用户名: 密码: 验证码:
路易斯碱稳定的银(Ⅰ)前驱体及其制备互连材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着制作器件及布线的微细加工技术的不断发展,集成电路的集成度不断提高,从大规模集成电路发展到极大规模集成电路。传统集成电路制造工艺中金属互连材料已经受到很大的限制,而使用较低电阻率的互连材料可以减少引线的宽度和厚度,低K材料作为介质层可以减小分布电容,对降低互连线延迟时间起到重要作用,并能提高集成电路的密度。银具有极低的电阻率和极好的热传导性,它将是一种非常有希望的应用于极大规模集成电路的互连材料。金属有机化学气相沉积(MOCVD)技术是适合制备极大规模集成电路所需的连续、均匀、具有良好阶梯覆盖率的高质量银薄膜互连材料的技术之一。
     本文的主要研究内容是设计并合成一系列路易斯碱稳定的、新颖的银(I)的配合物(前驱体),通过元素分析、FT-IR、~1H,~(13)C{H},~(31)P{H} NMR以及X-射线单晶衍射对合成的化合物进行了表征,利用TG-DSC对其热稳定性和分解机理进行了初步研究,最后筛选出几种合适的银(I)配合物作为前驱体进行MOCVD薄膜生长工艺进行了研究。研究工作主要包括以下几个方面:
     (1)有机膦稳定的烷基取代磺酸银(I)配合物(前驱体)以及制备银互连材料的研究
     分别以亚甲基二磺酸和甲磺酸作为主配体,利用有机膦作为辅助配体,设计、合成了一系列有机膦稳定的亚甲基二磺酸银(I)配合物[CH_2(SO_3)_2Ag_2Ln](L=PPh_3; n=2,1a; n=3,1b; n=4,1c; n=5,1d; n=6,1e; L=P(OEt)_3; n=2,1f; n=4,1g; n=6,1h; L=P(OMe)_3; n=2,1i; n=4,1j; n=6,1k)和三甲氧基膦稳定的甲基磺酸银(I)配合物[CH_3SO_3Ag L’n](L’=P(OMe)_3; n=1,1l;n=2,1m)。研究了主配体、辅助配体对前驱体的分解机理、热稳定性和成膜性能的影响。
     (2)路易斯碱稳定的丁二酰亚胺银(I)配合物(前驱体)以及制备银互连材料的研究
     以丁二酰亚胺作为主配体,利用路易斯碱作为辅助配体,设计、合成了一系列路易斯碱稳定的丁二酰亚胺银(I)配合物[Ln Rm AgNC_4H_4O_2](L=P(OMe)_3; m=0, n=1,2a; L=P(OMe)_3; m=0, n=2,2b; L=P(OEt)_3; m=0, n=1,2c; L=TEMEDA; m=0, n=1,2d; L=TEMEDA, R=P(OMe)_3; m=1, n=1,2e)。研究了辅助配体对配合物的分解机理、热稳定性和成膜性能的影响。
     (3)有机膦稳定的N-乙酰基苯甲酰亚胺银(I)配合物(前驱体)以及制备银互连材料的研究
     以N-乙酰基苯甲酰胺作为主配体,利用有机膦作为辅助配体,设计、合成了一系列含有Ag-N键的N-乙酰基苯甲酰胺银(I)配合物[Ln AgNC_9H_8O_2](L=PPh_3; n=1,3a; n=2,3b; n=3,3c; L=P(OEt)_3; n=1,3d; n=2,3e; n=3,3f)。研究了辅助配体对配合物的分解机理、热稳定性和成膜性能的影响。
     (4)有机膦稳定的N-羟基丁二酰亚胺银(Ι)配合物(前驱体)以及制备银互连材料的研究
     以N-羟基丁二酰亚胺作为主配体,利用有机膦作为辅助配体,设计、合成了一系列含有Ag-O-N键的N-羟基丁二酰亚胺银(Ι)配合物[Ln AgO_3C_4H_4N](L=PPh_3; n=1,4a; n=2,4b; L=P(OEt)_3; n=1,4c; n=2,4d; L=P(OMe)_3; n=1,4e; n=2,4f)。初步研究了有机膦稳定的N-羟基丁二酰亚胺的配合物[Ln AgO_3C_4H_4N]与溶剂二氯甲烷发生的单取代和双取代反应。
With the continuous development of micro fabrication technology in the production ofcomponents and wiring, the components on the integrated circuits continues to increase and the largescale integration is becoming the Ultra Large Scale Integration (ULSI). Metal interconnect material inthe traditional integrated circuit manufacturing process has been restricted. However, the use of lowerresistivity interconnect material could reduce the width and thickness of the line, low-K material asthe dielectric layer could reduce the distributed capacitance, it plays an important role in reducingtime delay of interconnect and increasing the density of integrated circuits. Silver is a promisinginterconnect material in microelectronics due to the lowest resistivity and the highest thermalconductivity. Metal Organic Chemical Vapor Deposition (MOCVD) is a very effective technique forthe contacts in ultra large-scale integration (ULSI) devices, because of its high deposition rates withgood step coverage and high aspect ratio in the multilevel metallization structure.
