用户名: 密码: 验证码:
混凝土动态计算本构新模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土作为一种建筑材料在国防和土木工程中得到了广泛的应用,研究混凝土结构在弹体冲击或炸药爆炸作用下的响应和破坏问题对武器和防护结构的设计具有重要意义。本文的主要工作是建立混凝土动态计算本构新模型,并将其应用于混凝土靶板在弹丸高速撞击下的侵彻问题和炸药爆炸载荷作用下的响应问题中,成功预测了弹体的侵彻深度、残余速度、减加速度以及混凝土靶板中裂纹的扩展和演化过程。本文主要包括以下几个方面的内容:
     在现有混凝土本构模型和一些最新实验数据的基础上,发展混凝土动态计算本构新模型。该模型能反映混凝土材料的基本特性如压力相关性,应变率相关性,应变软化,加载路径相关性,多孔性以及高低围压下的损伤等。针对混凝土材料的拉伸损伤,本文引入拉伸主应变损伤法则来描述混凝土材料的拉伸开裂行为。对于混凝土材料的动态强度,本文在分析了现有混凝土压缩和拉伸动态材料实验数据后,在两个假设的基础上,提出了新的混凝土动态增强因子(DIF)的经验公式。此模型的两个假设是:惯性效应只对混凝土材料的动态压缩强度有影响,对动态拉伸强度没有影响;在相同的应变率条件下,混凝土材料的动态压缩强度增量与动态拉伸强度增量相同。我们将采用单单元模型的数值计算来验证本构模型的正确性。
     对卵形弹高速侵彻钢筋混凝土靶板进行数值模拟。本文对卵形弹贯穿48MPa、140MPa、38MPa有限厚度混凝土靶板,以及卵形弹侵彻39MPa半无限混凝土靶板进行了数值模拟,并将数值模拟得到的残余速度、侵彻深度和(减)加速度结果与实验数据进行了比较,发现两者吻合得较好。同时,数值模拟还揭示了混凝土靶板在卵形弹弹体贯穿过程中裂纹的演化过程,数值模拟中得到的开坑直径和漏斗坑直径与实验数据也吻合得较好。
     对平头弹以不同速度撞击钢筋混凝土靶板进行数值模拟。数值模拟得到的混凝土靶板裂纹形貌与实验照片吻合得较好。同时,对平头弹撞击混凝土靶板进行了参数研究,分析了平头弹撞击速度,平头弹直径和质量,混凝土靶板厚度和直径对混凝土靶板中裂纹演化的影响,得到了一些有益的结论。
     对炸药爆炸载荷作用下钢筋混凝土的响应和破坏进行数值模拟。模拟了炸药接触爆炸和炸药处于封闭空间内的爆炸问题。数值模拟得到的混凝土靶板的裂纹形貌与实验观察进行了比较,两者吻合得较好。同时,对混凝土接触爆炸问题进行了参数研究,分析了不同厚度不同直径混凝土靶板对裂纹演化的影响。
     将Hoek-Brown破坏准则引入空穴膨胀理论,并对混凝土靶板的侵彻问题进行数值计算。首先将Hoek-Brown破坏准则和弹性-脆性-理想塑性应力应变关系引入到球形空穴膨胀理论中,用以描述混凝土材料的本构关系和破坏过程,弥补了以往的空穴膨胀理论中混凝土材料本构较为简单的缺陷。本构模型抓住了混凝土材料的基本力学行为,如压力相关性,应变软化,能较真实地反映混凝土材料的力学行为。本文通过数值计算的方法预测了卵形弹侵彻和贯穿混凝土靶板的侵彻深度和残余速度,数值计算与实验数据吻合得较好。
Concrete as a construction material has been widely used in both defense and civil engineering. An understandings of the response and failure of concrete targets subjected to projectile impact or explosive loadings is of great significance for the design of weapons as well as protective structures. This thesis presents a new computational constitutive model for concrete subjected to dynamic loadings and corresponding numerical simulations are performed to study the impact or explosive response and failure of reinforced concrete slabs. This thesis mainly consists of the following parts:
     A new computational constitutive model for concrete subjected to dynamic loadings is developed based on the analysis of some existing material models and newly obtained experimental data. The constitutive model can capture the basic features of the mechanical response of concrete materials including pressure hardening behavior, strain rate effect, strain-softening behavior, path dependent behavior, porosity and failure in both low and high confining pressures. The principal strain softening model is implemented to capture the tensile behavior of concrete. Semi-empirical equations are suggested for the dynamic strength enhancement of concrete-like materials on the basis of the assumptions that inertial effects in tension can be ignored and compressive and tensile strength increase increments are equal at equal strain rates. The new model is implemented in the commercial hydroscope LS-DYNA and numerical tests are carried out using the single element simulation approach. The use of a single element can eliminate undesired structural effects.
