用户名: 密码: 验证码:
青藏高原水资源时空变化特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变暖及人类活动的加剧,影响了青藏高原上水资源的分配和变化。而空中水汽和云是高原陆地水资源的源、水循环中的活跃因子和影响气候变化的重要变量,了解其分布特征和时空变化,对深入探讨高原水资源的变化尤为重要。本文基于长时间序列的卫星遥感资料、再分析资料和地面观测资料,以高原气候变化为出发点,从降水、蒸发、水汽、云、积雪等几个方面分别分析了高原水资源的特征及变化,着重分析了空中水资源时空变化的特征,并结合高原水资源各个分量的研究结果初步探讨了区域气候变化对高原水资源的影响。研究结果表明,高原陆地水资源在不断流失,流失的主要途径有两个:(1)气温升高蒸发增强,水资源从空中流失;(2)气温升高使得冰雪融水增加,水资源从陆地上流失;且水资源的空中流失比陆地流失表现的更为明显。此外,大自然虽然具有自我调节能力,但这种调节能力是否能延缓高原水资源的流失还不容乐观。高原气候变化使得水资源流失,其各分量的时空变化具体表现如下:
     高原平均气温在时间演变上大致可分为四个时段:两个相对低温时段(1901-1940,1960-1985)和两个相对高温时段(1940-1960,1985-2011)。平均气温呈现先缓慢增加、后缓慢减小、再快速增加的趋势,整体表现为增温趋势,增温速率约为0.8℃/100a。气温的区域变化则表现为西北部增温强、东南部增温弱。平均最高气温和最低气温的年际变化趋势与平均气温相似,且最低气温的增温速率比最高气温快,使得日较差的年平均时间序列整体呈现明显下降趋势。三种气温对海拔高度都有依赖性,最低气温依赖度最高。
     高原降水和蒸发的时空变化表现为,从1901-2011年,高原降水增加区域是减少区域的近2倍,但增加的速率却没有减少速率高,喜马拉雅山区域降水减少最明显,其减少速率大于-3mm/a。就整体而言,平均降水随时间呈现弱的增加的趋势。从1965-2011年,高原大部分区域蒸发皿蒸发量都为减小趋势,符合“蒸发互补”理论,并由经验公式所得高原实际蒸发的变化进一步验证了这一现象。自80年代高原明显增温以来,实际蒸发增加趋势也明显增强,而降水和蒸发的差值表现为弱的减小趋势。
     高原680-310hPa大气可降水量最大值出现在高原东南角,约10mm;其次是沿喜马拉雅山、祁连山及高原南侧,约5-7mm;最小值在高原中部。高原夏季大气可降水量最多,其次是秋季、春季,冬季最小。1984-2009年,在680-310hPa层,高原大气可降水量相比亚洲其他区域增加趋势明显,从其中心到四周增幅依次减弱,中部可降水量增速最快,最大值达2.4mm/10a,近十年增加了约平均值的1/2,与高原中部降水增加边缘季风区降水减少相一致。虽然高原大气可降水量增加,但高原反而变干,增加的水汽并没有储存,使得水资源从空中流失,高原快速增温引起实际蒸发增强是最可能的原因。
     1984-2009年,总云量的年平均在高原西北部帕米尔高原区域、高原东南部以及高原的东侧为高值中心,总云量的季节分布与高原地形及水汽输送有很大关系。高原上云的辐射强迫始终为负值,从西部到东部逐步增强。高原总云量整体为减少趋势,白天,卷云几乎覆盖整个高原,且变化最强烈,表现为明显的减小趋势,其次是深对流云,分布在高原的西北部和东南大部,呈明显增加趋势,深对流云的增加使降水增加的概率增大,是对水资源从空中流失的一种微调节。云总的光学厚度、云水路径及云顶气温均成增加趋势,云顶温度的减少和高云的减少相一致。这些云特性的变化,对区域气候是一种负反馈。
     高原上的积雪1978.10-1987.8期间呈缓慢的增长趋势,1987.7-2008.6期间呈平缓的减少趋势,从2000.3到2012.3没有明显的变化。就区域变化而言,高原上积雪表现为增加趋势和减小趋势并存。高原上冰川自1980s以来呈现全面退缩的状态,且退缩速率在逐渐加剧,气温升高是唯一能够合理解释该现象的因素。降水是影响高原外流径流的主要因素。高原外流径流量并没有随着气温的增加而增加,可能是由于流域内气温的升高导致了蒸发增加抵消了降水增加的水文效应所致,而部分流域春季径流却有增加的趋势,由气温升高引起冰雪融水增加的可能性较大,也是水资源流失的另一途径。
     就目前高原气候变化的情况来看,高原仍然处在一个升温的状态,在未来的几年内没有明显的转向迹象,高原水资源依然会不断流失。应对高原水资源流失最有效的方法仍然是有效合理规划现有的水资源,并努力以人力影响空中水资源时空分配以延缓流失。在影响高原空中水汽资源的诸多因子中,蒸发在其中占很重要的作用,气温、日照时数、风速均对高原上的蒸发有显著影响,且影响因子排序为:气温>风速>日照时数。此外,高原春夏季沙尘气溶胶近年来呈现下降趋势,且它和降水呈现明显的负相关,是对高原水资源空中流失的又一微调节。
Climate warming and intensification of human activities will influence the allocation and variation of water resources over the Tibetan Plateau. The water vapor and cloud, as the source of the land water resources, are active factors in the water cycle and important variables of climate change. Therefore, it is beneficial to investigate their distribution, temporal and spatial variation for deep understanding of water resource change in this region. Based on long-term series of satellite remote sensing