用户名: 密码: 验证码:
解吸附电晕束离子源(DCBI)的研制与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质谱仪是现代科学的基柱工具,质谱分析方法已经成为自然科学的重要实验手段。离子源是质谱仪器的核心部件,根据其发展可以大致分为真空下、大气压下、常压式(敞开式)离子化技术三个阶段。常压式质谱技术也曾经被一些学者称为直接分析质谱法、大气压解吸附质谱法、敞开式质谱法等。常压式离子源具有典型的特征,如样品原型分析,直接离子化,通用质谱仪接口,软电离方式等。不过,现有常压式离子源也存在定量分析精密度较差、样品表面定位不确定、空间分辨率较低等问题。
     本论文中一种新的常压式离子化技术——解吸附电晕束离子源(DCBI)被研制,该源具有可视电晕束;进而DCBI定量分析的精密度得以研究改善,该方法亦可供类似离子化技术借鉴;联用其他技术扩展了DCBI源的适用对象和范围;实际应用中快速分析了降压类保健食品及中成药中7种芳氧丙醇胺类p-受体阻滞剂;高通量筛查了减肥类保健食品添加剂和茶包中的违禁化合物,并对这些违禁添加物进行了半定量检测分析。具体研究包括以下6部分内容。
     1.开发了解吸附电晕束离子化(DCBI)技术,并以之构建了一新型常压式质谱用离子源,成功应用于多种物质的直接分析。该源具有独特的可视电晕束,为常压式质谱法开创了新的应用领域。正负离子化模式下的电离机理均得到研究与解释。利用程序升温分析复杂样品,降低了结果谱图中的化学噪声,使离子峰专属性加强。较之DESI, DCBI源结构紧凑,且不需辅助溶剂;较之DART, DCBI源工作于电晕放电区域,电流小,且源温度可程序扫描。
     2.利用室温离子液体1-丁基-3甲基咪唑四氟硼酸盐([BMIM]BF4)作为基质,辅助DCBI质谱检测方法,显著改善了被分析物的定量精密度。通过红外热成像与质谱仪的同步监测,观察到了挥发性基质在DCBI离子源中的双峰现象,显示了DCBI源的解吸附、电离两步机理假设的合理性。研究发现样品进给过程中的共挥发效应是常压式敞开质谱法中定量结果出现波动的主要原因。当使用不挥发的室温离子液体作为基质时,其形成一个微缓释体系(MSRS),降低了解吸附波动,提高了定量精密度。其他相关的类APCI常压式离子化技术亦可参考该方法,以提高定量准确率与重现性。该研究也为液相微体积的过程研究与化学表征提供了可能。
     3.利用聚二甲基硅氧烷(PDMS)膜获得浓缩系数1000倍以上的富集效率,还可以使不溶解于基质的化合物被富集,并应用DCBI对其进行分析。PDMS结合DCBI直接分析样品扩展了它们的应用范围,提高了分析的灵敏度。该联用技术对水样中农残进行定量分析,结果表明5种被分析农药的标准曲线都有很好的线性,检测限(1μg/L)。此研究表明联用PDMS基底与DCBI源,分析微量的液相样品快速、结果准确。这个方法可应用于分析各种不同溶液中的有机物,气态物,使得低浓度微量液体样品的直接质谱法分析成为可能。
     4.联用近红外激光(976nm)与电晕束电离手段,开发了一种新型激光解吸附辅助电晕束离子化(LD-CBI)技术,考察了该技术方法特性,并成功将其应用于液体、粉末等无定形样品的直接分析。结果显示,因一般物质对近红外光的范频吸收特性,LD-CBI不但对样品前处理的要求更少,而且灵敏度更高。方法学验证中,19种农药样品的检测限在0.02-1ng之间。选择离子监测模式下,马拉硫磷的检测限可以低至10pg约合30fMol的水平,而且在样品浓度0.2μg/mL到100μg/mL的近三个数量级之间线性关系良好R2=0.9907。
     5.利用DCBI源结合离子阱质谱仪,开发了一种快速、低耗的方法,快速筛选分析7种,芳氧丙醇胺类β-受体阻滞剂。在降血压类保健食品及中成药的复杂基质条件下,无需复杂的样品前处理或者传统的色谱分离,7种β-受体阻滞剂都成功地获得了快速定性分析。经HPLC-ESI/MS方法验证,DCBI-MS定性分析的结果准确可信,专属性高,分析速度快,有望成为通用工具并发挥重要作用。
     6.开发了一种新的DCBI-MS分析方法,应用于减肥类保健食品添加剂和茶包中违禁化合物的快速筛查以及半定量检测。通过半自动进样装置,实现了减肥类保健食品中违禁添加物的高通量筛选。芬氟拉明、单去甲基西布曲明、双去甲基西布曲明、西布曲明、酚酞这5种常见非法添加成分在该方法中被成功检出。结果表明离子抑制等基质效应不影响DCBI-MS方法中对5种目标化合物的检出。然而,常压式质谱方法中存在时间歧视现象,故定量分析应以离子流谱图中峰面积为准。DCBI-MS不仅实现了高通量筛选分析,而且完成了半定量分析,使产品的现场普查得以实现。
Mass spectrometry (MS) is a powerful tool and has become one of the most important analytical methods in modern science. Ion source is the kernel of the mass spectrometer. There are3generations of ionization techniques, which are vacuum ionization, atmospheric ionization and ambient (open-air) ionization respectively. These ionization techniques for MS ever be called ambient desorption ionization, direct analysis MS, atmospheric desorption ionization, open air desorption ionization (OADI) and so forth. Ambient MS techniques have some unique characterizations. They exam objects of unusual shape and perform direct ionization without sample preparation. They generate ions softly and are compatible to most type of mass spectrometers. Although many ambient MS techniques have been reported, there are general shortcomings. Most of ambient ionization source suffers from insufficient quantification, poor precision, low space resolution, and uncertain location of sample surface.
     In this paper, we report a new ambient ionization technique which termed Desorption Corona Beam Ionization (DCBI). The unique property of DCBI is a visible corona beam. The mechanism and improvement studies were carried out in order to get good quantification precision. Study on hyphenated technique or hybrid of other materials has broadened the sample range of DCBI. The concrete application of DCBI were demonstrated, such as rapid determination of (3-Receptor Blockers that illegally added in traditional medicines and dietary supplements, and high-throughput analysis of illicit additives in weight loss products. The following components are included in this study.