     Numerical simulations are performed to study the penetration and perforation of reinforced concrete targets struck normally by rigid ogival-nosed projectiles. It is found that the numerical results are in good agreement with the test data for the perforation of48MPa.140MPa and38MPa concrete slabs, as well as for the penetration of39MPa concrete slabs in terms of residual velocities, penetration depths and the deceleration-time histories. It is also found that different cracking patterns are observed and that the numerical predictions of the diameters of the impact crater spalling and scabbing are in good agreement with the experimental data for ogival-nosed projectile perforating finite thickness concrete targets at velocity749m/s.
     Numerical simulations are conducted to investigate the response of reinforced concrete targets struck normally by flat-nosed projectiles. The cracking patterns observed in the simulations are compared with the experimental observations and good agreement is obtained. Parametric study using different impact velocities, different projectile diameters and concrete targets with different thicknesses and sizes are also carried out and some useful results obtained.
     Numerical simulations are implemented to examine the behavior of reinforced concrete slabs subjected to explosive loadings. Comparisons of the cracking patterns obtained from the numerical studies with the experimental results show that the present model predictions are in good agreement with the experimental observations. Parametric studies are also conducted to further our understanding of the failure mechanisms of reinforced concrete slabs subjected to explosive loadings.
     A spherical cavity expansion model for concrete is first proposed by using an elastic-brittle-plastic material law with Hoek-Brown strength criterion. The constitutive model can capture the basic features of the mechanical response of concrete materials including the effects of pressure hardening and strain-softening and all the parameters used in the model can be determined from material tests. The forcing function obtained from the spherical cavity expansion analysis is then employed to construct a penetration model for concrete targets struck by ogival-nosed projectiles. It transpires that the present model predictions are in good agreement with experimental observations in terms of penetration depth and ballistic limits/residual velocities in the case of perforation.
引文
[1]Young CW. Penetration equations. Sandia National Labs, Albuquerque, NM(United States).1997.
    [2]Army U, Navy U, USA Force. Structure to resist the effects of accidental explosions. US Government Printing Office.1969.
    [3]Kennedy RP. A review of procedures for the analysis and design of concrete structures to resist missile impact effects. Nuclear Engineering and Design.1976.37(2):183-203.
    [4]Gwaltney RC. Missile generation and protection in light water-cooled reactor power plants. ORNLNSIC-22Oak Ridge TN.Oak Ridge National Laboratory.1998.
    [5]Rotz JV. Results of missile impact tests on reinforced concrete panels. Second ASCE specialty conference on structure design of nuclear plant facilities,New Orleans,LA.1975.
    [6]Rotz JV. Evaluation of tornado missile impact effects on structures. Proceedings of a symposium on tornadoes, assessment of knowledge and implications for manLubbock TX:Texas Technical University.1976.
    [7]Siliter GE. Assessment of empirical concrete impact formulas. Journal of the structural Division. 1980.106(5):1023-1045.
    [8]Jankov ZJ, Shanahan JA, White MP. Missile tests of quarter-scale reinforced concrete barriers. Proceedings of a symposium on tornadoes, assessment of knowledge and implications for manLubbock TX:Texas Technical University.1976.