     In this dissertation, one series of Lewis-Base stabilized silver(I) complexes (precursors) havebeen synthesized. The complexes obtained have been characterized by IR spectroscopy,~1H NMR,~(13)C{H} NMR,~(31)P{H} NMR, elemental analysis and X-ray single crystal analysis, respectively. Then,the thermal analysis of the complexes was studied by ThemoGravimetry (TG) and DifferentialScanning Calorimetric (DSC). Finally, several screened silver(I) complexes have been tested asprecursors for the deposition of silver by means of MOCVD techniques. The specific contents of thisdissertation are presented as follows:
     (1) Research on organophosphine/phosphate stabilized silver(Ι) alkyl sulphonates precursors and thepreparation of interconnect material.
     Using methanedisulphonic acid or methanesulfonic acid as primary ligand andorganophosphine/phosphate as ancillary ligands, disilver(I) methanedisulphonates complexes[CH_2(SO_3)_2Ag_2Ln](L=PPh_3; n=2,1a; n=3,1b; n=4,1c; n=5,1d; n=6,1e; L=P(OEt)_3; n=2,1f; n=4,1g; n=6,1h; L=P(OMe)_3; n=2,1i; n=4,1j; n=6,1k) and silver(I) methanesulfonatescomplexes [CH_3SO_3Ag L’n](L’=P(OMe)_3; n=1,1l; n=2,1m) were prepared. The influence ofprimary ligand and the ancillary ligands on decomposition mechanism, thermal stability and the filmperformance were studied and discussed.
     (2) Research on Lewis-Base stabilized N-silver(Ι) succinimide precursors and the preparation ofinterconnect material.
     Using succinimide as primary ligand and Lewis-Base as ancillary ligands, N-silver(Ι)succinimide complexes [Ln Rm AgNC_4H_4O_2](L=P(OMe)_3; m=0, n=1,2a; L=P(OMe)_3; m=0, n=2,2b; L=P(OEt)_3; m=0, n=1,2c; L=TEMEDA; m=0, n=1,2d; L=TEMEDA, R=P(OMe)_3;m=1, n=1,2e) were prepared. The influence of the ancillary ligands on decomposition mechanism,thermal stability and the film performance were studied and discussed as well.
     (3) Research on organophosphine/phosphate stabilized N-silver(I) acetylbenzamide precursors and thepreparation of interconnect material.
     Using acetylbenzamide as primary ligand and organophosphine/phosphate as ancillary ligands,N-silver(I) acetylbenzamide complexes [Ln AgNC_9H_8O_2](L=PPh3; n=1,3a; n=2,3b; n=3,3c; L=P(OEt)_3; n=1,3d; n=2,3e; n=3,3f) were prepared. The influence of the ancillary ligands ondecomposition mechanism, thermal stability and the film performance were studied and discussed.
     (4) Research on organophosphine/phosphate stabilized silver(Ι) N-hydroxysuccinimide precursors andthe preparation of interconnect material.
     Using N-hydroxysuccinimide as primary ligand and organophosphine/phosphate as ancillaryligands, silver(Ι) N-hydroxysuccinimide complexes [Ln AgO_3C_4H_4N](L=PPh_3; n=1,4a; n=2,4b;L=P(OEt)_3; n=1,4c; n=2,4d; L=P(OMe)_3; n=1,4e; n=2,4f) were prepared. A preliminarystudy of the formation of substituted methane shows dichloromethane can react withtriphenylphosphine stabilized silver(I) N-hydroxysuccinimide complexes under mild conditions.
引文
[1]岩田穆.角南英夫.超大规模集成电路:基础设计制造工艺[M].北京:科学出版社,2007,1~25.
    [2]陆剑侠,王效平,苏舟.微电子技术的发展趋势与展望[J].微处理机,1999,2(1):1~7.
    [3]徐述.微电子技术的发展与展望[J].成都教育学院学报,2002,16(10):72~73.
    [4] Chae Y K, Shimogaki Y, Komiyama H. The role of gas-phase reactions during chemical vapordeposition of copper from (hfac)Cu(tmvs)[J]. Journal of the Electrochemical Society,1998,145(12):4226~4233.
    [5] Son J H, Park M Y, Rhee S W. Growth rate and microstructure of copper thin films depositedwith metalorganic chemical vapor deposition from hexafluoroacetylacetonate copper(I)allyltrimethylsilane [J]. Thin Solid Films,1998,335(1-2):229~236.
    [6]徐毓龙,周晓华,徐玉成.集成电路铜连线技术[J].物理,1999,28(6):364~367.
    [7]吴德馨.迈进二十一世纪的集成电路[J].世界科技研究与发展,1999,21(4):1~9.