data, reanalysis data and surface observation data, this article analyzes regional climate change firstly, and then analyzes the characters and change of water resource distribution, especially the air water resource from different aspects, such as precipitation, evaporation, water vapor, cloud, ice glacier and snow. Finally, combining the above results, this paper discussed the impact of climate change on water resources over the Tibetan Plateau. All the results show that land water resource of the plateau lost in two ways:(1) loss from the air due to enhanced evaporation with rising temperature;(2) loss from the land for increased melt water with rising temperature. And the former is more obvious than the latter. According to results, we also found the nature has the ability of self-adjustment, however, we should not be optimistic on whether it can delay the loss of the water resource on plateau. The details of these results are as following:
     The time evolution of average temperature can be divided into four periods:two low temperature periods (1901-1940;1960-1985), two high temperature periods (1940-1960;1985-2011). The average temperature trend is first slow increasing followed by slow decreasing and rapid increasing. As for the whole Tibetan Plateau, it shows a slowly increasing trend at a rate of0.8℃/100a. As the spatial distribution, the warming trend in northwest area is higher than that in southeast area. The annual variations of average maximum and minimum temperature have the similar trend as average temperature variation, but the warming rate of minimum temperature is greater than that of the maximum, which leads to an overall downward trend of daily temperature range. These three temperature parameters, in particular the minimum temperature, are dependent on the altitude.
     The temporal and spatial variation of precipitation and evaporation is also investigated. The area of increasing precipitation is almost twice the decreasing area, but the increasing ratio is lower than the decreasing ratio. Precipitation in the Himalayan region decreased most significantly, at the rate of-3mm/a or above. Overall, average precipitation shows a weakly increasing trend. From1965to2011, pan evaporation shows a downward trend in most area, and it is in accordance with the'evaporation complementary' theory, which is further proved by the trend of actual evaporation calculated via empirical formula. Furthermore, the actual evaporation shows an obviously increasing trend, and the value of precipitation minus evaporation shows a slowly decreasing trend from1980s.