    [9]Forrestal MJ, Altman BS, Cargile JD, Hanchak SJ. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. International Journal of Impact Engineering.1994.15(4): 395-405.
    [10]Li QM, Chen XW. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile. International Journal of Impact Engineering.2003.28(1):93-116.
    [11]Reid SR, Wen H. Predicting penetration, cone cracking, scabbing and perforation of reinforced concrete targets struck by flat-ended projectileds. UMIST Report ME/AM/0201/TE/G/018507/Z. 2001.
    [12]Li QM, Reid SR, Wen HM, Telford AR. Local impact effects of hard missiles on concrete targets. International Journal of Impact Engineering.2005.32(1-4):224-284.
    [13]抗力试验指挥部.南京澉浦地区国际工程抗力试验总结.1958.
    [14]北京军区工程兵司令部.西拨子工程抗力试验总结.1960.
    [15]Drake JL. Protective construction design manual. Air force engineering and services. Tyndall air force base.1989.
    [16]郑全平,钱七虎,周早生,胡金华.徐加先.钢筋混凝土震塌厚度计算公式对比研究.工程力学.2003.47-53.
    [17]Longcope D, Forrestal MJ. Penetration of targets described by a Mohr-Coulomb failure criterion with a tension cutoff. Journal of Applied Mechanics.1983.50(4):327.
    [18]Luk VK, Forrestal MJ. Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectiles. International Journal of Impact Engineering.1987.6(4):291-301.
    [19]Luk V, Amos D. Dynamic cylindrical cavity expansion of compressible strain-hardening materials. Journal of Applied Mechanics.1991.
    [20]Forrestal MJ, Cargile JD. Tzou R. Penetration of concrete targets. Sandia National Labs,Albuquerque,NM(United States).1993.
    [21]Forrestal MJ, Tzou DY. A spherical cavity-expansion penetration model for concrete targets. International Journal of Solids and Structures.1997.34(31):4127-4146.
    [22]Warren TL. The effect of strain rate on the dynamic expansion of cylindrical cavities. Journal of Applied Mechanics.1999.66(3):818-821.
    [23]Warren TL, Forrestal MJ. Effects of strain hardening and strain-rate sensitivity on the penetration of aluminum targets with spherical-nosed rods. International Journal of Solids and Structures.1998. 35(28):3737-3753.
    [24]Xu H, Wen HM. A spherical cavity expansion penetration model for concrete based on Hoek-Brown strength criterion. International Journal of Nonlinear Science and Numerical Simulation. 2012.13(2):145-152.
    [25]周辉,文鹤鸣.动态柱形空穴膨胀模型及其在侵彻问题中的应用.高压物理学报.2006.20(1):67-78.
    [26]He T, Wen HM, Guo XJ. A spherical cavity expansion model for penetration of ogival-nosed projectiles into concrete targets with shear-dilatancy. Acta Mechanica Sinica.2011.27(6):1001-1012.
    [27]Guo X, He T. Wen H. A Cylindrical Cavity Expansion Penetration Model for Concrete Targets with Shear Dilatancy. engineering mechanical.2012.
    [28]Rubin MB, Yarin AL. On the relationship between phenomenological models for elastic-viscoplastic metals and polymeric liquids. Journal of Non-Newtonian Fluid Mechanics.1993. 50(1):79-88.
    [29]Yarin AL, Rubin MB, Roisman Ⅳ. Penetration of a rigid projectile into an elastic-plastic target of finite thickness. International Journal of Impact Engineering.1995.16(5-6):801-831.
    [30]Roisman Ⅳ, Weber K, Yarin AL, Hohler V, Rubin MB. Oblique penetration of a rigid projectile into a thick elastic-plastic target:theory and experiment. International Journal of Impact Engineering. 1999.22(7):707-726.
    [31]Yossifon G. Rubin MB. Yarin AL. Penetration of a rigid projectile into a finite thickness elastic-plastic target--comparison between theory and numerical computations. International Journal of Impact Engineering.2001.25(3):265-290.