    [8]陈智涛,李瑞伟.集成电路片内铜互连技术的发展[J].微电子学,2001,31(4):239~241.
    [9] Young-Soon K, Hyung K, Joong-Hee C, et al. Electrochemical deposition of copper andruthenium on titanium [J]. Electrochimica Acta,2006,51(25):5445~5451.
    [10]张炜,成旦红,王建泳等.超大集成电路互连线电沉积铜的研究动态[J].材料保护,2005,38(12):33~38.
    [11]关旭东.硅集成电路工艺基础[M].北京:北京大学出版社,2003,232~2270.
    [12]郝跃,贾新章,吴玉广.微电子概论[M].北京:高等教育出版社,2003,123~127.
    [13]陈力俊.微电子材料与制程[M].上海:复旦学出版社,2005,278~328.
    [14]刘玉岭,檀柏梅,张楷亮.微电子技术工程:材料、工艺与测试[M].北京:电子工业出版社,2004,437~497.
    [15]王阳元,康晋峰.超深亚微米集成电路中的互连问题——低K介质与Cu的互连技术[J].半导体学报,2002,23(11):1121~1134.
    [16]杜鸣,郝跃.超深亚微米集成电路的铜互连技术布线工艺与可靠性[J].西安电子科技大学学报,2005,32(1):56~59.
    [17] Kodas T T, Hampden-Smith M J. The chemistry of metal CVD [M]. VCH, Weinheim,1994,178~327.
    [18] Helneder H, K rner H, Mitchell A, et al. Comparison of copper damascene and aluminum RIEmetallization in BICMOS technology [J]. Microelectronic Engineering,2001,55(1-4):257~268.
    [19]徐小城.深亚微米集成电路工艺中铜金属互联技术[J].微电子技术,2001,29(6):1~7.
    [20] Murarka S P. Advanced materials for future interconnections of the future need and strategy [J].Microelectronic Engineering,1997,37/38(1):29~37.
    [21] Gross M E, Dress R, Lingk C, et al. Electroplated damascene copper: process influences onrecrystallization and texture [J]. Materials Research Society,1999,564(1):379~386.
    [22]宋登元,宗晓萍,孙荣霞等.集成电路铜互连线及相关问题的研究[J].半导体技术,2001,26(2):29~32.
    [23] Lakshminaryanan S, Steigerwald J, Price D T, et al. Contact and via structures with copperinterconnects fabricated using dual damascene technology [J]. IEEE Electron Device Letters,1994,15(8):307~309.
    [24] Ikeda M, Kudo H, Shinohara R, et al. Integration of organic low-k material with Cu damasceneemploying novel process [C]. Proceedings of International Interconnect Technology Conference(IITC98),1998,1-3:131~133.
    [25]黄浩,魏良,唐电.半导体金属互连集成技术的进展与趋势[J].金属热处理,2004,29(8):26~31.
    [26] Diamand Y S, Inbern A, Sverdlov I E, et al. Electroless silver with tunsten thin films formicroelectronics and microelectromechanical system applications [J]. Journal of theElectrochemical Society,2000,147(9):3345~3349.
    [27]周菊先,赵峰.金属化纺织材料的研制与应用[J].上海纺织科技,2001,29(1):47~48.
    [28]岳升彩,王用梅.现代科技在纺织品上的应用—银纤维[J].山东纺织经济,2007,40:60~62.
    [29]杨娜,严玉蓉,赵耀明.银系抗菌剂及其在纺织材料中的应用[J].化纤与纺织技术,2004,3:20~23.
    [30]金太权,雷军.溅射法制作银薄膜[J].吉林工学院学报,1992,12(4):73~76.
    [31]陈红萍,韩建军,赵修建.传输太阳能用Ag/PMMA空芯光纤的制备[J].激光与红外,2007,37(3):255~261.
    [32] Reid J, Bhaskaran V, Contolini R, et al. Optimization of damascene feature fill for copperelectroplating process [C]. Interconnect Technology IEEE International Conference,1999,26:284~286.
    [33] Chang Y Y, Wang Y Y, Wan C C. Research on applying direct plating to additive process forprinted circuit board [J]. Journal of Electronic Materials,2000,29(8):1001~1006.
    [34]张国海,夏洋,龙世兵等. ULSI中铜互连线技术的关键工艺[J].微电子学,2001,31(2):146~149.
    [35]王豫,水恒勇.化学气相沉积制膜技术的应用与发展[J].热处理,2001,16(4):1~4.
    [36]郑慧雯.金属有机化学气相沉积法制备功能梯度材料的方法和机理的研究[D],[郑慧雯硕士论文].重庆:西南师范大学,2004.
    [37] Liang S C. Impurities in refractory metals/silicides [J]. Journal of Vacuum Science andTechnology,1984, B2(4):714~717.
    [38] Choy K L. Chemical vapor deposition of coatings [J]. Progress in Materials Science,2003,48(2):57~170.