     1. A novel Desorption Corona Beam Ionization (DCBI) source for direct analysis of samples from surface in mass spectrometry was developed, which is in accordance of ambient ionization techniques. The unique characteristic of DCBI is a visible corona beam that can extended from the source probe. A variety of samples has been analyzed by DCBI-MS approach. The ionization mechanism of DCBI was studied and along with the mechanism of dissociation in tandem mass spectrometry analysis. Program heating in desorption process was achieved to roughly separate the individual components in a complex mixture. Hence the mass spectrum is simple and specific. Compared with DESI, DCBI is a solvent free method though solvent can be added optionally. DCBI works in the corona discharge region whereas DART works in both corona and glow discharge regions. It implies that DCBI can be adopted to the commercial mass spectrometer easily due to commercial instrument supplies the power within corona current generally.
     2. The room temperature ionic liquids (RTILs),1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) was employed as matrix to assist DCBI analysis. The quantification precision of the DCBI method was improved greatly. The thermal desorption process was recorded with thermal imaging and mass spectrometry simultaneously. When in a volatile liquid matrix, the analyte shows double peaks in ion chromatogram. It proved the hypothesis of two separated steps in desorption/ionization process. The unstable co-evaporation of analyte and matrix caused the deviation of quantitative result clearly. When non-volatile RTILs matrix applied, a micro slow release system (MSRS) is formed to smooth the evaporation fluctuation. Sharing the same thermal desorption mechanism, other APCI-related ambient MS methods may also be benefited from the RTILs matrix. The RTILs-DCBI-MS method also demonstrates the great potential for probing solution-phase droplet systems.
     3. The poly(dimethylsiloxane)(PDMS) substrate enables capture of volatile and nonvolatile compounds from the liquid phase of a sample, offering large concentration factors of1000or more. Therefore, the soluble or insoluble analyte in matrix can both be detected with DCBI method since PDMS extraction results in matrixless/solventless sample introduction. Combined with PDMS substrate, the application range of DCBI analysis was broadened. The sensitive of method was enhanced significantly. In3orders of concentration, the calculated correlation coefficients for5pesticides were all satisfied. The limits of detection were all achieved on concentration of1μg/L. This PDMS/DCBI combination approach allows more organic compounds to be detected in complex mixtures with less time consuming. It provides the possibility of directly analyzing the trace level solution samples as well.
     4. A novel hyphenated technique was proposed by coupling the near-infrared laser (976nm) with corona beam (LD-CBI) for direct analysis of formless samples. The samples can be liquid, powder and so forth. The LD-CBI method was characterized with broad region, non-specific absorption by common compounds. Thereby the heating is efficiency even without special substrate. There is less sample pretreatment in LD-CBI analysis. The sensitivity of this method is better than original DCBI approach. A variety of samples was detected and LD showed not only the better desorption efficiency but also necessity for some semi-volatile and non-volatile sample. The LOD of19pesticides were between0.02and1ng. For example, under selected ion mornitoring (SIM) mode, the detection limit of malathion was about10pg (30fMol) and the dynamic range is between0.2and100μg/mL along with a good correlation coefficient R2=0.9907.
     5. A new rapid and economic method was developed by mounting DCBI source to an ion trap mass spectrometer. Seven p-receptor blockers were checked out in the complex matrix of antihypertensive traditional medicines and dietary supplements. The rapid screening was achieved without any tedious sample pretreatment and traditional chromatographic separation. The qualitative and semi-quantitative results were confirmed with the traditional HPLC-MS. Both in quality control and illicit additive screening of the β-receptor blockers, the DCBI-MS technique can be a powerful tool due to its accuracy, convenience and specificity.
     6. The illicit additives in weight loss food were screened with the relative novel ambient MS technique, DCBI. Fenfluramine, N-di-desmethyl sibutramine, N-mono-desmethyl sibutramine, sibutramine, and phenolphthalein, the five abused chemicals were detected successfully with the developed DCBI-MS method. The matrix effect such as ion suppression did not influence the identification of target compounds. However, the time discrimination is significant in ambient MS analysis. Therefore, the quantification based on peak area in ion chromatogram is more accurate than ion intensity in the MS spectrum. Not only fast single-sample and high-throughput analysis were demonstrated but also the semi-quantitation was accomplished. The results implied that the on-site screening of illicit additives in weight-loss product can be achieved with DCBI-MS approach.
引文
1. 汪尔康,21世纪的分析化学[M].1999:科学出版社.
    2. 王光辉,我国质谱制造业的发展瓶颈和国外质谱技术的奇思妙想[J].现代科学仪器,2011(5):7-13.
    3. 陈焕文,胡斌,张燮,复杂样品质谱分析技术的原理与应用[J].分析化学2010.38:1069-1088.
    4. Cooks R.G., Ouyang Z., Takats Z., Wisemanl J.M., Ambient Mass Spectrometry [J]. Science,2006.311:1566-1570.
    5. Ouyang Z., Zhang X., Ambient mass spectrometry. [J]. Analyst,2010.135: 659-660.
    6. Dill A.L., Eberlin L.S., Ifa D.R., Cooks R.G., Perspectives in imaging using mass spectrometry. [J]. Chem. Commun.,2011.47:2741-2746.
    7. Huang M.Z., Cheng S.C., Cho Y.T., Shiea J., Ambient ionization mass spectrometry:a tutorial [J]. Anal. Chim. Acta.,2011.702(1):1-15.
    8. Ma X., Zhang S., Zhang X., An instrumentation perspective on reaction monitoring by ambient mass spectrometry [J]. TrAC, Trends Anal. Chem., 2012.35:50-66.
    9. Ren X., Liu J., Zhang C., Luo H., Direct analysis of samples under ambient condition by high-voltage-assisted laser desorption ionization mass spectrometry in both positive and negative ion mode. [J]. Rapid Commun. Mass Spectrom.,2013.27:613-620.
    10. Tanaka K., Waki H., Ido Y., Akita S., Yoshida Y., Yoshida T., Protein and Polymer Analyses up to m/z 100000 by Laser Ionization Time-of-flight Mass Xpectrometry [J]. Rapid Commun. Mass Spectrom.,1988.2(8):151-153.
    11. Yamashita M., Fenn J.B., Electrospray ion source. Another variation on the free-jet theme [J]. J. Phys. Chem.,1984.88:4451-4459.
    12. Fenn J., Mann M., Meng C., Wong S., Whitehouse C., Electrospray ionization for mass spectrometry of large biomolecules [J]. Science,1989. 246:64-71.
    13. Karas M., Bachmann D., Bahr U., Hillenkamp F., Matrix-assisted ultraviolet laser desorption of non-volatile compounds [J]. Int. J. Mass Spectrom. Ion Processes,1987.78:53-68.
