M, Li X B, et al.2006. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science,312:1191-1196.
    [23]Li D, Muller M B, Gilje S, et al.2008. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotech,3:101-105.
    [24]Brodie B C.1859. Philos Trans R Soc London,149:249-259.
    [25]Staudenmaier L.1898. Ber Dtsch Chem Ges,31:1481-1487.
    [26]Hummers W S, Offeman R E.1958. Preparation of graphitic oxide[J]. J Am Chem Soc, 80:1339-1339.
    [27]He H, Klinowski J, Forster M, et al.1998. A new structural model for graphite oxide[J]. Chem Phys Lett,287:53-56.
    [28]Kovtyukhova N I, Ollivier P J, Martin B R, et al.1999. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chem Mater, 11:771-778.
    [29]Williarris G, Seger B, Kamat P V.2008. TiO2-graphene nanocomposites:UV-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano,2:1487-1491.
    [30]Abdelsayed V, Moussa S, Hassan H M, et al.2010. Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature [J]. J Phys Chem Lett,1:2804-2809.
    [31]Gilje S, Dubin S, Badakhshan A, et al.2010. Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications[J]. Adv Mater,22:419-423.
    [32]Williams G, Seger B, Kamat P V.2008. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. ACS nano,2:1487-1491.
    [33]Zhu Y, Murali S, Stoller M D. et al.2010. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors[J]. Carbon,48:2106-2122.
    [34]Wang Z, Zhou X, Zhang J. et al.2009. Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase[J]. J Phys chem C,113:14071-14075.
    [35]Ramesha G K, Sampath S.2009. Electrochemical reduction of oriented graphene oxide films:An in situ raman spectroelectrochemical study[J]. J Phys Chem C,113:7985-7989.
    [36]Wang Z J, Zhou X Z, Zhang J, et al.2009. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase[J]. J Phys Chem C, 113:14071-14075.
    [37]Guo H L, Wang X F, Qian Q Y, et al.2009. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano,2009,3:2653-2659.
    [38]Zhou M, Wang Y L, Zhai Y M, et al.2009. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films[J]. Chem Eur J,15:6116-6120.
    [39]Dubin S, Gilije S, Wang K. et al.2010. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents[J]. ACS nano, 4:3845-3852.
    [40]Zhou Y, Bao Q L, Tang L A L, et al.2009. Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties[J]. Chem Mater,21:2950-2956.
    [41]Park S, Ruoff R S.2009. Chemical methods for the production of graphenes[J]. Nature Nanotech,4:217-224.
    [42]Muszynski R, Seger B, Kamat P V.2008. Decorating graphene sheets with gold nanoparticles[J]. J Phys Chem C,112:5263-5266.
    [43]Shin H J, Kim K K, Benayad A, et al.2009. Efficient reduction of graphite oxide by sodium borohydrilde and its effect on electrical conductance[J]. Adv Funct Mater,19:1987-1992.
    [44]Hofmann U, Frenzel A.1934. The reduction of graphite oxide with hydrogen sulphide[J]. Kolloid-Zeitschrift,68:149-151.
    [45]Mohanty N, Nagaraja A, Armesto J, et al.2010. High-throughput, ultrafast synthesis of solution-dispersed graphene via a facile hydride chemistry [J]. Small,6:226-231.
    [46]Stankovich S, Dikin D A, Dommett G H B, et al.2006. Graphene-based composite materials[J]. Nature,442:282-286.
    [47]Wang G X, Yang J, Park J, et al.2008. Facile synthesis and characterization of graphene nanosheets[J]. J Phys Chem C,112:8192-8195.
    [48]Moonl K, Lee J, Ruoff R S, et al.2010. Reduced graphene oxide by chemical graphitization[J]. Nature Commun,1:73-79.
    [49]Pei S F, Zhao J P, Du J H, et al.2010. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon,48:4466-4474.
    [50]Pham V H, Cuong T V, Nguyen-Phan T, et al.2010. One-step synthesis of superior dispersion of chemically converted graphene in organic solvents[J]. Chem Commun, 46:4375-4377.
    [51]Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene. Nature Nanotech,2009,4:25-29.