     In680-310hPa layer, The maximum PW appears in the southeast corner of the plateau, it is about10mm, accounting for the half of water vapor in the entire troposphere; along the Himalayas, Qilian Mountains, south of the plateau is the second largest value of the PW, it is about5-7mm; the minimum PW is still in the central of the plateau. For the season, summer has the most PW, followed by fall, spring and winter. In the layer, the highest positive trend occurred over the central region of the Tibetan Plateau, where the maximum increase was as much as2.4mm/10a, approximately half of the PW over the plateau. This result is constist with the trend of precipitation. The farther from the center of the plateau an area was, the lower the positive trend was. The PW over the Tibetan Plateau has been increasing, but the surface of the plateau is getting drier, the increased water vapor was not stored. The stronger evaporation caused by the rapid warming is the most possible reason, which means the water resource has been lost through the air.
     From1984to2009, the maximum total cloud amount is at Pamirs, southeast of the Plateau and by the eastern of the Plateau. The seasonal distribution of cloud amount is relative with topography and transportation of vapor over the Tiebtan Plateau. The total cloud amount had a decreasing trend. During the day, cirrus is the majority, almost covered the whole plateau; deep convective cloud are the second, mainly distributes in the southeast and northwest of the plateau. Cirrus decrease rapidly, and deep convective cloud shows an obvious increasing trend, Deep convective clouds increase may lead to enhancing the probability of precipitation, which may be a micro-adjustment for the loss of water resources in the air. The cloud optical thickness, cloud water path and cloud top temperature are all increasing. The decreased high cloud leads to the change of cloud top temperature. The change of all these cloud parameters is a negative feedback to the regional climate.
     The snow on the Tibetan shows a slow increasing trend from Oct.,1978to Aug.,1987, and a decreasing trend from Jul.,1987to Jun.,2008. But there is no clear change during Mar.,2000to Mar.,2012. For the snow regional variations, the Tibetan not only has the increasing trend but also has the decreasing trend. The Tibetan's glaciers have retreated since1980s with gradually increasing rate, for which the only reasonable explanation is the accelerated warming. Precipitation is the main factor affecting drain runoff over the Tibetan. The drain runoff does not increase with the Tibetan warming, which is probably because the increasing rate of the evaporation is faster than the precipitation. But some of the drain runoff showing an increasing trend over the Tibetan in spring, as another way of water resources loss, is probably due to the increasing melt water caused by Tibetan warming.
     According to the present situation of climate change over the Tibetan, the Tibetan is still getting warmer, and has no obvious signs of a phase transition in the next few years, so the water resource over the Tibetan will continue to lose. The first and most effective way to deal with the losing is making effective and rational plans to use the existing water resources; the second way is to try our best to influence the spatial and temporal distribution of water resources in the air in order to delay the loss. The evaporation, the most important factor affecting the water resources in the air, is significantly related to the air temperature the most followed by wind speed and sunshine hours. In addition, the dust aerosol in spring and summer over the Tibetan shows a downward trend in these years, and has a significant negative correlation with the precipitation, which is another micro-adjustment for the loss of water resources in the air.
引文
蔡英,钱正安,吴统文,等.青藏高原及周围地区大气可降水量的分布,变化与各地多变的降水气候[J].高原气象.2004,23(1):1-10.
    陈葆德,梁萍,李跃清.青藏高原云的研究进展[J].高原山地气象研究.2008,28(1):66-71.
    陈锋,康世昌,张拥军,等.纳木错流域冰川和湖泊变化对气候变化的响应[J].山地学报.2009,27(6):641-647.
    陈少勇,董安祥.青藏高原总云量的气候变化及其稳定性[J].干旱区研究.2006,23(2):327-333.
    丁守国,石广玉,赵春生.利用ISCCP D2资料分析近20年全球不同云类云量的变化及其对气候可能的影响[J].科学通报.2004,49(11):1105-1111.
    丁一汇,中国西部环境变化的预测.中国西部环境演变评估[M].北京:科学出版社.2002.
    巩同梁,刘昌明,刘景时.拉萨河冬季径流对气候变暖和冻土退化的响应[J].地理学报.2006,61(5).
    郝振纯,王加虎,李丽,等.气候变化对黄河源区水资源的影响[J].冰川冻土.2006,28(1):1-7.