    [32]Yossifon G, Yarin A, Rubin M. Penetration of a rigid projectile into a multi-layered target:theory and numerical computations. International Journal of Engineering Science.2002.40(12):1381-1401.
    [33]王政.倪玉山,曹菊珍,王元书,张文.卵形头部刚性弹侵彻厚靶的半解析模型.爆炸与冲击.2004.24(3):212-218.
    [34]Yankelevsky DZ, Adin MA. A simplified analytical method for soil penetration analysis. International Journal for Numerical and Analytical Methods in Geomechanics.1980.4(3):233-254.
    [35]李晓军,胡秀章.王肖钧,李永池,孙宇新.助推钻地弹侵彻混凝土的工程分析和计算.弹道学报.2000.1-6.
    [36]李永池,孙宇新.混凝土靶抗贯穿的一种新工程分析方法.爆炸与冲击.2000.20(1):13-18.
    [37]Amini ALL Engineering modeling of projectile penetration in layered reinforced media. Incorporated.1997.8(4):403.
    [38]Amini ALI, Anderson J. Modeling of projectile penetration into geologic targets based on energy tracking and momentum impulse principles. Proceedings of the Sixth International Symposium on Interaction of Nonnuclear Munitions with Structures.1993.
    [39]LSCT. LSDYNA keyword user's manual ver.970. Livermore Software Technology Corporation. 1990.
    [40]ABAQUS Inc. ABAQUS v6.9 user's manual. Karlsson and Sorenson IncProvidenceRIUSA. 2007.
    [41]Autodyn. Theory manual. Century Dynamic Ltd Horsham England.1997.
    [42]Holmquist TJ, Johnson GR, Cook WH. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures.14th International Symposium on Ballistics.1993.591-600.
    [43]工政,倪玉山,曹菊珍,张文.冲击载荷下混凝土本构模型构建研究.高压物理学报.2006.20(4):337-344.
    [44]Malvar LJ, Crawford JE, Wesevich JW, Simons D. A plasticity concrete material model for DYNA3D. International Journal of Impact Engineering.1997.19(9-10):847-873.
    [45]Polanco-Loria M, Hopperstad OS, Borvik T, Berstad T. Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model. International Journal of Impact Engineering.2008.35(5):200-303.
    [46]Liu Y, Ma A, Huang FL. Numerical simulations of oblique-angle penetration by deformable projectiles into concrete targets. International Journal of Impact Engineering.2009.36(3):438-446.
    [47]Silling SA:Sandia National Labs., Albuquerque, NM (United States),1997.
    [48]Dawson A, Bless S, Levinson S, Pedersen B, Satapathy S. Hypervelocity penetration of concrete. International Journal of Impact Engineering.2008.35(12):1484-1489.
    [49]Riedel W, Thoma K. Hiermaier S, Schmolinske E. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes. Proceedings of the 9th International Symposium on the Effects of Munitions with Structures.1999.
    [50]Clegg RA, Hayhurst CJ, Robertson I. Development and application of a Rankine plasticity model for improved prediction of tensile cracking in ceramic and concrete materials under impact.14th DYMAT Technical Meeting, Sevilla, Spain.2002.
    [51]Leppanen J. Concrete subjected to projectile and fragment impacts:Modelling of crack softening and strain rate dependency in tension. International Journal of Impact Engineering.2006.32(11): 1828-1841.
    [52]Tu ZG, Lu Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete. International Journal of Impact Engineering.2010.37(10):1072-1082.
    [53]Nystrom U, Gylltoft K. Comparative numerical studies of projectile impacts on plain and steel-fibre reinforced concrete. International Journal of Impact Engineering.2011.
    [54]Bazant ZP, Adley MD, Carol I, Jirasek M. Large-strain generalization of microplane model for concrete and application. Journal of Engineering Mechanics.2000.126(9):971-980.
    [55]Warren TL, Fossum AF, Frew DJ. Penetration into low-strength (23 MPa) concrete:target characterization and simulations. International Journal of Impact Engineering.2004.30(5):477-503.
    [56]Huang FL, Wu HJ, Jin QK. Zhang QM. A numerical simulation on the perforation of reinforced concrete targets. International Journal of Impact Engineering.2005.32(1-4):173-187.
    [57]Unosson M, Nilsson L. Projectile penetration and perforation of high performance concrete: experimental results and macroscopic modelling. International Journal of Impact Engineering.2006. 32(7):1068-1085.
    [58]Beppu M, Miwa K. Itoh M. Katayama M, Ohno T. Damage evaluation of concrete plates by high-velocity impact. International Journal of Impact Engineering.2008.35(12):1419-1426.
    [59]Hartmann T, Pietzsch A. Gebbeken N. A Hydrocode Material Model for Concrete. International Journal of Protective Structures.2010.1(4):443-468.
    [60]Gebbeken N, Ruppert M. A new material model for concrete in high-dynamic hydrocode simulations. Archive of Applied Mechanics.2000.70(7):463-478.
    [61]张想柏,杨秀敏,陈肇元,邓国强.接触爆炸钢筋混凝土板的震塌效应.清华大学学报(自然科学版).2006.46(6):765-768.
    [62]Zhou XQ, Kuznetsov VA, Hao H, Waschl J. Numerical prediction of concrete slab response to blast loading. International Journal of Impact Engineering.2008.35(10):1186-1200.
    [63]Tu ZG, Lu Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations. International Journal of Impact Engineering.2009.36(1):132-146.
    [64]李利莎,张洪海,梁大伟.接触爆炸钢筋混凝土板的数值模拟分析.工业建筑.2008.870-873.
    [65]Zhou XQ, Hao H. Mesoscale modelling and analysis of damage and fragmentation of concrete slab under contact detonation. International Journal of Impact Engineering.2009.36(12):1315-1326.
    [66]Krauthammer T, Assadi-Lamouki A, Shanna HM. Analysis of impulsively load reinforced concrete elements-I. Theory. Computers and structures.1993.48(5):861-871.
    [67]Krauthammer T, Assadi-Lamouki A, Shanna HM. Analysis of impulsively loaded reinforced concrete element-Ⅱ. Computers & Structures.1993.48(5):861-871.
    [68]Riedel W, Kawai N, Kondo K. Numerical assessment for impact strength measurements in concrete materials. International Journal of Impact Engineering.2009.36(2):283-293.
    [69]Riedel W, Wicklein M, Thorna K. Shock properties of conventional and high strength concrete: Experimental and mesomechanical analysis. International Journal of Impact Engineering.2008.35(3): 155-171.
    [70]Herrmann W. Constitutive equation for the dynamic compaction of ductile porous materials. Journal of Applied Physics.1969.40(6):2490-2499.
    [71]Willam KJ, Warnke EP. Constitutive model for the triaxial behavior of concrete. Proceedings. International Association for Bridge and Structural Engineering ISMES, Bergamo, Italy.1975.
    [72]Silling SA. Brittle failure kinetics model for concrete. Sandia National Labs,Albuquerque,NM(United Stated).1997.
    [73]Gylltoft K. Fracture mechanics models for fatigue in concrete structures. Doctoral Thesis, Division of structure engineering, Lulea University of Technology. Lulea, Sweden.1983.
    [74]Budiansky B, O'connell RJ. Elastic module of a crack solid. International Journal of Solids and Structures.1976.12(2):81-97.
    [75]Grady DE, Kipp ME. Continuum modeling of explosive fracture in oil shale. International Journal of Rock Mechanics and Mining Sciences.1980.17(3):147-157.
    [76]Taylor Lee, Chen EP, Kuszmaul J. Microcrack-induced damage accumulation in brittle rock under dynamic loading. Computer Methods in Applied Mechanics and Engineering.1986.55(3): 301-320.