    [39] Partenheimer W, Johnson E H. The syntheses of some new silver olefin compounds of the type(olefin)(β-diketonato)silver(I)[J]. Inorganic Chemistry,1972,11(11):2840~2841.
    [40] Partenheimer W, Johnson E H. Heats of reaction of triphenylphssphhe with compounds of thetype hexafluoroacetylacetonato(olefin)silver(I)[J]. Inorganic Chemistry,1973,12(6):1274~1278.
    [41] Han J L, Shen Y Z, Li C X. Synthesis and characterization of triphenylphosphine stabilizedsilver α,β-unsaturated carboxylate: Crystal structure of [Ag(O2CCH=C(CH3)2)(PPh3)2][J].ActaInorganica Chimica Acta,2005,358(15):4417~4422.
    [42] Teichgraber J, Dechert S, Meyer F. Dicopper(I) oxalate complexes as molecular precursors forthe deposition of copper compounds [J]. Journal of Organometallic Chemistry,2005,690(23):5255~5263.
    [43] Rickerby J, Steinke J H G. Current trends in patterning with copper [J]. Chemical Reviews,2002,102(5):1525~1549.
    [44]任有达.酸碱理论及其在有机化学中的应用[M].北京:人民教育出版社,1980,178~237.
    [45] Rickerby J, Steinke J H G. Current trends in patterning with copper [J]. Chemical Reviews,2002,102(5):1525~1549.
    [46] Jain A, Chi K, Kodas T T, Hampden-Smith M J. Chemical vapor deposition of copper fromhexafluoroacetylacetonato copper(I) vinyltrimethylsilane [J]. Journal of the ElectrochemicalSociety,1993,140(5):1434~1439.
    [47] N. Awaya, Y. Arita. High rate deposition copper CVD [C]. Proceedings of the1991Symposium on VLSI Thchnology. Japan: Orso,1991,37~38.
    [48] Parmeter J E, Petersen G A, Smith P M, et al. Characterization of thin copper films grown viachemical vapor deposition using liquid coinjection of trimethylvinylsilane and(hexafluoroacetylacetonate) Cu (trimethylvinylsilane)[J]. Journal of Vacuum Science andTechnology,1995, B13(1):130~136.
    [49] Braeckelmann G, Manger D, Burke A, et al. Chemical vapor deposition of copper from CuIhexafluoroacetylacetonate trimethylvinylsilane for ultralarge scale integration applications [J].Journal of Vacuum Science and Technology,1996, B14(3):1828~1836.
    [50] Kim S, Choi D J, Yoon K R, et al. Characteristics of chemical-vapor-deposited copper on theCu-seeded TiN substrates [J]. Thin Solid Films,1997,311(1):218~221.
    [51] Shin H K, M. Hampden-Smith J, Duesler E N, et al. The chemistry of copper(I) β-diketonatecompounds. Part V. Syntheses and characterization of (β-diketonate)CuLnspecies where L=PBu3, PPh3, and PCy3; n=1and2; crystal and molecular structures of (acac)Cu(PCy3),(tfac)Cu(PCy3),(hfac)Cu(PCy3), and (hfac)Cu(PCy3)2[J]. Canadian Journal of Chemistry,1992,70:2954~2966.
    [52] Voorhoeve R J H, Merewether J W. Selective deposition of silver on silicon by reaction withsilver fluoride vapor [J]. Journal of the Electrochemical Society,1972,119(3):364~368.
    [53] Clinton N A, Kochi J K. The catalytic decomposition of tetraethyllead by copper(I). Acetolysisof alkylcopper(I) intermediates [J]. Journal of Organometallic Chemistry,1972,42(1):229~240.
    [54] Bayler A, Schier A, Schmidbaur H. Four-coordinate gold(I), silver(I), and copper(I) complexeswith a large-span chiral ditertiary phosphine ligand [J]. Inorganic Chemistry,1998,37(17):4353~4359.
    [55] Dines M B. Phosphine and olefin complexes of copper(I) trifluoroacetate [J]. InorganicChemistry,1972,11(12):2949~2952.
    [56] Lor B G, Iglesias M, Cascales C, et al. A diamine copper(I) complex stabilized in situ withinthe ferrierite framework catalytic properties [J]. Chemistry of Materials,2001,13(4):1364~1368.
    [57] Kochi J K. Electron-transfer mechanisms for organometallic intermediates in catalytic reactions[J]. Accounts of Chemical Research,1974,7(10):351~360.
    [58] Schmidt H, Shen Y, Leschke M, et al. Phosphanstabilisierte silber(I)-carboxylate: synthese undverwendung in der silber-CVD [J]. Journal of Organometallic Chemistry,2003,669(1-2):25~31.
    [59] Zhang Y Y, Wang Y, Tao X, et al. Synthesis and characterization oforganophosphine/phosphite stabilized silver(I) methanesulfonates: crystal structures of[Ph3PAgO3SCH3] and [(Ph3P)2AgO3SCH3][J]. Polyhedron,2008,27(11):2501~2505.
    [60] Armarego W L F, Chai C L L. Purification of laboratory chemicals (5thed.)[M].Butterworth-Heinernann publications,2003.
    [61] Hannover C W, Garbsen A K-C, Hannover M H, et al. Low pressure process for the preparationof methanedisulfonic acid alkali metal salts [P]. USA, A1, US2006/0155142, Jul.13,2006.
    [62] Doyle G, Eriksen K A, Engen D V. Alkene and carbon monoxide derivatives of copper(I) andsilver(I), and diketonates [J]. Organometallics,1985,4(5):830~835.
    [63] Opitz G, Wiehn W, Ziegler M L, et al. Folgereaktionen von sulfenen aus sulfonylchloriden undterti ren aminen, kristallstrukturanalyse vonbis(trimethylammoniosulfonyl)methanid-tetraphenylborat. n-σ*-wechselwirkungen(hyperkonjugation und homohyperkonjugation) in sulfen amin-s,n-addukten [J]. EuropeanJournal of Inorganic Chemistry,1992,125(7):1621~1626.
    [64] Roth N, Jakob A, Waechtler T, et al. Phosphane copper(I) complexes as CVD precursors [J].Surface and Coatings Technology,2007,201(22-23):9089~9094.
    [65] Mothes R, Rüffer T, Shen Y Z, et al. Phosphite copper(I) trifluoroacetates[((RO)3P)mCuO2CCF3](m=1,2,3): synthesis, solid state structures and their potential use asCVD precursors [J]. Dalton Transactions,2010,39(46):11235~11247.
    [66] Ardizzoia G A, La Monica G, Maspero A., et al. Silver(I) pyrazolates. synthesis and X-ray and31P-NMR characterization of triphenylphosphine complexes and their reactivity towardheterocumulenes [J]. Inorganic Chemistry,1997,36(11):2321~2328.
    [67] Li F F, Ma J F, Yang J, et al. Syntheses, structures and luminescence of silver(I) sulfonatecomplexes with PPh3ligand [J], Journal of Molecular Structure,2006,787(1-3):106~112.
    [68] Bellamy L J. The infrared spectra of complexes moleculaes [M]. Chapman and Hall, London,third ed.,1975.
    [69] Miles M G, Doyle G, Cooney R P, et al. Raman and infrared spectra and normal coordinates ofthe trifluoromethanesulfonate and trichloromethanesulfonate anions [J]. Spectrochimica Acta,Part A,1969,25(9):1515~1526.
    [70] Capwell R J, Rhee K H, Seshadri K S. Vibrational spectra of Na and Li methanesulfonates [J].Spectrochimica Acta, Part A,1968,24(8):955~958.
    [71] Chackalackal S M, Stafford F E. Infrared spectra of methane-, fluoro-, and chlorosulfonic acids[J]. Journal of the American Chemical Society,1966,88(21):4815~4819.
    [72] Bala R, Sharma R P, Bond A D. Second-sphere coordination in hexaamminecobalt(III) salt withorganic sulphonate anion: Synthesis, characterisation and X-ray crystal structure of[Co(NH3)6](CH3SO3)3[J]. Journal of Molecular Structure,2007,830(1-3):198~203.
    [73] Panicker C Y, Varghese H T, Philip D, et al. FT-IR, FT-Raman and SERS spectra ofpyridine-3-sulfonic acid [J]. Spectrochimica Acta, Part A,2006,64(3):744~747.
    [74] Philip D, Eapen A, Aruldhas G. Vibrational and surface enhanced raman scattering spectra ofsulfamic acid [J]. Journal of Solid State Chemistry,1995,116(2):217~223.
    [75] Daasch L W, Smith D C, Infrared spectra of phosphorus compounds [J]. Analytical Chemistry,1951,23(6):853~868.
    [76] Bruker AXS Inc. SAINT, Area detector control and data integration and reduction software [M].USA: Madison, WI,1997.
    [77] Sheldrick G M. SADABS, Program for Empirical Absorption Correction of Area Detector Data[M]. Germany: University of Gottingen,1997.
    [78] Sheldrick G M. SHELX-97, Programs for Crystal Structure Analysis (Release97-2)[M].Germany: University of Gottingen,1997.
    [79] Tao X, Li Y Q, Xu H H, et al. Synthesis and characterization of organophosphine/phosphitestabilized N-silver(I) succinimide: crystal structure of [(Ph3P)3·AgNC4H4O2][J]. Polyhedron,2009,28(6):1191~1195.
    [80] Charbonnier P F, Loiseleur R F H. Double conformation du groupement méthanedisulfonato αl'intérieur d'un meme cristal de méthanedisulfonate d'argent(I): Ag2(SO3CH2SO3)[J]. ActaCrystallographica Section B: Structural Science,1979, B35(8):1773~1775.