    [52]Gao W, Alemany L B, Ci L J, et al.2009. New insights into the structure and reduction of graphite oxide[J]. Nature Chem,1:403-408.
    [53]Li X, Zhang G, Bai X, et al.2008. Highly conducting graphene sheets and Langmuir-Blodgett films[J]. Nature Nanotech,3:538-542.
    [54]Hernandez Y, Nicolosi V, Lotya M, et al.2008. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotech,3:563-568.
    [55]Kim K S, Zhao Y, Jang H, et al.2009. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,457:706-710.
    [56]Reina A, Jia X T, Ho J, et al.2009. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett,9:30-35.
    [57]Sun Z Z, Yan Z, Yao J, et al.2010. Growth of graphene from solid carbon sources[J]. Nature, 2010,468:549-552.
    [58]Kosynkin D V, Higginbotham A L, Sinitskii A, et al.2009. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature,458:872-876.
    [59]Jiao L Y, Zhang L, Wang X R, et al.2009. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature,458:877-880.
    [60]Tang Y B, Lee Z H, Chen Z H, et al.2009. High-quality graphene via a facile quenching method for field-effect transistors[J]. Nano Lett,9:1374-1377.
    [61]Choucair M, Thordarson P, Stride J A.2009. Gram-scale production of graphene based on solvothermal synthesis and sonication[J]. Nature Nanotech,4:30-33.
    [62]Cai J M, Ruffieux P, Jaafar R, et al.2010. Atomically precise bottom-up fabrication of graphene nanoribbons [J]. Nature,466:470-473.
    [63]Yang X Y, Dou X, Rouhanipour A, et al.2008. Two-dimensional graphene nanoribbons[J]. J Am Chem Soc,130:4216-4217.
    [64]Blake P, Brimicombe P. D, Nair R. R, et al.2008. Graphene-based liquid crystal device[J]. Nano Lett,8:1704-1708.
    [65]Cote L J, Kim F, Huang J.2009. Langmuir-Blodgett assembly of graphite oxide single layers[J]. J Am Chem Soc,131:1043-1049.
    [66]Wang X, Zhi L J, Mullen K.2008. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Lett,8:323-327.
    [67]Becerril H A, Mao J, Liu Z, et al.2008. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano,2:463-470.
    [68]Tung V C, Chen L M, Allen M J, et al.2009. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors[J]. Nano Lett,9:1949-1955.
    [69]Bae S K, Kim H K, Lee Y B, et al.2010. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J], Nature Nanotech,5:574-578.
    [70]Stoller M D, Park S J, Zhu Y W, et al.2008. Graphene-based ultracapacitors[J]. Nano Lett, 8:3498-3502.
    [71]Vivekchand S, Rout C S, Subrahmanyam K S, et al.2008. Graphene-based electrochemical supercapacitors[J]. J Chem Sci,120:9-13.
    [72]Miller J R, Outlaw R A, Holloway B C.2010. Graphene double-layer capacitor with ac line-filtering performance[J]. Science,329:1637-1639.
    [73]Yang X, Zhu J, Qiu L, et al.2011. Bioinspired effective prevention of restacking in. multilayered graphene films:towards the next generation of high-performance supercapacitors[J]. Adv Mater,23:2833-2838.
    [74]Ramanathan T, Abdala A A, Stankovich S, et al.2008. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotech,3:327-331.
    [75]Rafiee M A, Lu W, Thomas A V, et al.2010. Graphene nanoribbons from carbon nanotubes[J]. ACS nano,4:7415-7420.
    [76]Lee J K, Smith K B, Hayner C M, et al.2010. Silicon nanoparticales-graphene paper composites for Li ion battery anodes[J]. Chem Commun,46:2025-2027.
    [77]Liu J, Fu S, Yuan B, et al.2010. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide[J]. J Am Chem Soc,132:7279-7281.
    [78]Dewald R R.1975. Mechanistic studies of metal-ammonia reductions[J]. J Phys Chem, 79:3044-3049.
    [79]Huffman J W, McWhorter W W.1979. Dissolving metal reduction of cyclic ketones[J]. J Org Chrm,44:594-599.
    [80]Kerr J A.1966. Bond dissociation energies by kinetic methods[J]. Chem Rev,66:465-500.
    [81]Fasolino A, Los J H, Katsnelson M I.2007. Intrinsic ripples in graphene[J]. Nature Mater, 6:858-861.
    [82]Meyer J C, Geim M I, Katsnelson K S, et al.2007. On the roughness of single-and bi-layer graphene membranes[J]. Solid State Commun,143:101-109.
    [83]Su Q, Pang S, Alijani V, et al.2009. Composites of graphene with large aromatic molecules[J]. Adv Mater,21:3191-3195.
    [84]Stankovich S, Dikin D A, Piner R D, et al.2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,45:1558-1565.
    [85]Park S, An J, Jung I, et al.2009. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents[J]. Nano Lett,9:1593-1597.
    [86]Guo H, Wang X, Wang, F, et al.2009. Green approach to synthesis of graphene sheets using electrochemical technique[J]. ACS Nano,3:2653-2659.
    [87]Zhang J, Yang H, Shen G, et al.2010. Reduction of graphene oxide vial-ascorbic acid[J]. Chem Commun,46:1112-1114.
    [88]Lin Z, Yao Y, Li Z, et al.2011. Solvent-assisted thermal reduction of graphite oxide[J]. J Phys Chem C,115:17660-17669.
    [89]Gao X, Jang J, Nagase S.2010. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design[J]. J Phys Chem C, 114:832-842.
    [90]Sinclair S, Jorgensen W L.1994. Computer assisted mechanistic evaluation of organic reactions.23. dissolving metal reductions with lithium in liquid ammonia including the Birch reduction[J]. J Org Chrm,59:762-772.
    [91]Huffman J W.1983. Metal-ammonia reduction of cyclic aliphatic ketones[J]. Acc Chem Res,16:399-405.
    [92]Kharasch M S, Sternfeld E, Mayo F R.1939. The reaction of esters with sodium in ammonia[J]. J Am Chem Soc,61:215.
    [93]Huffman J W, McWhorter W W.1979. Dissolving metal reduction of cyclic ketones[J]. J Org Chrm,44:594-599.
    [94]Corey E J, Ensley H E, Suggs J W.1940. Convenient synthesis of (S)-(-)-pulegone from (-)-citronellol[J]. J Org Chem,5:362.
    [95]Dewald R R.1975. Mechanistic studies of metal-ammonia reductions[J]. J Phys Chem, 79:3044-3049.
    [96]Kerr J A.1966. Bond dissociation energies by kinetic methods[J]. Chem Rev,66:465-500.
    [97]Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature,448:457-460.
    [98]Stankovich S, Piner R D, Nguyen S T, et al.2006. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon,44:3342-3347.
    [99]Liu Z F, Liu Q, Huang Y, et al.2008. Organic photovoltaic devices based on a novel acceptor material:Graphene[J]. Adv Mater,20:3924-3930.
    [100]Lomeda J R, Doyle C D, Kosynkin D V, et al.2008. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets[J]. J Am Chem Soc, 130:16201-16206.
    [101]Bekyarova E, Itkis M E, Ramesh P, et al.2009. Chemical modification of epitaxial graphene:Spontaneous grafting of aryl groups[J]. J Am Chem Soc,131:1336-1337.
    [102]Fang M, Wang K G, Lu H B, et al.2009. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites[J]. J Mater Chem,19:7098-7105.
    [103]Economopoulos S P, Rotas G, Miyata Y, et al.2010. Exfoliation and chemical modification using microwave irradiation affording highly functionalized graphene[J]. ACS Nano,2010, 4:7499-7507.
    [104]He H K, Gao C.2010. General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry[J]. Chem Mater, 22:5054-5064.
    [105]Zhong X, Jin J, Li S W, et al.2010. Aryne cycloaddition:Highly efficient chemical modification of graphene[J]. Chem Commun,46:7340-7342.
    [106]Xu Y X, Bai H, Lu G W, et al.2008. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. J Am Chem Soc, 130:5856-5857.
    [107]Yang X Y, Zhang X Y, Liu Z F, et al.2008. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide[J]. J Phys Chem C,112:17554-17558.
    [108]Bai H, Xu Y X, Zhao L, et al.2009. Non-covalent functionalization of graphene sheets by sulfonated polyaniline[J]. Chem Commun,13:1667-1669.
    [109]Yang, D. Velamakanni A, Bozoklu G, et al.2009. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy[J]. Carbon,47:145-152.
    [110]Eda G, Fanchini G, Chhowalla M.2008. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotech,3:270-274.
    [111]Segal M.2009. Selling graphene by the ton[J]. Nature Nanotech,4:612-614.
    [112]Tang Y B, Lee C S, Chen Z H, et al.2009. High-quality graphenes via a facile quenching method for field-effect transistors[J]. Nano Lett,9:1374-1377.
    [113]Ferrari A C, Meyer J C, Scardaci V, et al.2006. Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett,97:187401-187404.
    [114]Graf D, Molitor F, Ensslin K, et al.2007. Spatially resolved Raman spectroscopy of single-and few-layer graphene[J]. Nano Lett,7:238-242.
    [115]Calizo I, Balandin A, Bao W, et al.2007. Temperature dependence of the Raman spectra of graphene and graphene multilayers[J]. Nano Lett,7:2645-2649.
    [116]Ci L, Manikoth S M, Li X, et al.2007. Ultrathick freestanding aligned carbon nanotube films[J].Adv Mater,19:3300-3303.
    [117]Li Y, Tang L, Li J.2009. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites[J]. Electrochem. Commun,11:846-849.
    [118]Yoo E, Okata T, Akita T, et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface[J]. Nano Lett,9:2255-2259.
    [119]Geim A K, Novoselov K S.2007. The rise of graphene [J]. Nature Mater,6:183-191.
    [120]Liang J J, Huang Y, Zhang L, et al.2009. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites[J]. Adv Funct Mater,19:2297-2302.
    [121]Bao Q L, Zhang H, Yang J X, et al.2010. Graphene-polymer nanofiber membrane for ultrafast photonics[J]. Adv Funct Mater,20:782-791.
    [122]Xu Y X, Hong W J, Bai H, et al.2009. Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure[J]. Carbon,47:3538-3543.
    [123]Zhao X, Zhang Q H, Chen D J, et al.2010. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules,43:2357-2363.
    [124]Pham V H, Cuong T V, Dang T T, et al.2011. Superior conductive polystyrene chemically converted graphene nanocomposite[J]. J Mater Chem,21:11312-11316.
    [125]Vadukumpully S, Paul J, Mahanta N, et al.2011. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability[J]. Carbon,49:198-205.
    [126]Kim H, Miura Y, Macosko C W.2010. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity [J]. Chem Mater,22:3441-3450.
    [127]Wei T, Luo G L, Fan Z J, et al.2009. Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion[J]. Carbon,47:2296-2299.
    [128]Yang H F, Shan C S, Li F H, et al.2009. Convenient preparation of timably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction [J]. J Mater Chem,19:8856-8860.
    [129]Choi E Y, Han T H, Hong J H, et al.2010. Noncovalent functionalization of graphene with end-functional polymers[J]. J Mater Chem,20:1907-1912.
    [130]Barroso-Bujans F, Cerveny S, Verdejo R, et al.2010. Permanent adsorption of organic solvents in graphite oxide and it effect on the thermal exfoliation[J]. Carbon,48: 1079-1087.
    [131]Boussaad S, Tao N J.2003. Polymer Wire Chemical Sensor Using a Microfabricated Tuning Fork[J]. Nano Lett,3:1173-1176.
    [132]Ren M, Forzani E S, Tao N J.2005. Chemical Sensor Based on Microfabricated Wristwatch Tuning Forks[J]. Anal. Chem,77:2700-2707.
    [133]O'Shea S J, Welland M E.1998. Atomic force microscopy at solid-liquid interface[J]. Langmuir,14:4186.
    [134]Tsow F, Tao N J.2007. a Microfabricated tuning fork temperature and infrared sensor. Appl Phys Lett,90:174102.
    [135]Zhang J, O'Shea S.2003. Tuning forks as micromechanical mass sensitive sensors for bio-or liquid detection[J]. Sens Actuat B,94:65-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700