    黄福均,沈如金.夏季风时期青藏高原地区水汽来源及水汽收支分析[D].青藏高原气象科学实验文集编写组编.青藏高原气象科学实验文集(二).北京:科学出版社.1984.
    黄荣辉,张振洲,黄刚,等.夏季东亚季风区水汽输送特征及其与南亚季风区水汽输送的差别[J].大气科学.1998,22(4):460-469.
    江吉喜,范梅珠.青藏高原夏季TBB场与水汽分布关系的初步研究[J].高原气象.2002,21(1):20-24.
    蓝永超,丁永建,康尔泅,等.黑河流域水资源动态变化及其趋势的灰色Markov链预测[J].中国沙漠.2003,23(4):435-440.
    蓝永超,林舒,李州英,等.近50a来黄河上游水循环要素变化分析[J].中国沙漠.2006,26(5):849-854.
    李培基.近30年来我国雪量变化的初步探讨[J].气象学报.1990,48(4):433-437.
    李生辰,徐亮,郭英香,等.近34a青藏高原年气温变化[J].中国沙漠.2006,26(1):27-34.
    李兴宇,郭学良,朱江.中国地区空中云水资源气候分布特征及变化趋势[J].大气科学.2008,32(5):1094-1106.
    梁宏,刘晶淼,李世奎.青藏高原及周边地区大气水汽资源分布和季节变化特征分析[J].自然资源学报.2006,21(4):526-534.
    梁宏,刘晶淼,章建成,等.青藏高原大气总水汽量的反演研究[J].高原气象.2006,25(6):1055-1063.
    林振耀,吴祥定.青藏高原水汽输送路径的探讨[J].地理研究.1990,9(3):33-40.
    林振耀,吴祥定.1990.青藏高原水汽输送路径的初探.地理研究.9(3):33-40.
    刘洪利,朱文琴,宜树华,等.中国地区云的气候特征分析[J].气象学报.2003,61(4):466-473.
    刘瑞霞,刘玉洁,杜秉玉.中国云气候特征的分析[J].应用气象学报.2004,15(4):468-476.
    刘晓冉,李国平,范广洲,等.我国西南地区1960~2000年降水资源变化的时空特征[J].自然资源学报.22(5):783-792.
    鲁春霞,谢高地,成升魁,等.青藏高原的水塔功能[J].山地学报.2004,22(4):428-432.
    陆渝蓉,高国栋.中国大气中的水汽平均输送[J].高原气象.1983,2(4):34-47.
    聂勇,张镱锂,刘林山,等.近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J].地理学报.2010,65(1):14-28.
    秦大河,丁一汇,苏纪兰,等.中国气候与环境演变(上卷):气候与环境的演变及预测[M].北京:气象出版社.2005.
    《青藏高原气象科学实验文集》编辑组.青藏高原气象科学实验文集[M].北京:科学出版社.1984.
    陶诗言,陈联寿,徐祥德,等.第二次青藏高原大气科学试验理论研究进展(一)[M].北京:气象出版社.1999.
    王宝鉴,黄玉霞,王劲松,等.祁连山云和空中水汽资源的季节分布与演变[J].地球科学进展.2006,21(9):948-955.
    王国庆,王云璋,史忠海,等.黄河流域水资源未来变化趋势分析[J].地理科学.2001,21(5):396-400.
    王楠,李栋梁,张杰.青藏高原气温变化的研究进展[J].干旱气象.2010,28(3):265-290.
    王鹏祥,王宝鉴,黄玉霞,等.青海高原近43年夏季水汽分布及演变特征[J].高原气象.2006,25(1):60-65.
    王绍武,董光荣.中国西部环境特征及其演变.中国西部环境演变评估[M].北京:科学出版社.2002.
    王旭,周爱国,SIEGERT F, et al.念青唐古拉山西段冰川1977-2010年时空变化[J].地球科学-中国地质大学学报.2012,37(5):1082-1092,doi:10.3799/dqkx.2012.115.