    14. Karas M., Hillenkamp F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons [J]. Anal. Chem.,1988.60: 2299-2301.
    15. Laiko V.V., Baldwin M.A., Burlingame A.L., Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry [J]. Anal. Chem.,2000.72:652-657.
    16. Laiko V.V., Moyer S.C., Cotter R.J., Atmospheric Pressure MALDI/Ion Trap Mass Spectrometry [J]. Anal. Chem.,2000.72:5239-5243.
    17. Li Y., Shrestha B., Vertes A., Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry. [J]. Anal. Chem.,2007.79:523-532.
    18. Coon J.J., Harrison W.W., Laser Desorption-Atmospheric Pressure Chemical Ionization Mass Spectrometry for the Analysis of Peptides from Aqueous Solutions [J]. Anal. Chem.,2002.74:5600-5605.
    19. Coon J.J., Steele H.A., Laipis P.J., Harrison W.W., Laser desorption-atmospheric pressure chemical ionization:a novel ion source for the direct coupling of polyacrylamide gel electrophoresis to mass spectrometry. [J].J. Mass Spectrom.,2002.37:1163-1167.
    20. Hoffmann E.d., Stroobant V., Mass Spectrometry:Principles and Applications [M].2007, Chichester, England:John Wiley & Sons, Ltd.
    21. Dempster A., A new Method of Positive Ray Analysis [J]. Phys. Rev.,1918. 11:316-325.
    22. TODD J.F.J., RECOMMENDATIONS FOR NOMENCLATURE AND SYMBOLISM FOR MASS SPECTROSCOPY [J]. Pure & Appl. Chem, 1991.63:1541-1566.
    23. Munson M.S.B., Field F.H., Chemical Ionization Mass Spectrometry. I. General Introduction [J]. J. Am. Chem. Soc.,1966.88:2621-2630.
    24. Beckey H.D., Field desorption mass spectrometry:A technique for the study of thermally unstable substances of low volatility [J]. Int. J. Mass Spectrom. Ion Phys.,1969.2:500-502.
    25. Horning E.C., Carroll D.I., Dzidic I., Haegele K.D., Horning M.G., Stillwell R.N., Atmospheric pressure ionization (API) mass spectrometry. Solvent-mediated ionization of samples introduced in solution and in a liquid chromatograph effluent stream. [J]. J. Chromatogr. Sci.,1974.12:725-729.
    26. Horning E.C., Carroll D.I., Dzidic I., Haegele K.D., Horning M.G., Stillwell R.N., Liquid chromatograph-mass spectrometer-computer analytical systems [J].J. Chromatogr. A,1974.99:13-21.
    27. Macfarlane R., Torgerson D., Californium-252 plasma desorption mass spectroscopy [J]. Science,1976.191:920-925.
    28. Houk R.S., Fassel V.A., Flesch G.D., Svec H.J., Gray A.L., Taylor C.E., Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements [J]. Anal. Chem.,1980.52:2283-2289.
    29. Barber M., Bordoli R.S., Sedgwick R.D., Tyler A.N., Fast atom bombardment of solids (F.A.B.):a new ion source for mass spectrometry [J]. Chem. Commun.,1981:325.
    30. Blakley C.R., Vestal M.L., Thermospray interface for liquid chromatography/mass spectrometry [J]. Anal. Chem.,1983.55:750-754.
    31. Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T, Mann M., Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry [J]. Nature,1996.379(6564):466-469.
    32. Robb D.B., Covey T.R., Bruins A.P., Atmospheric Pressure Photoionization: An Ionization Method for Liquid Chromatography-Mass Spectrometry [J]. Anal. Chem.,2000.72:3653-3659.
    33. Song L., Dykstra A.B., Yao H., Bartmess J.E., Ionization mechanism of negative ion-direct analysis in real time:a comparative study with negative ion-atmospheric pressure photoionization [J].J. Am. Soc. Mass Spectrom., 2009.20(1):42-50.
    34. Boggess B., Mass Spectrometry Desk Reference (Sparkman, O. David) [J].J. Chem. Educ.,2001.78:168.
    35. Baker M., Mass spectrometry for biologists [J]. Nat. Methods,2010.7: 157-161.
    36. Aebersold R., Goodlett D.R., Mass Spectrometry in Proteomics [J]. Chem. Rev.,2001.101:269-296.
    37. IUPAC Compendium of Chemical Terminology [M].2009, Research Triagle Park, NC:IUPAC.
    38. Gross J.H., Mass Spectrometry:A Textbook [M].2004:Springer.
    39. Baldwin M.A., McLafferty F.W., Direct chemical ionization of relatively involatile samples. Application to underivatized oligopeptides [J]. Org. Mass Spectrom.,1973.7:1353-1356.
    40. Williams P., Secondary Ion Mass Spectrometry [J]. Annu. Rev. Mater. Sci., 1985.75(1):517-548.
    41. Renner D., Spiteller G., Linked scan investigation of peptide degradation initiated by liquid secondary ion mass spectrometry [J]. Biomed. Environ. Mass Spectrom.,1988.15(2):75-77.
    42. Aberth W., Straub K.M., Burlingame A.L., Secondary ion mass spectrometry with cesium ion primary beam and liquid target matrix for analysis of bioorganic compounds [J]. Anal. Chem.,1982.54(12):2029-2034.
    43. Gohlke R.S., Time-of-Flight Mass Spectrometry and Gas-Liquid Partition Chromatography [J]. Anal. Chem.,1959.31(4):535-541.
    44. Liberato D.J., Fenselau C.C., Vestal M.L., Yergey A.L., Characterization of glucuronides with a thermospray liquid chromatography/mass spectrometry interface [J]. Anal. Chem.,1983.55(11):1741-1744.
    45. Simpson R.C., Fenselau C., Hardy M.R., Townsend R.R., Lee Y.C., Cotter R.J., Adaptation of a thermospray liquid chromatography/mass spectrometry interface for use with alkaline anion exchange liquid chromatography of carbohydrates [J]. Anal. Chem.,1990.62(3):248-252.
    46. Gaskell S.J., Electrospray:Principles and Practice [J].J. Mass Spectrom., 1997.32(7):677-688.
    47. Pozniak B.P., Cole R.B., Current measurements within the electrospray emitter [J]. J. Am. Soc. Mass. Spectrom.,2007.18(4):737-748.
    48. Fenn J.B., Mann M., Meng C.K., Wong S.F., Whitehouse C.M., Electrospray ionization-principles and practice [J]. Mass Spectrom. Rev.,1990.9(1): 37-70.