    [77]武海军.黄风雷.金乾坤,张庆明.弹体贯穿钢筋混凝土数值模拟.爆炸与冲击.2003.23(6):545-550.
    [78]王志亮.郑明新.基于TCK损伤本构的岩石爆破效应数值模拟.岩土力学.2008.29(1):230-234.
    [79]Bazant ZP. Prat PC. Microplane model for brittle-plastic material:I. Theory. Journal of Engineering Mechanics.1988
    [80]Bazant ZP. Caner FC, Carol I, Adley MD. Microplane model m4 for concrete, I:formualtion with work conjugate deviatoric stress. Journal of Engineering Mechanics.2000.126-129.
    [81]Bazant ZP, Caner FC. Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity. I:Theory. Journal of Engineering Mechanics.2005
    [82]俞茂宏.线性和非线性的统一强度理论.岩土力学与工程学报.2007.26(4):662-669.
    [83]Hoek E, Brown ET. Empirical strength criterion for rock masses. Journal of Geotechnical and Geoenvironmental Engineering.1980. 106(ASCE 15715):
    [84]Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown failure criterion-2002 edition. F.2002.
    [85]赵坚,李海波.莫尔库仑和霍克布朗强度准则用于评估脆性岩石动态强度的适用性.岩石力学与工程学报.2003.22(2):171-176.
    [86]Collins IF. The concept of stored plastic work or frozen elastic energy in soil mechanics. Geotechnique.2005 55(5):373-382.
    [87]Collins IF, Kelly PA. A thermomechanical analysis of a family of soil models. Geotechnique. 200252(7):507-518
    [88]Nguyen GD, Houlsby GT. A coupled damage-plasticity model for concrete based on thermodynamic principles:Part Ⅰ:model formulation and parameter identification. International Journal for Numerical and Analytical Methods in Geomechanics.2008.32(4):353-389.
    [89]Grote DL, Park SW, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:I. experimental characterization. International Journal of Impact Engineering.2001.25(9):869-886.
    [90]Weerheijm J, Doormaal Van. Tensile failure of concrete at high loading rates:New test data on strength and fracture energy from instrumented spalling tests. International Journal of Impact Engineering.2007.34(3):609-626.
    [91]Bailly P, Delvare F, Vial J, Hanus JL, Biessy M, Picart D. Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate:SHPB triaxial tests. International Journal of Impact Engineering.2011.38(2-3):73-84.
    [92]Forquin P, Gary G, Gatuingt F. A testing technique for concrete under confinement at high rates of strain. International Journal of impact Engineering.2008.35(6):425-446.
    [93]Tedesco Jw, Powell JC, Ross CA, Hughes ML. A strain-rate-dependent concrete material model for ADINA. Computers & Structures.1997.1053-1067.
    [94]Faria R, Oliver J, Cervera M. A strain-based plastic viscous-damage model for massive concrete structures. International Journal of Solids and Structures.1998.35(3):1533-1558.
    [95]Mellinger FM, Birkimer DL. Measurement of stress and strain on cylindrical test speciments of rock and cocnrete under impact loading. Technical report 4-46 Cincnati Ohio:US Army Corps of Engineers,Ohio River Division Laboratories.1966.
    [96]ErzarB, Forquin P. An experimental method to determine the tensile strength of concrete at high rates of strain. Experimental Mechanics.2010.50(7):941-955.
    [97]Schuler H, Mayrhofer C. Thoma K. Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates. International Journal of Impact Engineering.2006.32(10):1635-1650.
    [98]Klepaczko JR. Brara A. An experimental method for dynamic tensile testing of concrete by spalling. International Journal of Impact Engineering.2001.25(4):387-409.
    [99]Wu HJ. Zhang QM. Huang FL. Jin QK. Experimental and numerical investigateion on the dynamic tensile of concrete. Internation Journal of Impact Engineer.2005.605-617.
    [100]Yan DM, Lin G. Dynamic properties of concrete in direct tension. Cement and Concrete Research.2006.36(4):1371-1378.