    韦志刚,黄荣辉.青藏高原地面站积雪的空间分布和年代际变化特征[J].大气科学.26(4):496-508.
    吴鹤轩.青藏高原的低云[M].北京:气象出版社.1985.
    温克刚.加强空中水资源的开发利用.建设科技[J].2003,(5):14.
    谢昌卫,丁永建,刘时银.近50年来长江一黄河源区气候及水文环境变化趋势分析[J].生态环境.2004,13(4):520-523.
    徐淑英,殷延珍.1979年夏季季风活动时期水汽输送的变化[D].青藏高原气象科学实验文集(三).北京:科学出版社.1987.
    徐淑英.我国的水汽输送和水分平衡[J].气象学报.1958,29(1):33-43.
    徐祥德,陈联寿,王秀荣,等.长江流域梅雨带水汽输送源-汇结构[J].科学通报.2003,48(21):2288-2294.
    杨伟愚,叶笃正,吴国雄.夏季青藏高原热力场和环流场的诊断分析Ⅰ.盛夏高原西部地区的水汽状况[J].大气科学.1992,16(1):41-51.
    杨逸畴,高登义,李渤生.雅鲁藏布江下游河谷水汽通道初探[J].中国科学(B辑).1987,8:893-902.
    姚檀栋,姚治君.青藏高原冰川退缩对河水径流的影响[J]Chinese Journal of Nature.2010,32(1):4-8.
    张雪芹,彭莉莉,郑度,等.1971—2004年青藏高原总云量时空变化及其影响因子[J].地理学报.62(9):959-969.
    张镱锂,李炳元,郑度.论青藏高原范围与面积[J].地理研究.2002,21(1):1-8.
    郑斯中,杨德卿.中国大陆上空的水汽含量[J].地理学报.1962,28(2):124-136.
    郑新江,李献洲.夏季青藏高原水汽输送特征[J].高原气象.1997,16(3):274-281.
    周长艳,蒋兴文,李跃清,等.高原东部及邻近地区空中水汽资源的气候变化特征[J].高原气象.2009,28(1):55-63.
    周长艳,李跃清,李薇,等.青藏高原东部及邻近地区水汽输送的气候特征[J].高原气象.2005,24(6):880-888.
    周长艳,彭俊,李跃清.九寨沟,黄龙地区水资源的变化特征及成因分析[J].资源科学.2007,29(2):60-67.
    周陈超,贾绍凤,燕华云,等.近50a以来青海省水资源变化趋势分析[J].冰川冻土.27(3):432-437.
    周宁芳,秦宁生,屠其璞,等.近50年青藏高原地面气温变化的区域特征分析[J].高原气象.2005,24(3):344-349.
    周顺武,吴萍,王传辉,等.青藏高原夏季上空水汽含量演变特征及其与降水的关系[J].地理学报.66(11):1466-1478.
    周允华,叶芳德,周树秀,等.利用TIROS2N卫星云图对1979年夏季青藏高原云量分布的研究[J].高原气象.1983,2(1):39-51.
    Brasseur G P, Roeckner E. Impact of improved air quality on the future evolution of climate[J]. Geophysical research letters.2005,32(23):L23704.1-L23704.4.
    Chen B, Liu X. Seasonal migration of cirrus clouds over the Asian Monsoon regions and the Tibetan Plateau measured from MODIS/Terra[J]. Geophysical Research Letters.2005,32: 1804.
    Houghton, J.T. et al., The Third Assessment Report of Working Group I of the Intergovernmental Panel on Climate Change [M]. New York:Cambridge University Press.2001.
    Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science.2010,328(5984):1382-1385.
    Jin M. MODIS observed seasonal and interannual variations of atmospheric conditions associated with hydrological cycle over Tibetan Plateau[J]. Geophysical research letters.2006,33(19).
    Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades[J]. International journal of climatology.2000,20(14):1729-1742.