    [81] Teo B K, Calabrese J C. Stereochemical systematics of metal clusters. Structuralcharacterization of tetrameric triphenylphosphine silver chloride. An analysis of bonded vs.nonbonded interactions in the cubane-like (R3Y)4M4X4species [J]. Inorganic Chemistry,1976,15(10):2467~2758.
    [82] Whitcomb D R, Rajeswaran M. Variable Ag-O bonding patterns in silver cyclic amidetri-aryl-phosphine complexes [J]. Journal of Chemical Crystallography,2006,36(9):587~598.
    [83] Terroba R, Hursthouse M B, Lagunab M, et al. Unexpected diastereoisomeric-trimers in thecrystalline structure of triflatetriphenylphosphinesilver(I)[J]. Polyhedron,1999,18(6):807~810.
    [84] Lu X L, Leong W K, Andy Hor T S, et al. Coordination polymers and supramolecular structuresin Ag(I)triflate-dppf systems (dppf=1,1’-bis(diphenylphosphino)ferrocene)[J]. Journal ofOrganometallic Chemistry,2004,689(10):1746~1756.
    [85] Meiners J H, Clardy J C, Verkade J G. Crystal and molecular structure of tetrakis(trimethylphosphite-di-.mu.-nitrato-disilver(I). Case of symmetric nitrate-oxygen bridging [J]. InorganicChemistry,1975,14(3):632~636.
    [86] Evanoff Jr D D, Chumanov G. Synthesis and optical properties of silver nanoparticles andarrays [J]. ChemPhysChem,2005,6(7):1221~1231.
    [87] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission throughsub-wavelength hole arrays [J]. Nature,1998,391(6668):667~669.
    [88] Link S, El-Sayed M A, Spectral properties and relaxation dynamics of surface plasmonelectronic oscillations in gold and silver nanodots and nanorods [J]. Journal of PhysicalChemistry B,1999,103(40):8410~8426.
    [89] Evanoff D D, Chumanov Jr G. Size-controlled synthesis of nanoparticles.2. Measurement ofextinction, scattering, and absorption cross sections [J]. Journal of Physical Chemistry B,2004,108(37):13957~13962.
    [90] Piotr P, Edward S, Michal C, et al. Charaterization of silver trimethylacetate complexes withtertiary phosphines as CVD precursors of thin silver films [J]. Chemical Vapor Deposition,2005,11(1):53~59.
    [91] Aroza R, Mohrb F, Cerradaa E, et al. One-pot self-assembly of trinuclear silver(I) clusterscontaining propargyl alcohols and bis(diphenylphosphino)methane (dppm) ligands [J].Polyhedron,2006,25(15):3066~3070.
    [92] Yamamoto T, Ehara Y, Kubota M, et al. Preparation of copper(I)-phosphine complexes havingCu-N bonds and their reactions with organic halides [J]. Bulletin of the Chemical Society ofJapan,1980,53(5):1299~1302.
    [93] Zanotto L, Benetollo F, Natali M, et al. Facile synthesis and characterization of newβ-diketonate silver complexes. Single-crystal structures of(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(2,2’-bipyridine) silver(I) and(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N,N’,N’-tetramethylethylenediamine) silver(I)and their use as precursors in the MOCVD of silver films [J]. Chemical Vapor Deposition,2004,10(4):207~213.
    [94] Perron J, Beauchamp A L. Silver complexes with succinimide as models for the interaction ofsilver(I) with the uracil residue [J]. Inorganic Chemistry,1984,23(18):2853~2859.
    [95] Roundhill D M. Reaction of imides with some zerovalent platinum and palladium complexes[J]. Inorganic Chemistry,1970,9(2):254~258.
    [96] Robert M S, Francis X W, David J K. Spectrometric identification of organic compounds (7thed.)[M]. VCH,2005(中译本:秦川等,有机化合物的波谱解析,上海:华东理工大学出版社,2006).
    [97] Codina A, Crespo O, Fernández E J, et al. Structural characterization of silver(I) complexes ofdiphenylmethanimine and (diphenylmethyleneamino)diphenylphosphine [J]. InorganicaChimica Acta,2003,347(1):9~15.
    [98] Richmond T G, Kelson E P, Arif A M, et al. Mechanism of formation of coordination polymers:a structural model for polymer chain growth [J]. Journal of the American Chemical Society,1988,110(7):2334~2335.
    [99] Whitcomb D R, Rajeswaran M.(2,2’-Bipyridyl-κ2N,N’)(succinamidato-N) silver(I)[J]. ActaCrystallographica. Section E, Structure reports online,2007,63(11): m2753.
    [100] Whitcomb D R, Rajeswaran M. Catena-poly[[aqua-1κO-μ2-succinimidato-1:2κ2O:N-disilver(I)]-μ3-succinimidato-1:2:1’κ3O:N:O'][J]. ActaCrystallographica. Section E, Structure reports online,2007,63(4): m1179~m1181.
    [101] Charles D H, Aristotileg G P. Preparation of acyclic imides [J]. Journal of Organic Chemistry,1959,24(3):388~392.
    [102] Etter M C, Reutzal S M. Hydrogen bond directed cocrystallization and molecular recognitionproperties of acyclic imides [J]. Journal of the American Chemical Society,1991,113(7):2586~2598.
    [103] Woldbaek T, Klaeboe P, Christensen D H, The vibrational spectra of succinimide andN-deuteriosuccinimide [J]. Acta Chemica Scandinavica,1976,30(A):531~539.
    [104]陶弦.有机膦稳定的银(Ι)配合物的合成与表征[D],[硕士学位论文].南京:南京航空航天大学,2009.
    [105] Etter M C, Britton D, Reutzel S M. Structures of N-acetylbenzamide, N-propionylbenzamideand N-butyrylbenzamide and analysis of imide hydrogen-bond patterns [J]. ActaCrystallographica Section C,1991,47(3):556~561.
    [106] Torres M, Vega J C. Reaction of dichloromethane with thioanions.2. Formation of5-alkyl-1,3,5-dithiazinanes,3,5-dialkyl-1,3,5-thiadiazinanes, and1,3,5-trialkyl-1,3,5-triazinanesby reaction of dichloromethane with sodium sulfide and monoalkylamines [J]. Phosphorus,Sulfur, and Silicon,1995,106(1-4):125~130.
    [107] Hansen S H, Nordholm L, N-alkylation of tertiary aliphatic amines by chloroform,dichloromethane and1,2-dichloroethane [J]. Journal of Chromatography A,1981,204(1):97~101.
    [108] Beckett A H, Ali H M. Artifacts produced by using dichloromethane in the extraction andstorage of some antihistaminic drugs [J]. Journal of Chromatography A,1979,177(2):255~262.
    [109] Wright D, Wulff C. Chloromethyltriethylammonium chloride. A serendipitous preparation [J].Journal of Organic Chemistry,1970,35(12):4252~4252.
    [110] Mills J E, Maryanoff C A, McComsey D F, et al. Reaction of amines with methylene chloride.Evidence for rapid aminal formation from N-methylenepyrrolidinium chloride and pyrrolidine[J]. Journal of Organic Chemistry,1987,52(9):1857~1859.
    [111] Ardizzoia G A, Monica G L, Maspero A, et al. Silver(I) pyrazolates. synthesis and X-ray and31P-NMR characterization of triphenylphosphine complexes and their reactivity towardheterocumulenes [J]. Inorganic Chemistry,1997,36(11):2321~2328.
    [112] Bachman R E, Andretta D F. Metal-ligand bonding in coinage metal-phosphine complexes: thesynthesis and structure of some low-coordinate silver(I)-phosphine complexes [J]. InorganicChemistry,1998,37(21):5657~5663.
    [113] Feazell R P, Carson C E, Klausmeyer K K. Silver(I)3-aminomethylpyridine complexes, Part2:Effect of ligand ratio, hydrogen bonding, and π-stacking with an interacting anion [J]. InorganicChemistry,2006,45(6):2635~2643.
    [114] Jakob A, Schmidt H, Walfort B, et al. Phosphane-and phosphite-silver(I) phenolates: Synthesis,characterization and their use as CVD precursors [J]. Inorganica Chimica Acta,2011,365(1):1~9.
    [115] Bardají M, Crespo O, Laguna A, et al. Structural characterization of silver(I) complexes[Ag(O3SCF3)(L)](L=PPh3, PPh2Me, SC4H8) and [AgLn](CF3SO3)(n=2–4),(L=PPh3, PPh2Me)[J]. Inorganica Chimica Acta,2000,304(1):7~16.
    [116] Ji J G, Zhang D Y, Jiang J, et al. Studies on the reaction of HOBt, HOOBt and HOSu withchloroalkane solvents and their affects on the peptide synthesis [J]. Acta Chimica Sinica,2001,59(10):1740~1744.
    [117] Aderson G W, Zimmerman J E, Callahan F M. The use of esters of N-hydroxysuccinimide inpeptide synthesis [J]. Journal of the American Chemical Society,1964,86(9):1839~1842.
    [118]范如霖.有机合成特殊技术[M].上海:上海交通大学出版社,1985,109.
    [119]张启昆,卢峰.现代无机合成化学[M].汕头:汕头大学出版社,1995,59.
    [120] Jakob A, Schmidt H, Djiele P, et al. Phosphane/phosphite silver(I) carboxylates as CVDprecursors [J]. Microchimica Acta,2007,156(1-2):77~81.
    [121] Jakob A, Schmidt H, Walfort B, et al. Tri-n-butyl-phosphane silver(I) complexes withcarboxylate-, tropolonateor N-hydroxyphthalimide building blocks; synthesis and their use asspin-on precursors [J]. Zeitschrift für Anorganische und Allgemeine Chemie,2005,631(6-7),1079~1086.
    [122] Struga M, Kossakowski J, Stefańska J, et al. Synthesis and antibacterial activity ofbis-[2-hydroxy-3-(1,7,8,9,10-pentamethyl-3,5-dioxo-4-aza-tricyclo[5.2.1.0(2,6)]dec-8-en-4-yloxy)-propyl]-dimethyl-ammonium chloride [J]. European Journal of Medicinal Chemistry,2008,43(6):1309~1314.
    [123] Einhorn C, Einhorn J, Abbadi C M. Mild and convenient one pot synthesis of N-hydroxyimidesfrom N-unsubstituted imides [J]. Synthetic Communications,2001,31(5):741~748.
    [124] Krawczyk H, Albrecht L, Wojciechowski J, et al. Spontaneous nef reaction of3-aryl-2-(diethoxyphosphoryl)-4-nitroalkanoic acids [J]. Tetrahedron,2006,62(39):9135~9145.
    [125] Xu S H, Li Y X, Liao X J, et al. Bis(benzotriazol-1-yloxy)methane [J]. Acta Crystallographica.Section E, Structure reports online,2006,62(11): o4981~o4982.
    [126] Zhang Y, Zang H J, Cheng B W, et al. Bis(acetophenone oxime) O,O'-methylene ether [J]. ActaCrystallographica. Section E, Structure reports online,2008,64(12): o2452~o2452.
    [127] Desiraju G R. The C-H.cntdot..cntdot..cntdot.O hydrogen bond in crystals: what is it?[J].Accounts of Chemical Research,1991,24(10):290~296.
    [128] Srivastava P C, Bajpai S, Lath R, et al. C(sp3) H O and C(sp2) H O hydrogen bonds in acyclic-and cyclic-organotellurium carboxylates [J]. Journal of Organometallic Chemistry,2002,649(1):70~77.
    [129] Braga D, Grepioni F, Biradha K, et al. Hydrogen bonding in organometallic crystals.2.C-H.cntdot..cntdot..cntdot.O hydrogen bonds in bridged and terminal first-row metalcarbonyls [J]. Journal of the American Chemical Society1995,117(11):3156~3166.
    [130] Desiraju G R. Hydrogen bonds and other intermolecular interactions in organometallic crystals[J]. Journal of the Chemical Society, Dalton Transactions,2000,21(1):3745~3751.
    [131] Guo W, He J Q, Li Z C, et al. Chain-like assembly of threonine-based cyclophanes through π–πinteraction and C–H…O hydrogen bond [J]. Tetrahedron Letters,2004,45(29):5763~5766.
    [132] Srivastava P C, Bajpai S, Bajpai S, et al. A rare supramolecular assembly (stairs) of (cyclictellurane)1,3-dihydro-2λ4-benzotellurole-2,2-diyldicinnamate [C8H8Te(OCOCH CHC6H5)2]based on intermolecular and intramolecular Te–O secondary bonds and assisted by C–H–Ohydrogen bonds [J]. Inorganica Chimica Acta,2005,358(1):227~232.
    [133] Babu M M, Singh S K, Balaram P. A C–H…O hydrogen bond stabilized polypeptide chainreversal motif at the C terminus of helices in proteins [J]. Journal of Molecular Biology,2002,322(4):871~880.
    [134] Hashimoto M, Tajima F, Yamamura K. Tetrameric O–H…O hydrogen-bond systemsaccompanied by C–H…O hydrogen-bonds in the crystal of1,4-bis(hydroxymethyl)triptycene:an X-ray study [J]. Journal of Molecular Structure,2002,616(1-3):129~134.
    [135] Ruiz T P, G mez M F, Gonz lez J J L, et al. Weak C–H…O and C–H…π hydrogen bonds incrystal1-indanone. A structural and spectroscopic analysis [J]. Journal of Molecular Structure,2004,707(1-3):33~46.
    [136] Wang G C, Xiao J, Yu L, et al. Synthesis, crystal structures and in vitro antitumor activities ofsome arylantimony derivatives of analogues of demethylcantharimide [J]. Journal ofOrganometallic Chemistry,2004,689(9):1631~1638.
    [137] Dari K A, Ekstrand J D, Freyberg D P, et al. Coordination chemistry of microbial iron transportcompounds.14. Isolation and structural characterization oftrans-tris(benzohydroxamato)chromium(III)-2-(2-propanol)[J]. Inorganic Chemistry,1979,18(1):108~112.
    [138] Gilli P, Bertolasi V, Ferretti V, et al. Evidence for resonance-assisted hydrogen bonding.4.Covalent nature of the strong homonuclear hydrogen bond. Study of the O-H…O system bycrystal structure correlation methods [J]. Journal of the American Chemical Society,1994,116(3):909~915.
    [139] Assey G E, Butcher A M, Butcher R J, et al.Catena-poly[[[{5,5'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}manganese(III)]--acetato] methanol monosolvate][J]. Acta Crystallographica. Section E, Structurereports online,2010,66(11): m1384~m1384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700