    [101]Mcvay MK. Spalling damage of concrete structures. Technical report SL-88-22 Waterways Experiment StationCicksburgMS:USArmy Corps of Engineers.1998.
    [102]Cadoni E, Labibes K, Berra M, Giangrasso M, Alberini C. High-strain-rate tensile behavior of concrete Magazine of Concrete Research.2000.52(4):365-370.
    [103]CEB. CEB_FIP model code 1990. Trowbridge, Wilshire, UK:Committee Euro-International Du Beton, Redwood Books.1993.
    [104]Tedesco JW, Ross CA. Strain-rate-dependent constitutive equations for concrete. Journal of Pressure Vessel Technology-Transactions of the Asme.1998.120(4):398-405.
    [105]Hao YF. Zhang XH, Hao H. Numerical Analysis of Concrete Material Properties at High Strain Rate under Direct Tension. Proceedings of the Twelfth East Asia-Pacific Conference on Structural Engineering and Construction (Easecl2).2011.14(4):
    [106]Yamaguchi H, Fujimoto K, Nomura S. Stress-strain relationship for concrete under high tri-axial compression Ⅱ:rapid loading. Trans Archit Inst Japan.1989.50-59.
    [107]Gebbeken N, Greulich S. A new material model for SFRC under high dynamic loadings. Proceedings of the 11th international Symposium on Interaction of the Effects of Munitions with Structures(ISIEMS) Mannheim, Germany.2003.
    [108]Brace WF, Jones AH. Comparison of uniaxial deformation in shock and static loading of 3 rocks. Journal of Geophysical Research.1971.76(20):4913-4930.
    [109]Bischoff PH, Perry SH. Compressive behavior of concrete at high strain rates. Materials and Structures.1991.24(144):425-450.
    [110]Janach W. Role of Bulking in Brittle Failure of Rocks under Rapid Compression. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1976.13(6):177-186.
    [111]Glenn LA, Janach W. Failure of granite cylinders under impact loading. International Journal of Fracture.1977.13(3):301-317.
    [112]Young CW, Powell CN. Lateral inertia effects on rock failure in Split-Hopkinson-Bar experiments.20th US Symp on Rock Mech, Univ of Texas Austin, Texas.1979.
    [113]Donze FV. Magnier SA, Daudeville L, Mariotti C, Davenne L. Numerical study of compressive behavior of concrete at high strain rates. Journal of Engineering Mechanics-Asce.1999.125(10): 1154-1163.
    [114]Cotsovos DM, Pavlovic MN. Numerical investigation of concrete subjected to high rates of uniaxial tensile loading. International Journal of Impact Engineering.2008.35(5):319-335.
    [115]Li QM, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. International Journal of Solid and structure.2003.40(2):343-360.
    [116]Li QM. Lu YB, Meng H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: Numerical simulations. International Journal of Impact Engineering.2009.36(12):1335-1345.
    [117]Lu YB. Li QM. About the dynamic uniaxial tensile strength of concrete-like materials. International Journal of Impact Engineering.2011.38(4):171-180.
    [118]Hentz S. Donze FV, Daudeville L. Discrete element modelling of concrete submitted to dynamic loading at high strain rates. Computers & Structures.2004.82(29-30):2509-2524.
    [119]Zhang M. Wu HJ, Li QM, Huang FL. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: Experiments. International Journal of Impact Engineering.2009.36(12):1327-1334.
    [120]Kim DJ. Sirijaroonchai K, El-Tawil S. Naaman AE. Numerical simulation of the Split Hopkinson Pressure Bar test technique for concrete under compression. International Journal of Impact Engineering.2010.37(2):141-149.
    [121]Hao Y, Hao H, Li ZX. Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties. International Journal of Protective Structures.2010.1(1): 145-168.
    [122]FIB/CEB. state of the art report:high strength concrete. Switzerland.1990.
    [123]Alves M. Material constitutive law for large strains and strain rates. Journal of Engineering Mechanics-Asce.2000.126(2):215-218.
    [124]Grady DE. Impact compression properties of concrete. Proceedings of the sixth International Symposium on Interaction of Non nuclear Munitions wiht structures, Panama City Florida.1993.
    [125]F D. Prediction of elastic modulus of normal and high strength concrete by artificial neural networks. Construction and Building Materials.2008.22(7):1428-1435.
    [126]Committee, A.C.Institute, I.O.f.Standardization. Buliding code requirements for structural concrete(ACI 318-08) and commentary. American Concrete Institute.2008.
    [127]Hanchak SJ, Forrestal MJ, Young ER, Ehrgott JQ. Perforation of concrete slabs with 48-Mpa (7-Ksi) and 140-Mpa (20-Ksi) unconfined compressive strengths. International Journal of Impact Engineering.1992.12(1):1-7.
    [128]屈明,陈小伟.钢筋混凝土穿甲的数值模拟.爆炸与冲击.2008.28(4):341-349.
    [129]Forrestal MJ, Frew DJ, Hickerson JP, Rohwer TA. Penetration of concrete targets with deceleration-time measurements. International Journal of Impact Engineering.2003.28(5):479-497.
    [130]Cargile JD, Giltrud ME, Luk VK. Perforation of thin unreinforced concrete slabs. Sandia National Labs, Albuquerque, NM (United States).1993.
    [131]Reid S, Wen HM. Review and feasibility study of research into concrete impact and pipe-on-pipe impact. Report No. I Concrete Impact. UMIST Report ME/AM/1090 G/46833/S.
    [132]咸玉席,文鹤鸣.平头弹侵彻半无限混凝土靶的工程模型.防护工程.2012.34(2):35-38.
    [133]Teland JA, Sil H. Penetration into concrete by truncated projectiles. International Journal of Impact Engineering.2004.30(4):447-464.
    [134]Tai YS. Flat ended projectile penetrating ultra-high strength concrete plate target. Theoretical and Applied Fracture Mechanics.2009.51(2):117-128.
    [135]文鹤鸣.混凝土靶板冲击响应的经验公式.爆炸与冲击.2003.23(3):267-274.
    [136]FEMA. Reference manual to mitigate potential terrorist attacks against building. US:Federal Emergency Management Agency.2003.
    [137]Bishop RF, Hill R, Mott NF. The theory of indentation and hardness tests. Proceedings of the Physical Society.1945.57(2):147-155.
    [138]Hill R. The mathematical theory of plasticity. Oxford University Press.1950.
    [139]Forrestal MJ. Penetration into dry porous rock. International Journal of Solids and Structures. 1986.22(12):1485-1500.
    [140]Forrestal MJ. Frew DJ, Hanchak SJ, Brar NS. Penetration of grout and concrete targets with ogive-nose steel projectiles. International Journal of Impact Engineering.1996.18(5):465-476.
    [141]Forrestal MJ. Luk VK. Dynamic spherical cavity-expansion in a compressible elastic plastic solid. Journal of Applied Mechanics.1988.55(3):275.
    [142]Forrestal MJ. Luk VK. Penetration into soil targets. International Journal of Impact Engineering. 1992.12(3):427-444.
    [143]Forrestal MJ. Luk VK, Rosenberg Z. Penetration of 7075-T651 aluminum targets with ogival-nosed rods. International Journal of Solids and Structures.1992.29(14):1729-1736.
    [144]Hoek E, Brown E. Empirical strength criterison for rock masses. Journal of Geotechnical and Geoenvironmental Engineering.1980.106(ASME 15715)
    [145]Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown failure criterion. Proceedings of NARMS-TAC.2002.267-273.
    [146]Forrestal MJ, Tzou D. A spherical cavity-expansion penetration model for concrete targets. International journal for Solids and structures.1997.34(31):4127-4146.
    [147]Wen HM. Predicting the penetration and perforation of targets struck by projectiles at normal incidence. Mechanics of structures and machines.2002.30(4):543-577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700