    Peixdto J P, Oort A H. Physics of climate[M]. New York:American Institute of Physics Press.1992.
    Pielke R A. Land use and climate change[J]. Science.2005,310(5754):1625-1626.
    Scafetta N, West B J. Estimated solar contribution to the global surface warming using the ACRIM TSI satellite composite[J]. Geophysical Research Letters.2005,32(18):L18713.
    Wu G X, Chen S J. The effect of mechanical forcing on the formation of a mesoscale vortex[J]. Quarterly Journal of the Royal Meteorological Society.1985,111(470):1049-1070.
    Ye Q H, Yao T D, Chen F, et al. Response of glacier and lake covariations to climate change in Mapam Yumco Basin on Tibetan Plateau during 1974-2003 [J] Journal of China University of Geoscience.2008,19(2):135-145.
    Yu R, Wang B, Zhou T. Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau[J]. Journal of climate.2004,17(13):2702-2713.
    Zhai P, Eskridge R E. Atmospheric water vapor over China[J]. Journal of Climate.1997,10(10): 2643-2652.
    Zhang Y, Li T, Wang B. Decadal Change of the Spring Snow Depth over the Tibetan Plateau:The Associated Circulation and Influence on the East Asian Summer Monsoon[J]. Journal of Climate.2004,17(14):2780-2793.
    杜军.西藏高原近40年的温度变化[J].地理学报.2001,56(6):682-690.
    汤懋苍,程国栋,林振耀.青藏高原近代气候变化及对环境的影响[M].广东:广东科技出版社.1998.
    叶笃正,高由禧,等.青藏高原气象学[M].北京:科学出版社.1979.
    赵昕奕,林振耀.青藏高原地区50年代至90年代初期气温降水变化特征研究[J].青藏高原形成演化,环境变迁与生态系统研究.1996:226-234.
    Angell J K, Korshover J. Global temperature variation, surface-100 mb:An update into 1977[J]. Monthly Weather Review.1978,106(6):755-770.
    Hansen J, Lebedeff S. Global surface temperature:update through 1987. Geophysical Research Letters.1988,15:323-326.
    Harris I., Jones P.D., Osborn T.J., and Lister D.H.. Updated high-resolution grids of monthly climatic observations[J]. Int. J. Climatol..2013,Doi:10.1002/joc.3711.
    Houghton JT, Filho LGM, Callander BA, et al. Climate Change 1995:The Science of Climate Change[M]. New York:Cambridge University Press.1996.
    Houghton JT, Jenkins GJ, Ephraunms JJ. Climate Change:The IPCC Scientific Assessment[M]. New York:Cambridge University Press.1990.
    Jones PD, Briffa KR. Global surface air temperature variations over the twentieth century:Part 1, spatial, temporal and seasonal details[J]. Holocene.1992,2:105-179.
    Jones PD, Raper SCB, Bradley RS, et al. Northern Hemisphere surface air temperature variations: 1851-1984[J]. Journal of climate and applied meteorology.1986,25:161-179.
    Kutzbach JE, Prell WL, Ruddiman WE Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau[J]. Journal of geology.1993,101:177-190.
    Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades[J]. International journal of climatology.2000,20(14):1729-1742.Liu X, Zhang M. Contemporary climatic change over the Qinghai-Xizang plateau and its response to the green-house effect[J]. Chinese Geographical Science.1998,8(4):289-298.
    Manabe S, Broccoli AJ. Mountains and arid climate of middle latitudes[J]. Science.1990,247: 192-195.
    Manabe S, Terpstra TB. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments[J]. Journal of Atmospheric. Science.1974,31:3-42.
    Mitchell and Jones. An improved method of constructing a database of monthly climate observations and associated high-resolution grids[J]. Int. J. Climatology.2005,25:693-712.
    Mitchell, T. D., et al, A comprehensive set of climate scenarios for Europe and the globe[J]. Tyndall Centre Working.2003, Paper 55.
    New M., Hulme M. and Jones P.D., Representing twentieth century space-time climate variability. Part 2:development of 1901-96 monthly grids of terrestrial surface climate[J]. Journal of Climate.2000,13:2217-2238, doi:10.1175/1520-0442
    Seko K, Takahashi S. Characteristics of winter precipitation and its effect on glaciers in the Nepal Himalaya[J]. Bulletin of glacier research.1991, (9):9-16.
    Thompson LG, Mosley Thompson E, Davis ME, et al.'Recent warming':ice core evidence from tropical ice cores, with emphasis on central Asia[J]. Global Planet Change.1993,7:145-156.
    Vander Schrier G., and J. Barkmeijer, North American 1818-1824 drought and 1825-1840 pluvial and their possible relation to the atmospheric circulation[J]. J. Geophys. Res..2007,112, D13102, doi:10.1029/2007JD008429.
    Vander Schrier G., K. R. Briffa, T. J. Osborn, and E. R. Cook. Summer moisture availability across North America[J]. J. Geophys. Res..2006,111, D11102, doi:10.1029/2005JD006745.
    Vander Schrier G., K.R. Briffa, P.D. Jones and T.J. Osborn. summer moisture variability across Europe[J]. J. Climate.2006,19:2828-2834.
    Vinnikov K Y, Groisman P Y, Lugina K M. Empirical data on contemporary global climate changes (temperature and precipitation)[J]. Journal of Climate.1990,3:662-677.
    Yanai M, Li C, Song Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J]. Journal of the Meteorological Society of Japan.1992,70(1B): 319-351.
    Yao T, Thompson L G, Jiao K, et al. Recent warming as recorded in the Qinghai-Tibetan cryosphere[J]. Annals of Glaciology.1995,21:196-200.
    陈慧娴,陈创买,林爱兰.广东春季水资源的时空分布特征和预测研究[J].热带气象学报.2007,23(6):601-610.
    杜军,马玉才.西藏高原降水变化趋势的气候分析[J].地理学报.2004,59(3):375-382.
    傅丽听,陈亚宁,李卫红,等.塔里木河源流区近50a径流量与气候变化关系研究[J].中国沙漠.2010,30(1):204-209.
    高桥浩一郎.从月平均气温、月降水量来推算蒸发量的经验公式[J].天气.1979,26(12):29-32.
    李景玉,张志果,徐宗学,等.影响西藏地区蒸发皿蒸发量的主要气象因素分析[J].亚热带资源与环境学报.2009,4(4):20-29.
    李林,李凤霞,郭安红,等.近43年来“三江源”地区气候变化趋势及其突变研究[J].自然资源学报.2006,21(1):79-85.
    李林,王振宇,汪青春.黑河上游地区气候变化对径流量的影响研究[J].地理科学.2006,26(1):40-46.
    林振耀,赵听奕.青藏高原气温降水变化的空间特征[J].中国科学:D辑.1996,26(4):354-358.
    马柱国.黄河径流量的历史演变规律及成因[J].地球物理学报.2005,48(6):1270-1275.
    任国玉,郭军.中国水面蒸发量的变化[J].自然资源学报.2006,21(1):31-44.
    施雅风,张祥松.气候变化对西北干旱区地表水资源的影响和未来趋势[J].中国科学:B辑.1995,25(9):968-977.
    宋正山,杨辉,张庆云.华北地区水资源各分量的时空变化特征[J].高原气象.1999,18(4):552-566.
    王可丽,程国栋,江灏,等.祁连山一黑河流域水循环中的大气过程[J].水科学进展.2003,14(1):91-97.
    张庆云.1880年以来华北降水及水资源的变化[J].高原气象.1994,18(4):486-495.
    赵天保,符淙斌.中国区域ERA-40,NCEP-2再分析资料与观测资料的初步比较与分析[J].气候与环境研究,2006,11(1):14-32.
    Brutsaert W, Stricker H. An advection-aridity approach to estimate actual regional evapotranspiration[J]. Water Resources Research.1979,15(2):443-450.
    Huang, J., X. Guan, et al.. Enhanced cold-season warming in semi-arid regions[J]. Atmospheric Chemistry and Physics.2012,12(12):5391-5398.
    Xu J, Haginoya S, Masuda K, et al. Heat and water balance estimates over the Tibetan Plateau in 1997-1998[J]. Journal of the Meteorological Society of Japan. Ser. Ⅱ.2005,83(4):577-593.
    Xu Z. X., Gong T.L. and Li J. Y.. Decadal trend of climate in the Tibetan Plateau-regional temperature and precipitation[J]. Hydrological Processes.2008,22:3056-3065.
    Yang K, Ye B, Zhou D, et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau[J]. Climatic change.2011,109(3-4):517-534.
    Zhang Y, Liu C, Tang Y, et al. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau[J]. Journal of Geophysical Research.2007,112: D12110.
    蔡英,钱正安,吴统文,等.青藏高原及周围地区大气可降水量的分布,变化与各地多变的降水气候[J].高原气象.2004,23(1):1-10.
    蔡英,钱正安,吴统文等.青藏高原及周围地区大气可降水量的分布变化与各地多变的降水气候[J].高原气象.2004,23(1):1-10
    江吉喜,范梅珠.青藏高原夏季TBB场与水汽分布关系的初步研究[J].高原气象.2002,21(1):20-24.
    梁宏,刘晶淼,李世奎.青藏高原及周边地区大气水汽资源分布和季节变化特征分析[J].自然资源学报,2006,21(4):526-534.
    林振耀,吴祥定.青藏高原水汽输送路径的初探[J].地理研究.1990,9(3):33-40.
    陆渝蓉,高国栋.中国大气中的水汽平均输送[J].高原气象.1983,2(4):34-47.
    王旻燕,王伯民.ISCCP产品和我国地面观测总云量差异[J].应用气象学报.2009,20(4):411-418
    魏丽,钟强,候萍.中国大陆卫星反演云参数的评估.高原气象[J].1996,15(2):147-156.
    翁笃鸣,韩爱梅.中国卫星总云量与地面总云量分布的对比分析[J].应用气象学报.1998,9(1):32-37.
    徐淑英.我国的水汽输送和水分平衡[J].气象学报.1958,29(1):33-43.
    徐祥德,陈联寿,王秀荣等.2003.长江流域梅雨带水汽输送源—汇结构.科学通报,48(21):2288-2294.
    郑斯中,杨德卿.中国大陆上空的水汽含量[J].地理学报.1962,28(2):124-136.
    郑新江,许健民,李献洲.夏季青藏高原水汽输送特征[J].高原气象.1997,16(3):274-28.
    邹进上,刘惠兰.我国平均水汽含量分布的基本特点及其控制因子[J].地理学报.1981,36(4):377-391.
    Bai J, Xu X. Atmospheric hydrological budget with its effects over Tibetan Plateau[J]. Journal of Geographical Sciences.2004,14(1):81-86.
    Cai QQ, Zhou TJ, Wu B, Li B, Zhang LX. The East Asian subtropical westerly jet and its interannual variability simulated by a climate system model FGOALS_g1. Acta Oceanologica Sinica.2011,33(4):38-48.
    Dai AG, Trenberth KE, Qian TT. A global dataset of palmer drought severity index for 1870-2002: relationship with soil moisture and effects of surface warming[J]. Journal of Hydrology. 2004,5:1117-1130.
    Fu R, Hu Y, Wright J S, et al. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences.2006,103(15):5664-5669.
    Hahn C J, Rossow W B, Warren S G. ISCCP cloud properties associated with standard cloud types identified in individual surface observations [J]. Journal of Climate,2001,14:11-27.
    Haigh J D, Blackburn M, Day R. The response of tropospheric circulation to perturbations in lower-stratospheric temperature[J]. Journal of Climate.2005,18(17):3672-3685.
    Huang J, Fu Q, Su J, et al. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints[J]. