用户名: 密码: 验证码:
电化学原位红外光谱研究铂电极上有机小分子吸附和氧化的反应机理和动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(即Direct Methanol Fuel Cell,简称为DMFC)被认为是解决能源紧缺和环境问题的重要方案之一。它具有启动速度快,操作温度低、燃料来源广和环境污染小等许多优点,十分适合在日常的生产生活中广泛应用。DMFC的大规模商业化面临两个问题。一是,甲醇氧化反应中生成的中间物CO在阳极催化剂上有很强的吸附作用,造成电流密度减小和输出电压降低等问题;二是,目前应用最广泛的商业催化剂是铂(Pt)基催化剂。作为地球上贮量有限的重要贵金属Pt,它的可用量十分有限,不仅制约了直接甲醇燃料电池的产量,使之难以大规模推广使用,而且还使得DMFC的价格居高不下。从分子水平上揭示甲醇反应的机理以及各因素对其反应动力学的影响是设计高效、低Pt担载的甲醇氧化电催化剂的前提。
     本实验室发展了电化学衰减全内反射红外光谱与流动电解池联用技术,可以在排除传质条件影响下,系统地研究干净Pt电极上电化学反应最初阶段的反应机理和反应动力学,并探讨电位、PH值和电极表面组成等对反应的影响。结合本实验室的优势条件并且针对目前DMFC中的难题,本博士论文主要研究甲醇、一氧化碳(CO)和氰根(CN-)在Pt或者PtRu电极上吸附和氧化的反应机制和动力学过程。
     各个部分的主要内容和结论总结如下:1.甲醇在Pt电极上的氧化反应
     利用电化学原位ATR-FTIR与排除传质影响的流动电解池联用技术,研究在Pt电极上各个不同的恒电位时0.1MHC104+2M CH3OH甲醇的氧化反应过程。结合CO吸附的红外光谱和氧化电量,计算CO的表面覆盖度,进而定量分析在一系列不同的CO覆盖度下甲醇氧化的反应途径的电流效率和Tafel斜率对应的决速步骤。结果表明:(i)在恒电位下,随着COad在电极表面的堆积并达到最大的覆盖度0.5单层的过程中,甲醇脱氢反应速率随之降低而COad氧化速率随之增加;(ii)在固定的COad覆盖度下,甲醇分解生成COad速率和COad氧化速率在0.3V到0.7V(vs.RHE)之间随着电势的增加而增加,甲醇脱氢的Tafel斜率大约是440±30mV/dec,而且不随COad覆盖度改变而改变。(iii)在0.6和0.7V时甲醇氧化反应中CO反应途径的电流效率在20%以下,而且随着电势的升高而降低。甲醇氧化反应的机制和电极电势变化引起的不同反应途径的动力学的变化也有简要的讨论。
     2.氰根(Cyanide)和CO在Pt电极上的吸附
     利用衰减全内反射电化学原位红外光谱与薄层流动电解池联用技术研究在0.1MHC104+0.01M KCN体系中CN-在Pt膜电极表面的吸附的电位效应和动力学过程。首次在酸性电解质体系中研究CN-在Pt电极上的吸附过程,并发挥流动电解池可以持续控制电位和快速切换的优势,在CN-吸附饱和的Pt表面引入C0,探讨在一系列电位下两种分子吸附时的相互作用。从时间分辨红外光谱的数据结果可以推测出:随着吸附时电极电势的改变,CN-在Pt电极上的吸附构型表现出三种不同的伸缩振动。在0.05V,1639cm-1和1493cm-1的峰,归属于trans-(HN=CH)表面物种。2100cm-1左右的峰,归属于N-端吸附的Pt-NC,在2150cm-1的峰,归属于C-端吸附的Pt-CN,而Pt-NC的Stark斜率是Pt-CN的3倍多。CNad在电极表面上吸附的构型朝向的识别可以通过在饱和CN吸附的Pt电极上引入CO共吸附的红外光谱的行为进一步得到证实。引入CO后可以发现对Pt-NC和Pt-CN两种构型的红外光谱有不同的影响:Pt-NC的C-N伸缩振动峰频发生了蓝移但峰强并没有明显变化;而Pt-CN的峰强有明显的增大,但频率却没有发生变化。C-N振动峰的变化揭示了在Pt电极表面上CN-最初的吸附构型是Pt-NCHad。然后,它氧化成了Pt-NC,随着反应时间的增加慢慢地改变成Pt-CN。基于DFT理论计算的结果发现,偶极耦合效应,空间挤压作用和电子效应可以用来解释CN-及其与CO共吸附的红外光谱变化的电极电势效应。
     3.甲醇在PtRu电极上的氧化反应
     利用电化学-ATR-FTIR技术研究了纯Pt与PtxRu,电极上甲醇氧化反应的动力学和反应机理。利用流动电解池切换到Ru溶液中沉积不同时间后,再切换回支持电解质清洗电解池,可以很方便地构建一系列不同覆盖度的PtxRuy电极。Ru沉积在Pt电极表面后,明显抑制了欠电位沉积H的吸脱附反应,因此通过计算沉积Ru前后的欠电位沉积H吸脱附反应的总电量可得到Ru在Pt电极表面上的覆盖度。引入Ru后,Pt电极的催化活性有明显提高。PtxRuy电极上甲醇氧化反应活性与Ru的覆盖度呈火山型曲线,实验表明Pt61Ru39电极的催化活性最好。在高覆盖度下,当Ru覆盖度超过39%时,CO会吸附在Ru上使得PtxRu,电极的活性降低。在低覆盖度下,由于Ru与Pt相互作用促进了甲醇脱氢反应,使得Pt上CO密度增大。Pt61Ru39电极上一系列不同电位(0.3V、0.4V、0.5V和0.6V)的甲醇氧化实验,表明甲醇脱氢生成CO和CO氧化的反应途径在总反应电流中的贡献有明显的电位效应。将甲醇在纯Pt电极和Pt61Ru39电极上的氧化反应进行比较,可以发现在低电位下Ru对Pt电极的氧化活性的促进效应比在高电位下明显得多。
Direct Methanol Fuel Cell (DMFC) has been seen as one of the solutions to the worldwide energy shortage and environmental protection problems. DMFC has plenty of adventages such as rapid starting speed, facile operating temperature, wide fuel source and little pollution. It is very propitious for DMFC to be largely used in socical life and industrial production. There are two problems which restrict the large-scale commercialization of DMFC. Firstly, the reaction intermediate CO from methanol oxidation reaction displays a strong adsorption at Pt-based anodic catalyst, which leads to the decrease of current density and output voltage; Secondly, at present the most worldwide DMFC catalyst is Pt-based materials. As an important expensive metal with a finite storage in planet, the Pt not only restricts the productivity of DMFC but also raises the price. Demonstrating the reaction mechanism and the influence on the dynamics from all kinds of factors in molecular level is the premise of designing DMFC anodic electrocatalyst with high performance and low Pt load.
     Electrochemical in situ ATR-FRIT spectroscopy with flow cell technique devoloped in our lab, allows the systematic research of initial reaction mechanism and dynamics of electrochemical reaction at clean Pt electrode without the influence of mass tranfer, and then to probe potential, PH and electrode compostion effects on the reaction. Aiming the current DMFC problems and combining the advantage in our lab, this thesis focuses on the research on the reaction mechanism and dynamic process of methanol, carbon monoxide and cyanide adsorption and oxidation at Pt or PtRu electrode.
     The main content and conclusion of each part is listed as follow:
     1. Methanol oxidation reaction at Pt electrode
     Methanol (MeOH) oxidation reaction (MOR) at Pt electrodes under potentiostatic conditions has been investigated by electrochemical in situ FTIR spectroscopy (FTIRS) in attenuated-total-reflection configuration under controlled flow conditions in0.1M HClO4with2M MeOH, where the mass transport effects are largely eliminated using a flow cell. Our results reveal that (ⅰ) at constant potentials, the methanol dehydrogenation rate decreases while the COad oxidation rate increases with the accumulation of COad until the maximum COad coverage (ca.0.5ML i.e., the steady state) is reached;(ⅱ) at fixed COad coverage, the rates for MeOH decomposition to COad and COad oxidation increases with potential from0.3to0.7V (vs. RHE), with Tafel slopes for MeOH dehydrogenation of ca.440±30mV/dec, which is independent of COad coverage;(iii) the current efficiency of the CO pathway in MOR at0.6and0.7V is below20%and it decreases toward higher potentials. The mechanisms as well as the potential induced change in the kinetics of different pathways involved in MOR are briefly discussed.
     2. Cyanide and Carbon monoxide adsorption at Pt electrode
     The adsorption of cyanide at Pt film electrode in0.1M HClO4is examined by electrochemical in situ infrared spectroscopy under attenuated total reflection configuration. The time-resolved IR spectral features reveal that depending on the adsorption potential, cyanide adsorbates display three modes of C-N stretching vibration. At0.05V, a trans-(HN=CH) surface species is identified for the appearance of1639and1493cm-1bands. The band with peak frequency below2100cm-1is attributed to N-bound Pt-NC and another band with peak frequency at ca.2150cm-1is attributed to C-bound Pt-CN; the Stark slope of the former is ca.3times larger than that the latter. The identification of the orientation of CNad is further confirmed by the spectral behavior of co-adsorption of CO onto the saturated cyanide adlayer; it causes a blue shift in C-N stretching frequency for Pt-NC without intensity change and an increase in CN band intensity for Pt-CN. The evolution of C-N vibration band demonstrates that the initial adsorption state of cyanide is in the form of Pt-NCHad. And then it is oxidized to Pt-NC, and Pt-NC will slowly reorient to Pt-CN at longer adsorption time. Dipole-dipole coupling effects, inter-space compression and electronic effect are found to be responsible for potential-dependent spectral behavior with and without co-adsorbed CO based on calculations using density functional theory.
     3. Methanol oxidation reaction at PtRu electrodes The reaction mechanism and dynamic process of methanol oxidation reaction at Pt and PtRu electrodes under potentiostatic conditions has been investigated by electrochemical in situ ATR-FTIR spectroscopy with flow cell in0.1M HC1O4+0.2M MeOH solution. After the deposition of Ru at Pt electrode, it is clearly found that the adsorption and desorption of under potential deposited H (UPD-H) has been restrained. Therefore, the coverage of Ru at Pt could be calculated by the total charge of the adsorption and desorption of UPD-H before and after introduction of Ru. After the deposition of Ru at Pt, the catalytic activity of Pt is clearly increased. The relationship between current density of methanol oxidation at PtxRuy electrodes and Ru coverages displays a volcano curve. The Pt61Ru39has the best catalytic activity towards MOR. In high Ru coverages, which the coverage exceeds39%, the CO can adsorb at Ru atom which leads to decrease of catalytic activity of PtxRuy electrodes. In low Ru coverages, the interaction between Ru and Pt promotes the methanol oxidation reaction and increase the density of CO at Pt. The methanol oxidation reaction at Pt61Ru39electrode under series of different constant potentials (0.3V,0.4V,0.5V and0.6V) indicates that the contribution of methanol dehydrogenation to CO and CO oxidation in totle reaction current displays clear potential effect. Comparing methanol oxidation reation at Pt and Pt61Ru39electrodes, it can be found that the enhancement of Ru to Pt catalytic activity is clearly stronger in lower potentials than that in higher potentials.
引文
(1)Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells-Fundamentals and Applications. Fuel Cells 2001,1,5-39.
    (2)田玫,孙.,魏英智燃料电池发展的历史燃料电池发展的历史.化学与粘合1995,4,224-226.
    (3)Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm, R. J.; Britz, P.; Brijoux, W.; Bonnemann, H. Electrocatalytic activity of PtRu alloy colloids for CO and CO/H-2 electrooxidation:Stripping voltammetry and rotating disk measurements. Langmuir 1997,13, 2591-2595.
    (4)Schmidt, T. J.; Jusys, Z.; Gasteiger, H. A.; Behm, R. J.; Endruschat, U.; Boennemann, H. On the CO tolerance of novel colloidal PdAu/carbon electrocatalysts. Journal of Electroanalytical Chemistry 2001,501,132-140.
    (5)刘风君高效环保的燃料电池发电系统及其应用.祝械工业报2005,10.
    (6)衣宝廉燃料电池的原理、技术状态与展望.电池工业2003,8,16-22.
    (7)衣宝廉燃料电池一高效、环境友好的发电方式,北京,化工出版社.
    (8)W. Vielstich, A. L., and H. Gasteiger eds., Handbook of Fuel Cells:Fundamentals, Technology, Applications,2003.
    (9)Kamarudin, S. K.; Daud, W. R. W.; Ho, S. L.; Hasran, U. A. Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). Journal of Power Sources 2007, 163,743-754.
    (10)Wasmus, S.; Kiiver, A. Methanol oxidation and direct methanol fuel cells:a selective review. Journal of Electroanalytical Chemistry 1999,461,14-31.
    (11)衣宝廉燃料电池:原理·技术·应用,化学工业出版社,北京.2003.
    (12)杨宇,肖.燃料电池汽车产业的新能源发展战略研究.资源与产业2010,12,17-20.
    (13)Schultz, T.; Zhou, S.; Sundmacher, K. Current Status of and Recent Developments in the Direct Methanol Fuel Cell. Chemical Engineering & Technology 2001,24,1223-1233.
    (14)Adamson, K.-A.; Pearson, P. Hydrogen and methanol:a comparison of safety, economics, efficiencies and emissions. Journal of Power Sources 2000,86,548-555.
    (15)Ren, X. M.; Wilson, M. S.; Gottesfeld, S. High performance direct methanol polymer electrolyte fuel cells. Journal of the Electrochemical Society 1996,143, L12-L15.
    (16)Arico, A. S.; Srinivasan, S.; Antonucci, V. DMFCs:From Fundamental Aspects to Technology Development. Fuel Cells 2001,1,133-161.
    (17)Hamnett, A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today 1997,38,445-457.
    (18)Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources 2006,155,95-110.
    (19)田昭武电化学研究方法,科学出版社.1984.
    (20)周伟舫电化学测量,上海科学技术出版社.1985.
    (21)查全性电极过程动力学,科学出版社.1987.
    (22)Kuwana, T.; Darlington, R. K.; Leedy, D. W. Electrochemical Studies Using Conducting Glass Indicator Electrodes. Analytical Chemistry 1964,36,2023-2025.
    (23)Muller, R. H. eds. Vol.9 in Advances in electrochemistry and electrochemical engineering, New York, Wiley-Interscience.1973.
    (24)T. Kuwana, N. W. Vol.7 in Electroanalytical Chemistry, New York, Narcek Dekker. 1974.
    (25)Feinleib, J. Electroreflectance in metals. Physical Review Letters 1966,16,1200-&.
    (26)Fleischm.M; Hendra, P. J.; McQuilla.Aj Raman-spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974,26,163-166.
    (27)Bewick, A.; Kunimatsu, K.; Stanley Pons, B. Infra red spectroscopy of the electrode-electrolyte interphase. Electrochimica Acta 1980,25,465-468.
    (28)Davidson, T.; Pons, B. S.; Bewick, A.; Schmidt, P. P. Vibrational spectroscopy of the electrode/electrolyte interface. Use of fourier transform infrared spectroscopy. Journal of Electroanalytical Chemistry and Inter facial Electrochemistry 1981,125,237-241.
    (29)Abmna, H. D. eds., Electrochemical Interface:Modem technique for in-situ Interface Characterization, VCH, NewYork.1991.
    (30)Adzic, R.; Yeager, E.; Cahan, B. D. Optical and Electrochemical Studies of Underpotential Deposition of Lead on Gold Evaporated and Single-Crystals Electrodes. Journal of the Electrochemical Society 1974,121,474-484.
    (31)林仲华,叶思宁,黄明东电化学中的光学方法,科学出版社.1990.
    (32)J. Augustynski, L. B. in:Modern Aspects of Electrochemistry, B. E. Conway and J. O'M. Brockris, eds., Vol.13, pp.251-360, Plenum Press, New York.1979.
    (33)孙世刚,陈.,陈宝珠固/液界面电化学体系与超商真空电子能谱双向转移及研究体系的建立及其对Pt/Bi电催化表面的研究.高等学校化学学报1995,16,952-954.
    (34)Tian, Z. Q.; Ren, B.; Mao, B. W. Extending surface Raman spectroscopy to transition metal surfaces for practical applications.1. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces. Journal of Physical Chemistry B 1997,101,1338-1346.
    (35)Miranda, P. B.; Shen, Y. R. Liquid interfaces:A study by sum-frequency vibrational spectroscopy. Journal of Physical Chemistry B 1999,103,3292-3307.
    (36)Pozniak, B.; Mo, Y.; Scherson, D. A. The electrochemical oxidation of carbon monoxide adsorbed on Pt(111) in aqueous electrolytes as monitored by in situ potential step-second harmonic generation. Faraday Discussions 2002,121,313-322.
    (37)Le Rille, A.; Tadjeddine, A. In situ visible-infrared sum and difference frequency generation at the electrochemical interface. Journal of Electroanalytical Chemistry 1999,467, 238-248.
    (38)Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Kinetics and Mechanism of the Electrooxidation of Formic Acid-Spectroelectrochemical Studies in a Flow Cell. Angewandte Chemie International Edition 2006,45,981-985.
    (39)Miki, A.; Ye, S.; Osawa, M. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chemical Communications 2002,1500-1501.
    (40)Chen, Y. X.; Miki, A.; Ye, S.; Sakai, H.; Osawa, M. Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode. Journal of the American Chemical Society 2003, 125,3680-3681.
    (41)Cohen, J. L.; Volpe, D. J.; Abruna, H. D. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Physical Chemistry Chemical Physics 2007,9,49-77.
    (42)Lamy, C.; Leger, J. M.; Clavilier, J. Structural Effects in the Electrooxidation of Methanol in Alkaline-Medium-Comparison of Platinum Single-Crystal and Polycrystalline Electrodes. Journal of Electroanalytical Chemistry 1982,135,321-328.
    (43)Herrero, E.; Franaszczuk, K.; Wieckowski, A. Electrochemistry of methanol at low index crystal planes of platinum:An integrated voltammetric and chronoamperometric study. Journal of Physical Chemistry 1994,98,5074-5083.
    (44)Beden B, L. C., Bewick A, Kunimatsu K Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed carbonyl species. JElectroanal Chem 1981,121, 343-347.
    (45)Nichols RJ, B. A. SNIFTIRS with A Flow Cell:the Identification of the Reaction Intermediates in Methanol Oxidation at Platinum Anodes. Electrochim Acta 1988,33,1691-1694.
    (46)Corrigan D S, W. M. J. Mechanisms of formic acid, methanol, and carbon monoxide electrooxidation at platinum as examined by single potential alteration infrared spectroscopy. J Electroanal Chem 1988,241,143-162.
    (47)Sun S G, C. J. Electrochemical study on the poisoning intermediate formed from methanol dissociation at low index and stepped platinum surfaces. J Electroanal Chem 1987,236, 95-112.
    (48)Okamoto, H.; Kon, W.; Mukouyama, Y. Five current peaks in voltammograms for oxidations of formic acid, formaldehyde, and methanol on platinum. Journal of Physical Chemistry B 2005,109,15659-15666.
    (49)Willsau, J.; Heitbaum, J. Analysis of adsorbed intermediates and determination of surface potential shifts by dems. Electrochimica Acta 1986,31,943-948.
    (50)Cuesta, A. At Least Three Contiguous Atoms Are Necessary for CO Formation during Methanol Electrooxidation on Platinum. Journal of the American Chemical Society 2006,128, 13332-13333.
    (51)Herrero, E.; Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A. Poison formation reaction from formic acid and methanol on Pt(111) electrodes modified by irreversibly adsorbed Bi and As. Journal of Electroanalytical Chemistry 1993,350,73-88. (52) Iwasita, T.; Vielstich, W. New in-situ IR results on adsorption and oxidation of methanol on platinum in acidic solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1988,250,451-456.
    (53)Chang, S.-C.; Ho, Y.; Weaver, M. J. Applications of real-time infrared spectroscopy to electrocatalysis at bimetallic surfaces:Ⅰ. Electrooxidation of formic acid and methanol on bismuth-modified Pt(111) and Pt(100). Surface Science 1992,265,81-94.
    (54)Vielstich, W.; Xia, X. H. Comments on "Electrochemistry of Methanol at Low Index Crystal Planes of Platinum:An Integrated Voltammetric and Chronoamperometric study". The Journal of Physical Chemistry 1995,99,10421-10422.
    (55)Jusys, Z.; Behm, R. J. Methanol Oxidation on a Carbon-Supported Pt Fuel Cell CatalystA Kinetic and Mechanistic Study by Differential Electrochemical Mass Spectrometry. Journal of Physical Chemistry B 2001,105,10874-10883.
    (56)Wang, H.; Baltruschat, H. DEMS Study on Methanol Oxidation at Poly-and Monocrystalline Platinum Electrodes:The Effect of Anion, Temperature, Surface Structure, Ru Adatom, and Potential. The Journal of Physical Chemistry C 2007, 111,7038-7048.
    (57)Korzeniewski, C.; Childers, C. L. Formaldehyde Yields from Methanol Electrochemical Oxidation on Platinum. Journal of Physical Chemistry B 1998,102,489-492.
    (58)Herrero, E.; Chrzanowski, W.; Wieckowski, A. Dual Path Mechanism in Methanol Electrooxidation on a Platinum Electrode. Journal of Physical Chemistry 1995,99,10423-10424.
    (59)Batista, E. A.; Malpass, G. R. P.; Motheo, A. J.; Iwasita, T. New insight into the pathways of methanol oxidation. Electrochemistry Communications 2003,5,843-846.
    (60)Batista, E. A.; Malpass, G. R. P.; Motheo, A. J.; Iwasita, T. New mechanistic aspects of methanol oxidation. Journal of Electroanalytical Chemistry 2004,571,273-282.
    (61)Kardash, D.; Korzeniewski, C. Temperature Effects on Methanol Dissociative Chemisorption and Water Activation at Polycrystalline Platinum Electrodes. Langmuir 2000,16, 8419-8425.
    (62)Housmans, T. H. M.; Wonders, A. H.; Koper, M. T. M. Structure Sensitivity of Methanol Electrooxidation Pathways on Platinum:An On-Line Electrochemical Mass Spectrometry Study. Journal of Physical Chemistry B 2006,110,10021-10031.
    (63)Franaszczuk, K.; Herrero, E.; Zelenay, P.; Wieckowski, A.; Wang, J.; Masel, R. I. A comparison of electrochemical and gas-phase decomposition of methanol on platinum surfaces. Journal of Physical Chemistry 1992,96,8509-8516.
    (64)Sriramulu, S.; Jarvi, T. D.; Stuve, E. M. Reaction mechanism and dynamics of methanol electrooxidation on platinum(111). Journal of Electroanalytical Chemistry 1999,467,132-142.
    (65)Hartnig, C.; Spohr, E. The role of water in the initial steps of methanol oxidation on Pt(111). Chemical Physics 2005,319,185-191.
    (66)Cao, D.; Lu, G. Q.; Wieckowski, A.; Wasileski, S. A.; Neurock, M. Mechanisms of Methanol Decomposition on Platinum:A Combined Experimental and ab Initio Approach. Journal of Physical Chemistry B 2005,109,11622-11633.
    (67)Kizhakevariam, N.; Stuve, E. M. Promotion and poisoning of the reaction of methanol on clean and modified platinum (100). Surface Science 1993,286,246-260.
    (68)Vielstich, W. in:E. Julio Calvo eds., Interfacial Kinetics and Mass Transport, Vol.2, Wiley-VCH, Weinheim,2003, pp.466-511.
    (69)Markovic, N. M.; Gasteiger, H. A.; Ross Jr, P. N.; Jiang, X.; Villegas, I.; Weaver, M. J. Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces. Electrochimica Acta 1995,40,91-98.
    (70)Gojkovic, S. L.; Vidakovic, T. R.; Durovic, D. R. Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst. Electrochimica Acta 2003,48,3607-3614.
    (71)Iwasita, T. Electrocatalysis of methanol oxidation. Electrochimica Acta 2002,47, 3663-3674.
    (72)Yajima, T.; Uchida, H.; Watanabe, M. In-Situ ATR-FTIR Spectroscopic Study of Electro-oxidation of Methanol and Adsorbed CO at Pt-Ru Alloy. The Journal of Physical Chemistry B 2004,108,2654-2659.
    (73)Alayoglu, S.; Nilekar, A. U; Mavrikakis, M.; Eichhorn, B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nature Materials 2008, 7,333-338.
    (74)Antolini, E. Formation of carbon-supported PtM alloys for low temperature fuel cells:a review. Materials Chemistry and Physics 2003,78,563-573.
    (75)Goodenough, J. B.; Hamnett, A.; Kennedy, B. J.; Manoharan, R.; Weeks, S. A. Methanol oxidation on unsupported and carbon supported Pt+Ru anodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1988,240,133-145.
    (76)Jusys, Z.; Kaiser, J.; Behm, R. J. Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation—:A DEMS study. Electrochimica Acta 2002,47,3693-3706.
    (77)Long, J. W.; Stroud, R. M.; Swider-Lyons, K. E.; Rolison, D. R. How To Make Electrocatalysts More Active for Direct Methanol OxidationAvoid PtRu Bimetallic Alloys! The Journal of Physical Chemistry B 2000,104,9772-9776.
    (78)Wieckowski, A.; Spendelow, J. S.; Babu, P. K. Electrocatalytic oxidation of carbon monoxide and methanol on platinum surfaces decorated with ruthenium. Current Opinion in Solid State& Materials Science 2005,9,37-48.
    (79)Liang, Y.; Zhang, H.; Tian, Z.; Zhu, X.; Wang, X.; Yi, B. Synthesis and Structure-Activity Relationship Exploration of Carbon-Supported PtRuNi Nanocomposite as a CO-Tolerant Electrocatalyst for Proton Exchange Membrane Fuel Cells. The Journal of Physical Chemistry B 2006,110,7828-7834.
    (80)Kim, T. Y.; Kobayashi, K.; Takahashi, M.; Nagai, M. Effect of Sn in Pt-Ru-Sn ternary catalysts for CO/H-2 and methanol electrooxidation. Chemistry Letters 2005,34,798-799.
    (81)Kessler, T.; Luna, A. M. C. Catalytic polyaniline-supported electrodes for application in electrocatalysis. Journal of Solid State Electrochemistry 2003,7,593-598.
    (82)Choi, J. H.; Park, K. W.; Kwon, B. K.; Sung, Y. E. Methanol oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni anode electrocatalysts at different temperatures for DMFCs. Journal of the Electrochemical Society 2003,150, A973-A978.
    (83)Gonzalez, M. J.; Hable, C. T.; Wrighton, M. S. Electrocatalytic Oxidation of Small Carbohydrate Fuels at Pt-Sn Modified Electrodes. The Journal of Physical Chemistry B 1998,102, 9881-9890.
    (84)Wang, K.; Gasteiger, H. A.; Markovic, N. M.; Ross Jr, P. N. On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. Electrochimica Acta 1996,41,2587-2593.
    (85)Shim, J.; Lee, C.-R.; Lee, H.-K.; Lee, J.-S.; Cairns, E. J. Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell. Journal of Power Sources 2001,102,172-177.
    (86)Strasser, P.; Fan, Q.; Devenney, M.; Weinberg, W. H.; Liu, P.; N(?)rskov, J. K. High Throughput Experimental and Theoretical Predictive Screening of Materials-A Comparative Study of Search Strategies for New Fuel Cell Anode Catalysts. The Journal of Physical Chemistry B 2003,107,11013-11021.
    (87)Yang, L. X.; Bock, C.; MacDougall, B.; Park, J. The role of the WOx ad-component to Pt and PtRu catalysts in the electrochemical CH3OH oxidation reaction. Journal of Applied Electrochemistry 2004,34,427-438.
    (88)王兆民,王奎雄,吴宗凡红外光谱学,北京,兵器工业出版社.1995.
    (89)Smart, B. H. Infrared spectroscopy:fundamentals and applications, New York:John Wiley&Sons.2004.
    (90)刘岩,刘顺航,王俊全,孙素琴红外光谱应用新进展及其与色谱指纹图谱对比分析.光谱学与光谱分析2007,27,1093-1097.
    (91)刘珂,刘保国,张运森近红外光谱分析技术及应用研究.河南工业大学学报2009,30,88-93.
    (92)张叔良红外光谱分析与新技术,中国医药科技出版社,北京.1993.
    (93)Marboutin, L.; Desbois, A.; Berthomieu, C. Low-Frequency Heme, Iron-Ligand, and Ligand Modes of Imidazole and Imidazolate Complexes of Iron Protoporphyrin and Microperoxidase in Aqueous Solution. An Analysis by Far-Infrared Difference Spectroscopy. The Journal of Physical Chemistry B 2009,113,4492-4499.
    (94)翁诗甫傅里叶变换红外光谱仪,化学工业出版社.2005.
    (95)吴瑾光近代傅立叶变换红外光谱技术及应用,科学技术文献出版社,北京.1994.
    (96)Peter R Griffiths, J. A. d. H. Fourier Transform Infrared Spectrometry, John Wiley & Sons.1986.
    (97)Hartstein, A.; Kirtley, J. R.; Tsang, J. C. Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers. Physical Review Letters 1980,45,201-204.
    (98)Osawa, M. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bulletin of the Chemical Society of Japan 1997,70, 2861-2880.
    (99)Hatta, A.; Ohshima, T.; Suetaka, W. Observation of the enhanced infrared-absorption of para-nitrobenzoate on Ag island films with an atr technique. Applied Physics a-Materials Science & Processing 1982,29,71-75.
    (100)Hatta, A.; Suzuki, Y.; Suetaka, W. Infrared-absorption enhancement of monolayer species on thin evaporated ag films by use of a kretschmann configuration-evidence for 2 types of enhanced surface electric-fields. Applied Physics a-Materials Science & Processing 1984,35, 135-140.
    (101)Chen, Y. X.; Ye, S.; Heinen, M.; Jusys, Z.; Osawa, M.; Behm, R. J. Application of In-situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy for the Understanding of Complex Reaction Mechanism and Kinetics:Formic Acid Oxidation on a Pt Film Electrode at Elevated Temperatures. Journal of Physical Chemistry B 2006,110,9534-9544.
    (102)Liu, S. X.; Liao, L. W.; Tao, Q.; Chen, Y. X.; Ye, S. The kinetics of CO pathway in methanol oxidation at Pt electrodes, a quantitative study by ATR-FTIR spectroscopy. Physical Chemistry Chemical Physics 2011,13,9725-9735.
    (103)Osawa, M.; Ataka, K.; Yoshii, K.; Nishikawa, Y. Surface-enhanced infrared-spectroscopy-the origin of the absorption enhancement and band selection rule in the infrared-spectra of molecules adsorbed on fine metal particles. Applied Spectroscopy 1993,47, 1497-1502.
    (104)Krauth, O.; Fahsold, G; Pucci, A. Asymmetric line shapes and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001). Journal of Chemical Physics 1999,110,3113-3117.
    (105)Bjerke, A. E.; Griffiths, P. R.; Theiss, W. Surface-enhanced infrared absorption of CO on platinized platinum. Analytical Chemistry 1999,71,1967-1974.
    (106)Yoshidome, T.; Inoue, T; Kamata, S. Intensity enhancement of the infrared transmission spectra of p-nitrobenzoic acid by the presence of the Pb films. Chemistry Letters 1997,533-534.
    (107)Sato, S.; Kamada, K.; Osawa, M. Surface-enhanced IR absorption (SEIRA) of CO adsorbed on small Pt particles deposited on an island Au film. Chemistry Letters 1999,15-16.
    (108)Watanabe, M.; Zhu, Y. M.; Uchida, H. Oxidation of CO on a Pt-Fe alloy electrode studied by surface enhanced infrared reflection-absorption spectroscopy. Journal of Physical Chemistry B 2000,104,1762-1768.
    (109)Dumas, P.; Tobin, R. G; Richards, P. L. Study of adsorption states and interactions of co on evaporated noble-metal surfaces by infrared-absorption spectroscopy.1. silver. Surface Science 1986,171,555-578.
    (110)Dumas, P.; Tobin, R. G.; Richards, P. L. Study of adsorption states and interactions of co on evaporated noble-metal surfaces by infrared-absorption spectroscopy.2. gold and copper. Surface Science 1986,171,579-599.
    (111)Badilescu, S.; Ashrit, P. V.; Truong, V. V. Enhanced infrared attenuated-total-reflection spectra of p-nitrobenzoic acid with ag films. Applied Physics Letters 1988,52,1551-1553.
    (112)Badilescu, S.; Ashrit, P. V.; Truong, V. V.; Badilescu, Ⅱ Enhanced infrared atr spectra of o-nitrobenzoic, m-nitrobenzoic, and p-nitrobenzoic acid with ag films. Applied Spectroscopy 1989,43,549-552.
    (113)Merklin, G. T.; Griffiths, P. R. Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver films. Langmuir 1997,13,6159-6163.
    (114)Yan, Y. G.; Li, Q. X.; Huo, S. J.; Ma, M.; Cai, W. B.; Osawa, M. Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces. Journal of Physical Chemistry B 2005,109,7900-7906.
    (115)Yan, Y. G.; Li, Q. X.; Huo, S. J.; Sun, Y. N.; Cai, W. B. Surface-enhanced IR absorption effect of Pt and Ru nanofilms fabricated by all-wet processes. Acta Chimica Sinica 2005,63,545-549.
    (116)徐诺硅基底上的化学镀铂,中国科学技术大学学士论文.2008.
    (117)Denuault G, S. M., Williams K J in Handbook of Electrochemistry; C. G. Z., Ed.; Elsevier:Amsterdam,2007, p 429-470.
    (118)Gosser, D. K. Cyclic Voltammetry:Simulation and Analysis of Reaction Mechanisms, New York:VCH Publishers, Inc.,1993.
    (119)Gale, R. J. Rd. Spectroelectrochemistry. Theory and Practice; Plenum Press:New York,1988.
    (120)Agranovich, V. M., Mills, D. L. eds. Surface Polaritons. Electromagnetic Waves at Surfaces and Interfaces; Modern Problems in Condensed Matter Sciences; North-Holland Publishing Co.:New York,1982.
    (121)Brooksby, P. A.; Fawcett, W. R. Determination of the Electric Field Intensities in a Mid-Infrared Spectroelectrochemical Cell Using Attenuated Total Reflection Spectroscopy with the Otto Optical Configuration. Analytical Chemistry 2001,73,1155-1160.
    (122)Breiter, M. W. Comparative voltammetric study of methanol oxidation and adsorption on noble metal electrodes in perchloric acid solutions. Electrochimica Acta 1962,8, 973-983.
    (123)Bagotzky, V. S.; Vassilyev, Y. B. Mechanism of electro-oxidation of methanol on the platinum electrode. Electrochimica Acta 1967,12,1323-1343.
    (124)Shimazu, K.; Kita, H. Electrochemical oxidation of methanol and its related substances.2.. Denki Kagaku 1985,53,652.
    (125)Inada, R.; Shimazu, K.; Kita, H. Analysis of time-dependent kinetics for the oxidation of methanol on a platinum electrode and reaction mechanism. Journal of Electroanalytical Chemistry 1990,277,315-326.
    (126)T. D. Jarvi, E. M. S. in Electrocatalysis, ch.3, ed. J. Lipkowski and P. N. Ross, John Wiley and Sons Ltd., NewYork.1998.
    (127)Lin, W. F.; Zei, M. S.; Eiswirth, M.; Ertl, G.; Iwasita, T.; Vielstich, W. Electrocatalytic Activity of Ru-Modified Pt(111) Electrodes toward CO Oxidation. Journal of Physical Chemistry B 1999,103,6968-6977.
    (128)Hamnett, A. in Interfacial Electrochemistry:Theory:Experiment, and Applications, ch.4, ed. A. Wieckowski, Marcel Dekker. Inc., New York.1999.
    (129)Kardash, D.; Huang, J.; Korzeniewski, C. Surface Electrochemistry of CO and Methanol at 25-75℃ Probed in Situ by Infrared Spectroscopy. Langmuir 1999,16,2019-2023.
    (130)Green, C. L.; Kucernak, A. Determination of the Platinum and Ruthenium Surface Areas in Platinum-Ruthenium Electrocatalysts by Underpotential Deposition of Copper.2. Effect of Surface Composition on Activity. Journal of Physical Chemistry B 2002,106,11446-11456.
    (131)Markovic, N. M.; Ross Jr, P. N. Surface science studies of model fuel cell electrocatalysts. Surface Science Reports 2002,45,117-229.
    (132)C. H. Hamann, A. H., W. Vielstich, T. Iwasita Electrochemistry, Wiley-VCH Verlag GmbH.2007.
    (133)El-Shafei, A. A.; Hoyer, R.; Kibler, L. A.; Kolb, D. M. Methanol Oxidation on Ru-Modified Preferentially Oriented Pt Electrodes in Acidic Medium. Journal of The Electrochemical Society 2004,151, F141-F145.
    (134)Jusys, Z.; Kaiser, J.; Behm, R. J. Methanol Electrooxidation over Pt/C Fuel Cell Catalysts:Dependence of Product Yields on Catalyst Loading. Langmuir 2003,19,6759-6769.
    (135)Ferrin, P.; Nilekar, A. U.; Greeley, J.; Mavrikakis, M.; Rossmeisl, J. Reactivity descriptors for direct methanol fuel cell anode catalysts. Surface Science 2008,602,3424-3431.
    (136)Ferrin, P.; Mavrikakis, M. Structure Sensitivity of Methanol Electrooxidation on Transition Metals. Journal of the American Chemical Society 2009,131,14381-14389.
    (137)Kunimatsu, K.; Hanawa, H.; Uchida, H.; Watanabe, M. Role of adsorbed species in methanol oxidation on Pt studied by ATR-FTIRAS combined with linear potential sweep voltammetry. Journal of Electroanalytical Chemistry 2009,632,109-119.
    (138)Greeley, J.; Mavrikakis, M. A First-Principles Study of Methanol Decomposition on Pt(111). Journal of the American Chemical Society 2002,124,7193-7201.
    (139)Lu, G. Q.; Chrzanowski, W.; Wieckowski, A. Catalytic Methanol Decomposition Pathways on a Platinum Electrode. Journal of Physical Chemistry B 2000,104,5566-5572.
    (140)Housmans, T. H. M.; Koper, M. T. M. Methanol Oxidation on Stepped Pt[n(111)× (110)] Electrodes:A Chronoamperometric Study. Journal of Physical Chemistry B 2003,107, 8557-8567.
    (141)N(?)rskov, J. K.; Bligaard, T.; Logadottir, A.; Bahn, S.; Hansen, L. B.; Boilinger, M.; Bengaard, H.; Hammer, B.; Sljivancanin, Z.; Mavrikakis, M.; Xu, Y.; Dahl, S.; Jacobsen, C. J. H. Universality in Heterogeneous Catalysis. Journal of Catalysis 2002,209,275-278.
    (142)Iwasita, T.; Nart, F. C. In situ Infrared Spectroscopy at Electrochemical Interfaces. Progress in Surface Science 1997,55,271-340.
    (143)Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Bridge-Bonded Formate:Active Intermediate or Spectator Species in Formic Acid Oxidation on a Pt Film Electrode?t-Langmuir 2006,22,10399-10408.
    (144)Heinen, M.; Chen, Y. X.; Jusys, Z.; Behm, R. J. Room temperature COad desorption/exchange kinetics on pt electrodes-A combined in situ IR and mass spectrometry study. ChemPhysChem 2007,8,2484-2489.
    (145)Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Potential-induced COad island formation on a platinum thin-film electrode in the H-upd potential region. Journal of Physical Chemistry C 2007,111,435-438.
    (146)Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Kinetic isotope effects in complex reaction networks:Formic acid electro-oxidation. ChemPhysChem 2007,8,380-385.
    (147)Liao, L. W.; Liu, S. X.; Tao, Q.; Geng, B.; Zhang, P.; Wang, C. M.; Chen, Y. X.; Ye, S. A method for kinetic study of methanol oxidation at Pt electrodes by electrochemical in situ infrared spectroscopy. Journal of Electroanalytical Chemistry 2011,650,233-240.
    (148)Conway, B. E.; Angerstein-Kozlowska, H. The electrochemical study of multiple-state adsorption in monolayers. Accounts of Chemical Research 1981,14,49-56.
    (149)F. C. Nart, W. V. in Handbook of Fuel Cells-Fundamentals, Technology and Applications:Electrocatalysis, ed. W. Vielstich, A. Lamm and H. A. Gasteiger, John Wiley and Sons Ltd., England,2003, vol.2.
    (150)Si-Chung, C.; Weaver, M. J. Coverage-Dependent Dipole Coupling for Carbon Monoxide Adsorbed at Ordered Platinum(111)-Aqueous Interfaces:Structural and Electrochemical Implications. Journal of Chemical Physics 1990,92,4582-4594.
    (151)Roth, J. D.; Chang, S.-C.; Weaver, M. J. Infrared spectroscopy of carbon monoxide electrosorption on platinum over wide potential ranges. Delineation of site occupancy changes and nonlinear band frequency-potential shifts. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1990,288,285-292.
    (152)Kunimatsu, K. In-Situ Infrared Spectroscopic Studies of Methanol Electrooxidation on Pt. Berichte der Bunsengesellschaft fur Physikalische Chemie 1990,94.
    (153)Heinen, M.; Chen, Y. X.; Jusys, Z.; Behm, R. J. In situ ATR-FTIRS coupled with on-line DEMS under controlled mass transport conditions--A novel tool for electrocatalytic reaction studies. ElectrochimicaActa 2007,52,5634-5643.
    (154)Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; van Santen, R. A. Mechanism and kinetics of the electrochemical CO adlayer oxidation on Pt(111). Journal of Electroanalytical Chemistry 2002,524-525,242-251.
    (155)Bagotzky, V. S.; Vassiliev, Y. B.; Khazova, O. A. Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977,81, 229-238.
    (156)Wang, H.; Loffler, T.; Baltruschat, H. Formation of intermediates during methanol oxidation:A quantitative DEMS study. Journal of Applied Electrochemistry 2001,31,759-765.
    (157)Goda, A. M.; Neurock, M.; Barteau, M. A.; Chen, J. G. Effect of hydrocarbon chain length and cyclization on the adsorption strength of unsaturated hydrocarbons on Pt/3d bimetallic surfaces. Surface Science 2008,602,2513-2523.
    (158)Zhang, Y; Tong, Y; Lu, L.; Osawa, M.; Ye, S. DME Dissociation Reaction on Platinum Electrode Surface:A Quantitative Kinetic Analysis by In Situ IR Spectroscopy. Journal of the Electrochemical Society 2010,157, F10-F15.
    (159)Kim, Y. G; Yau, S. L.; Itaya, K. Direct Observation of Complexation of Alkali Cations on Cyanide-Modified Pt(111) by Scanning Tunneling Microscopy. Journal of the American Chemical Society 1996,118,393-400.
    (160)Stuhlmann, C.; Villegas, L; Weaver, M. J. Scanning Tunneling Microscopy and Infrared Spectroscopy as Combined in situ Probes of Electrochemical Adlayer Structure. Cyanide on Pt(111). Chemical Physics Letters 1994,219,319-324.
    (161)Ford, D. C.; Xu, Y; Mavrikakis, M. Atomic and Molecular Adsorption on Pt(111). Surface Science 2005,587,159-174.
    (162)Koper, M. T. M. Catalysis in Electrochemistry from Fundamentals to Strategies for Fuel Cell Development, edited by Elizabeth Santos and Wolfgang Schmickler, John Wiley & Sons, Inc., Hoboken, New Jersey,2011, (Chapter 7 pp.232-247).
    (163)Cuesta, A. Atomic Ensemble Effects in Electrocatalysis:The Site-Knockout Strategy. ChemPhysChem 2011,12,2375-2385.
    (164)Cuesta, A.; Escudero, M. a.; Lanova, B.; Baltruschat, H. Cyclic Voltammetry, FTIRS, and DEMS Study of the Electrooxidation of Carbon Monoxide, Formic Acid, and Methanol on Cyanide-Modified Pt(111) Electrodes. Langmuir 2009,25,6500-6507.
    (165)Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Markovic, N. M. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nature Chemistry 2010,2,880-885.
    (166)Lennartz, M.; Arenz, M.; Stuhlmann, C.; Wandelt, K. Cyanide Adlayers on Pt(111) in Chloride Containing Electrolytes Studied by in situ, ex situ IRAS and LEED. Surface Science 2000,461,98-106.
    (167)Okabayashi, E. Y.; Okabayashi, T.; Furuya, T.; Tanimoto, M. Millimeter- and. Submillimeter-Wave Spectroscopy of Platinum Monocyanide, PtCN. Chemical Physics Letters 2010,492,25-29.
    (168)Tian, L.; Li, J.-T.; Ye, J.-Y.; Zhen, C.-H.; Sun, S.-G. In situ FTIR Studies of Coadsorption of CN- and CO on Pt(110) Electrode Surface. Journal of Electroanalytical Chemistry 2011,662,137-142.
    (169)Tadjeddine, M.; Flament, J. P.; Tadjeddine, A. Vibrational properties of CN-adsorbed on platinum and silver:Ab initio MCSCF calculations compared with SFG experiments. Journal of Electroanalytical Chemistry 1996,408,237-242.
    (170)Tadjeddine, A.; Peremans, A.; LeRille, A.; Zheng, W. Q.; Tadjeddine, M.; Flament, J. P. Investigation of the Vibrational Properties of CN- on a Pt Electrode by in situ VIS-IR Sum Frequency Generation and Functional Density Calculations. Journal of the Chemical Society, Faraday Transactions 1996,92,3823-3828.
    (171)Huerta, F. J.; Morallon, E.; Vazquez, J. L.; Aldaz, A. Voltammetric and Spectroscopic Characterization of Cyanide Adlayers on Pt(h,k,l) in an Acidic Medium. Surface Science 1998,396,400-410.
    (172)Huerta, F.; Morallon, E.; Quijada, C.; Vazquez, J. L.; Aldaz, A. Spectroelectrochemical Study on CN- Adsorbed at Pt(111) in Sulphuric and Perchloric Media. Electrochimica Acta 1998,44,943-948.
    (173)Ren, B. Surface-Enhanced Raman Study of Cyanide Adsorption at the Platinum Surface. Journal of Physical Chemistry B 2003,107,2752-2758.
    (174)Ample, F.; Clotet, A.; Ricart, J. M. Structure and Bonding Mechanism of Cyanide Adsorbed on Pt(111). Surface Science 2004,558,111-121.
    (175)Ample, F.; Curulla, D.; Fuster, F.; Clotet, A.; Ricart, J. M. Adsorption of CO and CN- on Transition Metal Surfaces:A Comparative Study of the Bonding Mechanism. Surface Science 2002,497,139-154.
    (176)Guyot-Sionnest, P.; Tadjeddine, A. Spectroscopic Investigations of Adsorbates at the Metal-Electrolyte Interface Using Sum Frequency Generation. Chemical Physics Letters 1990,172,341-345.
    (177)Tadjeddine, A.; Guyot-Sionnest, P. Spectroscopic investigation of adsorbed cyanide and thiocyanate on platinum using sum frequency generation. Electrochimica Acta 1991,36, 1849-1854.
    (178)Ren, B.; Li, X. Q.; Wu, D. Y.; Yao, J. L.; Xie, Y; Tian, Z. Q. Orientational Behavior of Cyanide on a Roughened Platinum Surface Investigated by Surface Enhanced Raman Spectroscopy. Chemical Physics Letters 2000,322,561-566.
    (179)Kim, C. S.; Korzeniewski, C. Cyanide Adsorbed as a Monolayer at the Low-Index Surface Planes of Platinum Metal Electrodes:an in situ Study by Infrared Spectroscopy. Journal of Physical Chemistry 1993,97,9784-9787.
    (180)Friedrich, K. A.; Daum, W.; Klunker, C.; Knabben, D.; Stimming, U.; Ibach, H. In-situ Spectroscopy of Cyanide Vibrations on Pt(111) and Pt(110) Electrode Surfaces:Potential Dependencies and the Influence of Surface Disorder. Surface Science 1995,335,315-325.
    (181)Tadjeddine, M.; Flament, J. P.; Le Rille, A.; Tadjeddine, A. SFG Experiment and ab Initio Study of the Chemisorption of CN" on Low-Index Platinum Surfaces. Surface Science 2006, 600,2138-2153.
    (182)Daum, W.; Dederichs, F.; Muller, J. E. Covalent Bonding of CN to the Pt(111) Surface. Physical Review Letters 1998,80,766-769.
    (183)Severson, M. W.; Weaver, M. J. Nanoscale Island Formation during Oxidation of Carbon Monoxide Adlayers at Ordered Electrochemical Interfaces:A Dipole-Coupling Analysis of Coverage-Dependent Infrared Spectra. Langmuir 1998,14,5603-5611.
    (184)Hollins, P.; Pritchard, J. Infrared Studies of Chemisorbed Layers on Single-Crystals. Progress in Surface Science 1985,19,275-350.
    (185)Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Physical Review Letters 1996,77,3865-3868.
    (186)Delley, B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules Journal of Chemical Physics 1990,92,508-517.
    (187)Delley, B. From Molecules to Solids with the DMol(3) Approach. Journal of Chemical Physics 2000,113,7756-7764.
    (188)Chang, S.-C.; Weaver, M. J. Coverage-dependent dipole coupling for carbon monoxide adsorbed at ordered platinum(111)-aqueous interfaces:Structural and electrochemical implications. Journal of Chemical Physics 1990,92,4582-4594.
    (189)Persson, B. N. J.; Ryberg, R. Vibrational Interaction between Molecules Adsorbed on a Metal Surface:The Dipole-Dipole Interaction. Physical Review B 1981,24,6954-6970.
    (190)Persson, B. N. J. Absorption of Phonons by Molecules Adsorbed on Metal Surfaces. Solid State Communications 1979,30,163-166.
    (191)Ashley, K.; Feldheim, D. L.; Parry, D. B.; Samant, M. G.; Philpott, M. R. Infrared Spectroelectrochemical Study of Cyanide Adsorption and Reactions at Platinum Electrodes in Aqueous Perchlorate Electrolyte. Journal of Electroanalytical Chemistry 1994,373,201-209.
    (192)Kunimatsu, K.; Seki, H.; Golden, W. G.; Gordon, J. G.; Philpott, M. R. A Study of the Gold/Cyanide Solution Interface by in situ Polarization-Modulated Fourier Transform Infrared Reflection Absorption Specrroscopy. Langmuir 1988,4,337-341.
    (193)Tadjeddine, A.; Le Rille, A. Adsorption of Cyanide on Gold Single Crystal Investigated by in situ Visible-Infrared Difference Frequency Generation. Electrochimica Acta 1999,45,601-609.
    (194)Thurgood, C. P.; Kirk, D. W.; Foulkes, F. R.; Graydon, W. F. Activation Energies of Anodic Gold Reactions in Aqueous Alkaline Cyanide. Journal of The Electrochemical Society 1981,128,1680-1685.
    (195)Levoguer, C. L.; Nix, R. M. Adsorption and Decomposition of HCN on a Polycrystalline Pt Foil Studied by TPD, MBRS, XPS and FT-RAIRS. Journal of the Chemical Society, Faraday Transactions 1996,92,4799-4807.
    (196)Bard, A. J. Encyclopedia of Electrochemistry of the Elements, edited by Bard, A. J., Marcel Dekker, New York,1976 (Vol. VII, pp.208-209).
    (197)Hagans, P. L.; Guo, X.; Chorkendorff, I.; Winkler, A.; Siddiqui, H.; Yates Jr, J. T. Adsorption and Dissociation of HCN on the Pt(111) and Pt(112) Surfaces. Surface Science 1988, 203,1-16.
    (198)Clavilier, J.; Albalat, R.; Gomez, R.; Orts, J. M.; Feliu, J. M.; Aldaz, A. Study of the Charge Displacement at Constant Potential during CO Adsorption on Pt(111) and Pt(111) Electrodes in Contact with a Perchloric Acid Solution. Journal of Electroanalytical Chemistry 1992,330,489-497.
    (199)Clavilier, J.; Albalat, R.; Gomez, R.; Orts, J. M.; Feliu, J. M. Displacement of Adsorbed Iodine on Platinum Single-Crystal Electrodes by Irreversible Adsorption of CO at Controlled Potential. Journal of Electroanalytical Chemistry 1993,360,325-335.
    (200)Feliu, J. M.; Orts, J. M.; Gomez, R.; Aldaz, A.; Clavilier, J. New Information on the Unusual Adsorption States of Pt(111) in Sulphuric Acid Solutions from Potentiostatic Adsorbate Replacement by CO. Journal of Electroanalytical Chemistry 1994,372,265-268.
    (201)Cuesta, A.; del Carmen Perez, M.; Rincon, A.; Gutierrez, C. Adsorption Isotherm of CO on Pt(111) Electrodes. ChemPhysChem 2006,7,2346-2351.
    (202)Zhang, B.; Li, J. F.; Zhong, Q. L.; Ren, B.; Tian, Z. Q.; Zou, S. Z. Electrochemical and surfaced-enhanced Raman spectroscopic investigation of CO and SCN- adsorbed on Au-core-Pt-shell nanoparticles supported on GC electrodes. Langmuir 2005,21,7449-7455.
    (203)Iwasita, T.; Xia, X. Adsorption of water at Pt(111) electrode in HC1O4 solutions. The potential of zero charge. Journal of Electroanalytical Chemistry 1996,411,95-102.
    (204)Zhang, P.; Cai, J.; Chen, Y.-X.; Tang, Z.-Q.; Chen, D.; Yang, J.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q. Potential-Dependent Chemisorption of Carbon Monoxide at a Gold Core-Platinum Shell Nanoparticle Electrode:A Combined Study by Electrochemical in Situ Surface-Enhanced Raman Spectroscopy and Density Functional Theory. Journal of Physical Chemistry C 2010,114, 403-411.
    (205)Tang, C.; Zou, S. Z.; Chang, S. C.; Weaver, M. J. Coadsorbate Vibrational Interactions within Mixed Carbon Monoxide-Nitric Oxide Adlayers on Ordered Low-Index Platinum-Group Electrodes. Journal of Electroanalytical Chemistry 1999,467,92-104.
    (206)Tang, C; Zou, S. Z.; Severson, M. W.; Weaver, M. J. Infrared Spectroscopy of Mixed Nitric-Oxide-Carbon-Monoxide Adlayers on Ordered Iridium(111) in Aqueous Solution:A Model Study of Coadsorbate Vibrational Interactions. Journal of Physical Chemistry B 1998,102, 8546-8556.
    (207)Zhang, P.; Chen, Y.-X.; Cai, J.; Liang, S.-Z.; Li, J.-F.; Wang, A.; Ren, B.; Tian, Z.-Q. An Electrochemical in Situ Surface-Enhanced Raman Spectroscopic Study of Carbon Monoxide Chemisorption at a Gold Core-Platinum Shell Nanoparticle Electrode with a Flow Cell. Journal of Physical Chemistry C 2009,113,17518-17526.
    (208)Geng, B.; Liu, S. X.; Cai, J.; Liang, S. Z.; Chen, Y. X. The Mechanism and Kinetics of Cyanide-Assisted Carbon Monoxide Desorption from Pt Electrodes:An Infrared Spectroscopic Study. Journal of Physical Chemistry C 2009,113,10326-10328.
    (209)Liu Shao Xiong, K. J., Geng Bin, Tao Qian, Chen YanXia The mechanism of room temperature CO desorption from Pt electrode. Scientia Sinica Chimica 2011,41,1582-1590.
    (210)Weaver, M. J.; Tang, C.; Zou, S. Z.; Severson, M. W. Direct Observation of Infrared Band Intensity Transfer Between Coadsorbates Having Widely Separated Oscillator Frequencies:Intermixed NO/CO Adlayers on Ordered Iridium Electrodes. Journal of Chemical Physics 1998,109,4135-4138.
    (211)Heinen, M.; Chen, Y.-X.; Jusys, Z.; Behm, R. J. Room Temperature COad Desorption/Exchange Kinetics on Pt Electrodes-A Combined In Situ IR and Mass Spectrometry Study. ChemPhysChem 2007,8,2484-2489.
    (212)Barth, J. V. Transport of Adsorbates at Metal Surfaces:from Thermal Migration to Hot Precursors. Surface Science Reports 2000,40,75-149.
    (213)A. J. Bard, L. R. F. Electrochemical Methods:Fundamentals and Applications,2nd Edition, Wiley-VCH Verlag GmbH.2000.
    (214)Richard C. Alkire, D. M. K., Jacek Lipkowski, Philip N. Ross Advances in Electrochemical Science and Engineering:Diffraction and Spectroscopic Methods in Electrochemistry, WILEY-VCH Verlag GmbH & Co. KGaA 2006
    (215)Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-enhanced Raman scattering:From noble to transition metals and from rough surfaces to ordered nanostructures. Journal of Physical Chemistry B 2002,106,9463-9483.
    (216)Wolter, O.; Heitbaum, J. Differential Electrochemical Mass Spectroscopy (DEMS)-a New Method for the Study of Electrode Processes. Berichte der Bunsengesellschaft fur Physikalische Chemie 1984,88,2-6.
    (217)B. Bittins-Cattaneo, E. C., P. Koenishoven, W. Vielstich Electroanalytical Chemistry, a Series of Advances, A. J. Bard Ed., Vol. XVII. Marcel Dekker:New York,1991; pp 181-220.
    (218)Tatibouet, J. M. Methanol oxidation as a catalytic surface probe. Applied Catalysis A:General 1997,148,213-252.
    (219)Vielstich, W. Electrochemical energy conversion-Methanol fuel cell as example. Journal of the Brazilian Chemical Society 2003,14,503-509.
    (220)Petrii, O. A. Pt-Ru electrocatalysts for fuel cells:a representative review. Journal of Solid State Electrochemistry 2008,12,609-642.
    (221)Chuan-Jian, Z.; Jin, L.; Njoki, P. N.; Mott, D.; Wanjala, B.; Loukrakpam, R.; Lim, S.; Lingyan, W.; Bin, F.; Zhichuan, X. Fuel cell technology:nano-engineered multimetallic catalysts. Energy & Environmental Science 2008,1,454-466.
    (222)Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C.; Liao, J.; Lu, T.; Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy & Environmental Science 2011,4, 2736-2753.
    (223)Christoffersen, E.; Liu, P.; Ruban, A.; Skriver, H. L.; Norskov, J. K. Anode materials for low-temperature fuel cells:A density functional theory study. Journal of Catalysis 2001,199,123-131.
    (224)Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms:Part Ⅱ. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1975,60,267-273.
    (225)Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. Temperature-Dependent Methanol Electrooxidation on Well-Characterized Pt-Ru Alloys. Journal of the Electrochemical Society 1994,141,1795-1803.
    (226)Chrzanowski, W.; Wieckowski, A. Surface Structure Effects in Platinum/Ruthenium Methanol Oxidation Electrocatalysis. Langmuir 1998,14,1967-1970.
    (227)Kabbabi, A.; Faure, R.; Durand, R.; Beden, B.; Hahn, F.; Leger, J. M.; Lamy, C. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes. Journal of Electroanalytical Chemistry 1998,444, 41-53.
    (228)Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. Journal of Physical Chemistry 1993,97, 12020-12029.
    (229)Stamenkovic, V. R.; Arenz, M.; Lucas, C. A.; Gallagher, M. E.; Ross, P. N.; Markovic, N. M. Surface Chemistry on Bimetallic Alloy Surfaces:Adsorption of Anions and Oxidation of CO on Pt3Sn(111). Journal of the American Chemical Society 2003,125,2736-2745.
    (230)Grgur, B. N.; Zhuang, G.; Markovic, N. M.; Ross, P. N. Electrooxidation of H2/CO Mixtures on a Well-Characterized Pt75Mo25 Alloy Surface. Journal of Physical Chemistry B 1997, 101,3910-3913.
    (231)Lamy.C, L. J., Srinivasan.S Modern Aspects of Electrochemistry, Vol.34 (Bockris.JOM, Conway.BE, and White.RE, eds.), Plenum Press, New-York,2001, p.53.
    (232)Xia, X. H.; Iwasita, T.; Ge, F.; Vielstich, W. Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum. Electrochimica Acta 1996,41, 711-718.
    (233)Ren, X.; Zelenay, P.; Thomas, S.; Davey, J.; Gottesfeld, S. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. Journal of Power Sources 2000,86, 111-116.
    (234)Aramata, A.; Toyoshima, I.; Enyo, M. Study of methanol electrooxidation on Rh Sn oxide, PtSn oxide, and IrSn oxide in comparison with that on the Pt metals. Electrochimica Acta 1992,37,1317-1320.
    (235)Neto, A. O.; Perez, J.; Napporn, W. T.; Ticianelli, E. A.; Gonzalez, E. R. Electrocatalytic oxidation of methanol:Study with Pt:Mo dispersed catalysts. Journal of the Brazilian Chemical Society 2000,11,39-43.
    (236)Johnston, C. M.; Strbac, S.; Lewera, A.; Sibert, E.; Wieckowski, A. Characterization and Methanol Electrooxidation Studies of Pt(111)/Os Surfaces Prepared by Spontaneous Deposition. Langmuir 2006,22,8229-8240.
    (237)Lei, H.-W.; Suh, S.; Gurau, B.; Workie, B.; Liu, R.; Smotkin, E. S. Deuterium isotope analysis of methanol oxidation on mixed metal anode catalysts. Electrochimica Acta 2002, 47,2913-2919.
    (238)Frelink, T.; Visscher, W.; van Veen, J. A. R. On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surface Science 1995,335,353-360.
    (239)Samjeske, G.; Xiao, X. Y.; Baltruschat, H. Ru decoration of stepped Pt single crystals and the role of the terrace width on the electrocatalytic CO oxidation. Langmuir 2002,18, 4659-4666.
    (240)Murthy, A.; Manthiram, A. Direct kinetic evidence for the electronic effect of ruthenium in PtRu on the dissociative adsorption of methanol. Electrochemistry Communications 2011,13,310-313.
    (241)Lu, C.; Rice, C.; Masel, R. I.; Babu, P. K.; Waszczuk, P.; Kim, H. S.; Oldfield, E.; Wieckowski, A. UHV, electrochemical NMR, and electrochemical studies of Platinum/Ruthenium fuel cell catalysts. Journal of Physical Chemistry B 2002,106,9581-9589.
    (242)Davies, J. C.; Hayden, B. E.; Pegg, D. J. The modification of Pt(110) by ruthenium: CO adsorption and electro-oxidation. Surface Science 2000,467,118-130.
    (243)Roth, C.; Benker, N.; Buhrmester, T.; Mazurek, M.; Loster, M.; Fuess, H.; Koningsberger, D. C.; Ramaker, D. E. Determination of OH and CO Coverage and Adsorption Sites on PtRu Electrodes in an Operating PEM Fuel Cell. Journal of the American Chemical Society 2005,127,14607-14615.
    (244)Lei, T.; Zei, M. S.; Ertl, G. Electrocatalytic oxidation of CO on Pt-modified Ru(0001) electrodes. Surface Science 2005,581,142-154.
    (245)Ross.P.N Electrocatalysis (P. N. R. J.Lipkowski, ed.), Wiley-VCH,1998, p.43.
    (246)T. Iwasita, H. H., A. John-Anacker, W. F. Lin, W. Vielstich Methanol Oxidation on PtRu Electrodes. Influence of Surface Structure and Pt-Ru Atom Distribution. Langmuir 2000,16, 522-529.
    (247)W. F. Lin, P. A. C. In situ FTIR studies on the effect of temperature on the electro-oxidation of small organic molecules at the Ru(0001) electrode. Faraday Discuss.,2002, 121,267.
    (248)W. F. Lin, P. A. C., A. Hamnett The electro-oxidations of methanol and formic acid at the Ru(0001) electrode as a function of temperature:in-situ FTIR studies. Phys. Chem. Chem. Phys.2001,3,3312-3319.
    (249)A.V. Tripkovic, K. D. P., B.N. Grgur, B. Blizanac, P.N. Ross, N.M. Markovic Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochimica Acta 2002,47,3707-3714.
    (250)K. Oura, V. G. L., A.A. Saranin, A.V. Zotov, M. Katayama Surface Science:An Introduction, Springer, Berlin,2003.
    (251)A. Pimpinelli, J. V. Physics of Crystal Growth, Cambridge University Press, Cambridge,1998.
    (252)G Attard, C. B. Surfaces, Oxford university Press, Oxford,1998.
    (253)A.A. Abd-El-Latif, E. M., S. Huxter, G. Attard, H. Baltruschat Electrooxidation of ethanol at polycrystalline and platinum stepped single crystals:A study by differential electrochemical mass spectrometry. ElectrochimicaActa 2010,55,7951-7960.
    (254)N. Bogolowski, S. H., A.-E.-A.A. Abd-El-Latif, G.A. Attard, H. Baltruschat Copper underpotential deposition on Ru quasi-single-crystal films. Journal of Electroanalytical Chemistry 2010,646,68-74.
    (255)E. Budevski, G. S., J. Lorenz Electrochemical Phase Formation and Growth, VCH, Weinheim,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700