    49. Ifa D.R., Jackson A.U., Paglia G., Cooks R.G., Forensic applications of ambient ionization mass spectrometry [J]. Anal. Bioanal. Chem.,2009. 394(8):1995-2008.
    50. Venter A., Nefliu M., Cooks R.G., Ambient desorption ionization mass spectrometry [J]. TrAC, Trends Anal. Chem.,2008.27(4):284-290.
    51. Cody R.B., Laramee J.A., Durst H.D., Versatile new ion source for the analysis of materials in open air under ambient conditions [J]. Anal. Chem., 2005.77(8):2297-2302.
    52. McEwen C.N., McKay R.G., Larsen B.S., Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments [J]. Anal. Chem.,2005.77(23):7826-7831.
    53. Song L., Gibson S.C., Bhandari D., Cook K.D., Bartmess J.E., Ionization mechanism of positive-ion direct analysis in real time:a transient microenvironment concept [J]. Anal. Chem.,2009.81(24):10080-10088.
    54. Takats Z., Wiseman J.M., Gologan B., Cooks R.G, Mass spectrometry sampling under ambient conditions with desorption electrospray ionization [J]. Science,2004.306(5695):471-473.
    55. Talaty N., Takats Z., Cooks R.G., Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization [J]. Analyst,2005.130(12):1624-1633.
    56. Luo Z., He J., Chen Y., Gong T., Tang F., Wang X., Zhang R., Huang L., Zhang L., Lv H., Ma S., Fu Z., Chen X., Yu S., Abliz Z., Air Flow-Assisted Ionization Imaging Mass Spectrometry Method for Easy Whole-Body Molecular Imaging under Ambient Conditions [J]. Anal. Chem.,2013.85(5): 2977-2982.
    57. Huang M.Z., Yuan C.H., Cheng S.C., Cho Y.T., Shiea J., Ambient ionization mass spectrometry [J]. Annu. Rev. Anal. Chem.,2010.3:43-65.
    58. Monge M.E., Harris G.A., Dwivedi P., Fernandez F.M., Mass Spectrometry: Recent Advances in Direct Open Air Surface Sampling/Ionization [J]. Chem. Rev.,2013.
    59. Tomalova I., Lee C.H., Chen W.T., Chiang C.K., Chang H.T., Preisler J., Analysis of the formation process of gold nanoparticles by surface-assisted laser desorption/ionization mass spectrometry [J]. J. Am. Soc. Mass Spectrom.,2013.24(2):305-308.
    60. Parson W.B., Koeniger S.L., Johnson R.W., Erickson J., Tian Y., Stedman C., Schwartz A., Tarcsa E., Cole R., Van Berkel G.J., Analysis of chloroquine and metabolites directly from whole-body animal tissue sections by liquid extraction surface analysis (LESA) and tandem mass spectrometry [J]. J. Mass Spectrom.,2012.47(11):1420-1428.
    61. Fuller S.J., Zhao Y, Cliff S.S., Wexler A.S., Kalberer M., Direct surface analysis of time-resolved aerosol impactor samples with ultrahigh-resolution mass spectrometry [J]. Anal. Chem.,2012.84(22):9858-9864.
    62. Bowfield A., Barrett D.A., Alexander M.R., Ortori C.A., Rutten F.M., Salter T.L., Gilmore I.S., Bradley J.W., Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air [J]. Rev. Sci. Instrum.,2012.83(6):063503.
    63. Peng I.X., Ogorzalek Loo R.R., Margalith E., Little M.W., Loo J.A., Electrospray-assisted laser desorption ionization mass spectrometry (ELDI-MS) with an infrared laser for characterizing peptides and proteins [J]. Analyst,2010.135(4):767-772.
    64. Cheng C.Y., Yuan C.H., Cheng S.C., Huang M.Z., Chang H.C., Cheng T.L. Yeh C.S., Shiea J., Electrospray-assisted laser desorption/ionization mass spectrometry for continuously monitoring the states of ongoing chemical reactions in organic or aqueous solution under ambient conditions [J]. Anal. Chem.,2008.80(20):7699-7705.
    65.Shiea J., Huang M.Z., Hsu H.J., Lee C.Y., Yuan C.H., Beech I., Sunner, J.: Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids[J]. Rapid Commun. Mass Spectrom. ,2005,19(24):3701-3704.
    66.Vaikkinen A, Shrestha B, Nazarian J, Kostiainen R, Vertes A, Kauppila TJ. Simultaneous detection of nonpolar and polar compounds by heat-assisted laser ablation electrospray ionization mass spectrometry[J]. Anal Chem.,2013.85(1):177-184.
    67.Nemes P.,Vertes A.,Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry[J]. Anal Chem .,2007.79(21):8098–8106.
    68.Chen H.,Yang S.,Wortmann A.,Zenobi R.,Neutral desorption sampling of living 0bjects for rapid analysis by extractive electrospray ionization mass spectrornetry[j]].Angew. Chem.Int.Ed.,2007.46(40):7591-7594.
    69.Chen H.,Wortmann A.,Zenobi R.,Neutral desorption sampling Coupled to extractive electrOSpray ionization mass spectrometry for rapid differentiation of biosamples by metabolomic fingerprinting[J].J. Mass Spectrom.,2007. 42(9):1123-1135.
    70.Sampson J.S.,Hawkridge A.M.,Muddiman D.C.,Development and characterization of an ionization technique for analysis of biological macromoIecues:liquid matrix-assisted laser desorption electrospray ionization[J].Anal Chem.,2008.80(17):6773-6778.
    71.Sampson.J.S.,Hawkridge A.M.,Muddiman D.C.,Generation and detection of multiply-charged peptides and proteins by matrix—assisted laser desorption electrospray ionization(MALDESI) Fourier transform ion cyclotron resonance mass spectrometry[J].J.Am. Soc.Mass Spectrom.,2006.17(12): 1712-1716.
    72.Bruins A.P.,Covey T.R.,Henion J.D.,Ion spray interface for combined liquid chromatography/atmospheric presstlre ionization mass spectrornetry[J].Anal.Chem.,1987.59(22):2642-2646.
    73. Ifa D.R., Wu C., Ouyang Z., Cooks R.G., Desorption electrospray ionization and other ambient ionization methods:current progress and preview [J].Analyst,2010.135(4):669-681.
    74. Cody R.B., Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source [J]. Anal. Chem., 2009.81(3):1101-1107.
    75. Cody R.B., Dane A.J., Soft ionization of saturated hydrocarbons, alcohols and nonpolar compounds by negative-ion direct analysis in real-time mass spectrometry [J]. J. Am. Soc. Mass Spectrom.,2013.24(3):329-334.
    76. Dane A.J., Cody R.B., Selective ionization of melamine in powdered milk by using argon direct analysis in real time (DART) mass spectrometry [J].Analyst,2010.135(4):696-699.
    77. Takats Z., Cotte-Rodriguez I., Talaty N., Chen H., Cooks R.G, Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry [J]. Chem. Commun.,2005(75):1950-1952.
    78. Zhang X., Jia B., Huang K., Hu B., Chen R., Chen H., Tracing origins of complex pharmaceutical preparations using surface desorption atmospheric pressure chemical ionization mass spectrometry [J]. Anal. Chem.,2010.82(19):8060-8070.
    79. Bruns E.A., Perraud V., Greaves J., Finlayson-Pitts B.J., Atmospheric solids analysis probe mass spectrometry:a new approach for airborne particle analysis [J]. Anal. Chem.,2010.82(14):5922-5927.
    80. Lloyd J.A., Harron A.F., McEwen C.N., Combination atmospheric pressure solids analysis probe and desorption electrospray ionization mass spectrometry ion source [J]. Anal. Chem.,2009.81(21):9158-9162.
    81. Luosujarvi L., Arvola V., Haapala M., Pol J., Saarela V., Franssila S., Kotiaho T., Kostiainen R., Kauppila T.J., Desorption and ionization mechanisms in desorption atmospheric pressure photoionization [J]. Anal. Chem.,2008.80(19):7460-7466.
    82. Tonidandel L., Ragazzi E., Roghi G., Traldi P., Mass spectrometry in the characterization of ambers. I. Studies of amber samples of different origin and ages by laser desorption ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization mass spectrometry [J]. Rapid Commun. Mass Spectrom.,2008.22(5):630-638.
    83. Haapala M., Pol J., Saarela V., Arvola V., Kotiaho T., Ketola R.A., Franssila S., Kauppila T.J., Kostiainen R., Desorption atmospheric pressure photoionization [J]. Anal. Chem.,2007.79(20):7867-7872.
    84. Na N., Zhao M., Zhang S., Yang C., Zhang X., Development of a dielectric barrier discharge ion source for ambient mass spectrometry [J]. J. Am. Soc. Mass Spectrom.,2007.18(10):1859-1862.
    85. Na N., Zhang C., Zhao M., Zhang S., Yang C., Fang X., Zhang X., Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge [J].J.Mass Spectrom.,2007.42(8):1079-1085.
    86. Martinez-Jarquin S., Winkler R., Design of a low-temperature plasma (LTP) probe with adjustable output temperature and variable beam diameter for the direct detection of organic molecules [J]. Rapid Commun. Mass Spectrom., 2013.27(5):629-634.
    87. Xing Z., Wang J., Han G., Kuermaiti B., Zhang S., Zhang X., Depth profiling of nanometer coatings by low temperature plasma probe combined with inductively coupled plasma mass spectrometry [J]. Anal. Chem.,2010. 82(13):5872-5877.
    88. Harper J.D., Charipar N.A., Mulligan C.C., Zhang X., Cooks R.G., Ouyang Z., Low-temperature plasma probe for ambient desorption ionization [J]. Anal. Chem.,2008.80(23):9097-9104.
    89. Chen H., Ouyang Z., Cooks R.G., Thermal production and reactions of organic ions at atmospheric pressure [J]. Angew. Chem. Int. Ed.,2006.45(22): 3656-3660.
    90. Peng S., Ahlmann N., Kunze K., Nigge W., Edler M., Hoffmann T., Franzke J., Thin-layer chromatography combined with diode laser desorption/atmospheric pressure chemical ionization mass spectrometry [J]. Rapid Commun. Mass Spectrom.,2004.18(16):1803-1808.
    91. Peng S., Edler M., Ahlmann N., Hoffmann T., Franzke J., A new interface to couple thin-layer chromatography with laser desorption/atmospheric pressure chemical ionization mass spectrometry for plate scanning [J]. Rapid Commun. Mass Spectrom.,2005.19(19):2789-2793.
    92. Galhena A.S., Harris G.A., Nyadong L., Murray K.K., Fernandez F.M., Small molecule ambient mass spectrometry imaging by infrared laser ablation metastable-induced chemical ionization [J]. Anal. Chem.,2010.82(6): 2178-2181.
    93. Dixon R.B., Sampson J.S., Muddiman D.C., Generation of multiply charged peptides and proteins by radio frequency acoustic desorption and ionization for mass spectrometric detection [J].J.Am. Soc. Mass Spectrom.,2009.20(4): 597-600.
    94. Cheng S.C., Cheng T.L., Chang H.C., Shiea J., Using laser-induced acoustic desorption/electrospray ionization mass spectrometry to characterize small organic and large biological compounds in the solid state and in solution under ambient conditions [J]. Anal. Chem.,2009.81(3):868-874.
    95. Gao J., Borton D.J.,2nd, Owen B.C., Jin Z., Hurt M., Amundson L.M., Madden J.T., Qian K., Kenttamaa H.I., Laser-induced acoustic desorption/atmospheric pressure chemical ionization mass spectrometry [J].J. Am. Soc. Mass Spectrom.,2011.22(3):531-538.
    96. Ratcliffe L.V., Rutten F.J., Barrett D.A., Whitmore T., Seymour D., Greenwood C, Aranda-Gonzalvo Y., Robinson S., McCoustra M., Surface analysis under ambient conditions using plasma-assisted desorption/ionization mass spectrometry [J]. Anal. Chem.,2007.79(16): 6094-6101.
    97. Salter T.L., Gilmore I.S., Bowfield A., Olabanji O.T., Bradley J.W., Ambient surface mass spectrometry using plasma-assisted desorption ionization: effects and optimization of analytical parameters for signal intensities of molecules and polymers [J]. Anal. Chem.,2013.85(3):1675-1682.
    98. Andrade F.J., Shelley J.T., Wetzel W.C., Webb M.R., Gamez G., Ray S.J., Hieftje G.M., Atmospheric pressure chemical ionization source.1. Ionization of compounds in the gas phase [J]. Anal Chem.,2008.80(8):2646-2653.
    99. Andrade F.J., Shelley J.T., Wetzel W.C., Webb M.R., Gamez G, Ray S.J., Hieftje G.M., Atmospheric pressure chemical ionization source.2. Desorption-ionization for the direct analysis of solid compounds [J]. Anal. Chem.,2008.80(8):2654-2663.
    100. Cotte-Rodriguez I., Mulligan C.C., Cooks R.G., Non-proximate detection of small and large molecules by desorption electrospray ionization and desorption atmospheric pressure chemical ionization mass spectrometry: instrumentation and applications in forensics, chemistry, and biology [J]. Anal. Chem.,2007.79(18):7069-7077.
    101. Harris G.A., Falcone C.E., Fernandez F.M., Sensitivity "hot spots" in the direct analysis in real time mass spectrometry of nerve agent simulants [J]. J. Am. Soc. Mass. Spectrom.,2012.23(1):153-161.
    102. McEwen C.N., Larsen B.S., Ionization mechanisms related to negative Ion APPI, APCI, and DART [J]. J. Am. Soc. Mass. Spectrom.,2009.20(8): 1518-1521.
    103. Hajslova J., Cajka T., Vaclavik L., Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis [J]. TrAC, Trends Anal. Chem.,2011.30(2):204-218.
    104. Nemes P., Barton A.A., Li Y., Vertes A., Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry [J]. Anal. Chem.,2008.80(12):4575-4582.
    105. Muramoto S., Staymates M.E., Brewer T.M., Gillen G, Ambient low temperature plasma etching of polymer films for secondary ion mass spectrometry molecular depth profiling [J]. Anal. Chem.,2012.84(24): 10763-10767.
    106. Wang H., Sun W., Zhang J., Yang X., Lin T., Ding L., Desorption corona beam ionization source for mass spectrometry [J]. Analyst,2010.135(4): 688-695.
    107. Yu S., Crawford E., Tice J., Musselman B., Wu J.-T., Bioanalysis without sample cleanup or chromatography:the evaluation and initial implementation of direct analysis in real time ionization mass spectrometry for the quantification of drugs in biological matrixes [J]. Anal. Chem.,2009.81(1): 193-202.
    108. Harris G.A., Galhena A.S., Fernandez F.M., Ambient sampling/ionization mass spectrometry:applications and current trends [J]. Anal. Chem.,2011. 83(12):4508-4538.
    109. Yim T.-J., Zentgraf T., Min B., Zhang X., All-liquid photonic microcavity stabilized by quantum dots. [J]. J. Am. Chem. Soc.,2010.132:2154-2156.
    110. Shim J.-u., Olguin L.F., Whyte G., Scott D., Babtie A., Abell C., Huck W.T.S., Hollfelder F., Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. [J]../Am. Chem. Soc.,2009.131:15251-15256.
    111. Huebner A., Bratton D., Whyte G., Yang M., Demello A.J., Abell C., Hollfelder F., Static microdroplet arrays:a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. [J]. Lab on a chip,2009.9:692-698.
    112. Huebner A., Sharma S., Srisa-Art M, Hollfelder F., Edel J.B., Demello A.J., Microdroplets:a sea of applications? [J]. Lab on a Chip,2008.8:1244-1254.
    113. Vidal L., Psillakis E., Domini C.E., Grane N., Marken F., Canals A., An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples [J]. Anal. Chim. Acta,2007.584: 189-195.
    114. Guerasimova A., Nyarsik L., Liu J.-P., Schwartz R., Lange M., Lehrach H., Janitz M., Liquid-based hybridization assay with real-time detection in miniaturized array platforms. [J]. Biomol. Eng,2006.23:35-40.
    115. Chabert M., Dorfman K.D., de Cremoux P., Roeraade J., Viovy J.-L., Automated microdroplet platform for sample manipulation and polymerase chain reaction. [J]. Anal. Chem.,2006.78:7722-7728.
    116. Zhang J., Su T., Lee H.K., Headspace water-based liquid-phase microextraction. [J]. Anal. Chem.,2005.77:1988-1992.
    117. Palit M., Pardasani D., Gupta A.K., Dubey D.K., Application of single drop microextraction for analysis of chemical warfare agents and related compounds in water by gas chromatography/mass spectrometry. [J]. Anal Chem.,2005.77:711-717.
    118. Goddard J.-P., Reymond J.-L., Enzyme assays for high-throughput screening. [J]. Curr. Opin. Biotechnol.,2004.15:314-322.
    119. Cushing B.L., Kolesnichenko V.L., O'Connor C.J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles. [J]. Chem. Rev.,2004.104: 3893-3946.
    120. Liu R., Liu J.-f., Yin Y.-g., Hu X.-I., Jiang G.-b., Ionic liquids in sample preparation [J]. Anal. Bioanal. Chem.,2009.393(3):871-883.
    121. Tholey A., Heinzle E., Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry-applications and perspectives [J]. Anal. Bioanal. Chem.,2006.386(1):24-37.
    122. Fitzgerald J.J.D., Kunnath P., Walker A.V., Matrix-enhanced secondary ion mass spectrometry (ME SIMS) using room temperature ionic liquid matrices [J]. Anal. Chem.,2010.82(11):4413-4419.
    123. Laremore T.N., Zhang F., Linhardt R.J., Ionic liquid matrix for direct UV-MALDI-TOF-MS analysis of dermatan sulfate and chondroitin sulfate oligosaccharides [J]. Anal. Chem.,2007.79(4):1604-1610.
    124. Laremore T.N., Murugesan S., Park T.-J., Avci F.Y., Zagorevski D.V., Linhardt R.J., Matrix-assisted laser desorption/ionization mass spectrometric analysis of uncomplexed highly sulfated oligosaccharides using ionic liquid matrices [J]. Anal. Chem.,2006.78(6):1774-1779.
    125. Li W., Zhang Z., Han B., Hu S., Xie Y, Yang G., Effect of water and organic solvents on the ionic dissociation of ionic liquids [J].J. Phys. Chem. B,2007. 111(23):6452-6456.
    126. Lide D.R., CRC Handbook of Chemistry and Physics,90th Edition (CRC Handbook of Chemistry & Physics) [M].2009:CRC Press.
    127. Zhou M., McDonald J.F., Fernandez F.M., Optimization of a direct analysis in real time/time-of-flight mass spectrometry method for rapid serum metabolomic fingerprinting [J]. J. Am. Soc. Mass. Spectrom.,2010.21(1): 68-75.
    128. Huang Y.Q., You J.Q., Zhang J., Sun W., Ding L., Feng Y.Q., Coupling frontal elution paper chromatography with desorption corona beam ionization mass spectrometry for rapid analysis of chlorphenamine in herbal medicines and dietary supplements [J]. J. Chromatogr. A,2011.1218(41):7311-7316.
    129. Badjagbo K., Heroux M., Alaee M., Moore S., Sauve S., Quantitative analysis of volatile methylsiloxanes in waste-to-energy landfill biogases using direct APCI-MS/MS [J]. Environ. Sci. Technol,2010.44(2):600-605.
    130. Harris G.A., Nyadong L., Fernandez F.M., Recent developments in ambient ionization techniques for analytical mass spectrometry [J]. Analyst,2008. 133(10):1297-1301.
    131. Van Berkel G.J., Pasilis S.P., Ovchinnikova O., Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry [J].J.Mass Spectrom.,2008.43(9):1161-1180.
    132. Miao Z., Chen H., Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS) [J]. J. Am. Soc. Mass Spectrom.,2009.20(1):10-19.
    133. Venter A., Cooks R.G., Desorption electrospray ionization in a small pressure-tight enclosure [J]. Anal. Chem.,2007.79(16):6398-6403.
    134. Denes J., Katona M., Hosszu A., Czuczy N., Takats Z., Analysis of biological fluids by direct combination of solid phase extraction and desorption electrospray ionization mass spectrometry [J]. Anal. Chem.,2009.81(4): 1669-1675.
    135. Qin Z., Bragg L., Ouyang G, Pawliszyn J., Comparison of thin-film microextraction and stir bar sorptive extraction for the analysis of polycyclic aromatic hydrocarbons in aqueous samples with controlled agitation conditions [J]. J. Chromatogr. A,2008.1196-1197:89-95.
    136. Bruheim I., Liu X., Pawliszyn J., Thin-film microextraction [J]. Anal. Chem., 2003.75(4):1002-1010.
    137. Creaser C.S., Weston D.J., In-membrane preconcentration/membrane inlet mass spectrometry of volatile and semivolatile organic compounds [J]. Anal. Chem.,2000.72(13):2730-2736.
    138. Bocchini P., Pozzi R., Andalo C., Galletti G.C., Experimental upgrades of membrane introduction mass spectrometry for water and air analysis [J]. Anal. Chem.,2001.73(16):3824-3827.
    139. Sukola K., Koziel J., Augusto F., Pawliszyn J., Diffusion-based calibration for SPME analysis of aqueous samples [J]. Anal. Chem.,2001.73(1):13-18.
    140.欧阳钢峰, Pawliszyn J., 固相微萃取:原理与应用[M].2012:化学工业出 版社.
    141. Zhang Z., Yang M.J., Pawliszyn J., Solid-Phase Microextraction. A Solvent-Free Alternative for Sample Preparation [J]. Anal. Chem.,1994. 66(17):844A-853A.
    142. Pawliszyn J., Solid Phase Microextraction:Theory and Practice [M].1997: Wiley.
    143. Payne-Sturges D., Cohen J., Castorina R., Axelrad D.A., Woodruff T.J., Evaluating cumulative organophosphorus pesticide body burden of children: a national case study [J]. Environ. Sci. Technol,2009.43(20):7924-7930.
    144. Manicke N.E., Kistler T., Ifa D.R., Cooks R.G., Ouyang Z., High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry [J]. J. Am. Soc. Mass Spectrom.,2009.20(2):321-325.
    145. Chen H., Zheng J., Zhang X., Luo M., Wang Z., Qiao X., Surface desorption atmospheric pressure chemical ionization mass spectrometry for direct ambient sample analysis without toxic chemical contamination [J]. J. Mass Spectrom.,2007.42(8):1045-1056.
    146. Ovchinnikova O.S., Kertesz V., Van Berkel G.J., Molecular surface sampling and chemical imaging using proximal probe thermal desorption/secondary ionization mass spectrometry [J]. Anal. Chem.,2011.83(2):598-603.
    147. Huang M.Z., Hsu H.J., Wu C.I., Lin S.Y., Ma Y.L., Cheng T.L., Shiea J., Characterization of the chemical components on the surface of different solids with electrospray-assisted laser desorption ionization mass spectrometry [J]. Rapid Commun. Mass Spectrom.,2007.21(11):1767-1775.
    148. Rezenom Y.H., Dong J., Murray K.K., Infrared laser-assisted desorption electrospray ionization mass spectrometry [J]. Analyst,2008.133(2): 226-232.
    149. Sampson J.S., Muddiman D.C., Atmospheric pressure infrared (10.6 microm) laser desorption electrospray ionization (IR-LDESI) coupled to a LTQ Fourier transform ion cyclotron resonance mass spectrometer [J]. Rapid Commun. Mass Spectrom.,2009.23(13):1989-1992.
    150. Jorabchi K., Smith L.M., Single droplet separations and surface partition coefficient measurements using laser ablation mass spectrometry [J]. Anal. Chem.,2009.81(23):9682-9688.
    151. Brady J.J., Judge E.J., Levis R.J., Mass spectrometry of intact neutral macromolecules using intense non-resonant femtosecond laser vaporization with electrospray post-ionization [J]. Rapid Commun. Mass Spectrom.,2009. 23(19):3151-3157.
    152. Huang M.Z., Hsu H.J., Lee J.Y., Jeng J., Shiea J., Direct protein detection from biological media through electrospray-assisted laser desorption ionization/mass spectrometry [J]. Journal of proteome research,2006.5(5): 1107-1116.
    153. Takats Z., Wiseman J.M., Cooks R.G., Ambient mass spectrometry using desorption electrospray ionization (DESI):instrumentation, mechanisms and applications in forensics, chemistry, and biology [J].J. Mass Spectrom.,2005. 40(10):1261-1275.
    154. Chernetsova E.S., Morlock G.E., Revelsky I.A., DART mass spectrometry and its applications in chemical analysis [J]. Russ. Chem. Rev.,2011.80(3): 235-255.
    155. Musselman B., Crawford E., Krechmer J., DART-based Thermal Profiling of Solids and Powders as a Screening Tool for Quality Assessment [J]. Chromatogr. Today,2010.3(1):8-10.
    156. D'Agostino P.A., Chenier C.L., Hancock J.R., Lepage C.R.J., Desorption electrospray ionisation mass spectrometric analysis of chemical warfare agents from solid-phase microextraction fibers [J]. Rapid Commun. Mass Spectrom.,2007.21(4):543-549.
    157. Kennedy J.H., Aurand C., Shirey R., Laughlin B.C., Wiseman J.M., Coupling desorption electrospray ionization with solid-phase microextraction for screening and quantitative analysis of drugs in urine [J]. Anal. Chem.,2010. 82(17):7502-7508.
    158. 裴静娴,吴平生,β受体阻滞剂与高血压[J].中国高血压杂志2011.19(7):608-610.
    159. 党爱民,β肾上腺素能受体阻滞剂治疗高血压的机制[J].中国高血压杂,志2011.19(6):513-517.
    160. 牛玉娟,耿欣,张新妹,HPLC法测定富马酸比索洛尔氢氯噻嗪片中富马酸比索洛尔和氢氯噻嗪的含量[J].药物分析杂志,2005.2.5(9):1132-1133.
    161. Bhatt J., Subbaiah G., Kambli S., Shah B., Patel M., Saxena A., Baliga A., Nigam S., Parekh H., Yadav G., A high throughput and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the estimation of bisoprolol in human plasma using multiplexing technique [J]. J. Chromatogr. B,2007.852(1-2):374-381.
    162. 程爱平,欧贝丽,章展煌,沈春燕,朱山寅,UPLC-MS/MS法测定中成药制剂中添加的11种降压药物[J].海峡药学2011.23(7):63-66.
    163. 陈焕文,李明,周建光,费强,姜杰,金钦汉,张天幕,张燮,电喷雾解吸电离质谱法用于临床尿样的直接分析[J].高等学校化学学报,2006.27(8):1439-1442.
    164. Zhi-quan Z., Jie J., Ming L., Zhan-feng Z., Jun F., Fast Screening of Chicken Egg Lysozyme in White Wine Products by Extractive Electrospray Ionization Mass Spectrometry [J]. Chem. Res. in Chin. Universitys,2012.28(2): 200-203.
    165. Chen H., Talaty N.N., Takats Z., Cooks R.G., Desorption electrospray ionization mass spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment [J]. Anal. Chem.,2005.77(21): 6915-6927.
    166. Wu Z., Chen H., Wang W., Jia B., Yang T., Zhao Z., Ding J., Xiao X., Differentiation of dried sea cucumber products from different geographical areas by surface desorption atmospheric pressure chemical ionization mass spectrometry [J].J. Agric. Food Chem.,2009.57(20):9356-9364.
    167. Ding J., Yang S., Liang D., Chen H., Wu Z., Zhang L., Ren Y., Development of extractive electrospray ionization ion trap mass spectrometry for in vivo breath analysis [J]. Analyst,2009.134(10):2040-2050.
    168. Sai F., Hong M., Yunfeng Z., Huijing C., Yongning W., Simultaneous detection of residues of 25 beta(2)-agonists and 23 beta-blockers in animal foods by high-performance liquid chromatography coupled with linear ion trap mass spectrometry [J]. J. Agric. Food Chem.,2012.60(8):1898-1905.
    169. 孙宁玲,王静毅,陈穗金,周江云,动态血压监测方法评价比索洛尔及阿替洛尔的降压疗效[J].中国循环杂志,1995.10(9):515-517.
    170. Plosker G.L., Clissold S.P., Controlled release metoprolol formulations. A review of their pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and ischaemic heart disease [J]. Drugs,1992. 43(3):382-414.
    171. Glick S.D., Haskew R.E., Maisonneuve I.M., Carlson J.N., Jerussi T.P., Enantioselective behavioral effects of sibutramine metabolites [J]. Eur. J. Pharmacol.,2000.397(1):93-102.
    172. Hind I.D., Mangham J.E., Ghani S.P., Haddock R.E., Garratt C.J., Jones R.W., Sibutramine pharmacokinetics in young and elderly healthy subjects [J]. European journal of clinical pharmacology,1999.54(11):847-849.
    173. Walsh K.M., Leen E., Lean M.E., The effect of sibutramine on resting energy expenditure and adrenaline-induced thermogenesis in obese females [J]. International journal of obesity and related metabolic disorders:journal of the International Association for the Study of Obesity,1999.23(10): 1009-1015.
    174. Luque C.A., Rey J.A., The discovery and status of sibutramine as an anti-obesity drug [J]. Eur. J. Pharmacol.,2002.440(2-3):119-128.
    175. Connolly H.M., Crary J.L., McGoon M.D., Hensrud D.D., Edwards B.S., Edwards W.D., Schaff H.V., Valvular heart disease associated with fenfluramine-phentermine [J]. The New England journal of medicine,1997. 337(9):581-588.
    176. Weissman N.J., Appetite suppressants and valvular heart disease [J]. Am. J. Med. Sci.,2001.321(4):285-291.
    177. Connoley I.P., Liu Y.L., Frost I., Reckless I.P., Heal D.J., Stock M.J., Thermogenic effects of sibutramine and its metabolites [J]. Br. J. Pharmacol., 1999.126(6):1487-1495.
    178. Radhakrishna T., Narayana C.L., Rao D.S., Vyas K., Reddy G.O., LC method for the determination of assay and purity of sibutramine hydrochloride and its enantiomers by chiral chromatography [J]. J. Pharm. Biomed. Anal.,2000. 22(4):627-639.
    179. Chen J., Lu W., Zhang Q., Jiang X., Determination of the active metabolite of sibutramine by liquid chromatography-electrospray ionization tandem mass spectrometry [J]. J. Chromatogr. B,2003.785(2):197-203.
    180. Ding L., Hao X., Huang X., Zhang S., Simultaneous determination of sibutramine and its N-desmethyl metabolites in human plasma by liquid chromatography-electrospray ionization-mass spectrometry [J]. Anal. Chim. Acta,2003.492(1-2):241-248.
    181. Jung J., Hermanns-Clausen M., Weinmann W., Anorectic sibutramine detected in a Chinese herbal drug for weight loss [J]. Eorensic Sci. Int.,2006. 161(2-3):221-222.
    182. Zou P., Oh S.S., Kiang K.H., Low M.Y., Bloodworth B.C., Detection of sibutramine, its two metabolites and one analogue in a herbal product for weight loss by liquid chromatography triple quadrupole mass spectrometry and time-of-flight mass spectrometry [J]. Rapid Commun. Mass Spectrom., 2007.21(4):614-618.
    183. Huang Z., Xiao S., Luo D., Chen B., Yao S., Simultaneous determination of sibutramine and N-Di-desmethylsibutramine in dietary supplements for weight control by HPLC-ESI-MS [J]. J. Chromatogr. Sci.,2008.46(8): 707-711.
    184. Wang J., Chen B., Yao S., Analysis of six synthetic adulterants in herbal weight-reducing dietary supplements by LC electrospray ionization-MS [J]. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment,2008.25(7):822-830.
    185. Nyadong L., Late S., Green M.D., Banga A., Fernandez F.M., Direct quantitation of active ingredients in solid artesunate antimalarials by noncovalent complex forming reactive desorption electrospray ionization mass spectrometry [J]. J. Am. Soc. Mass Spectrom.,2008.19(3):380-388.
    186. Wang H., Wu Y, Guo B., Sun W., Ding L., Chen B., Quantification of low-polar small molecules using room temperature ionic liquids matrix-assisted desorption corona beam ionization [J]. Analyst,2012. 137(17):3982-3988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700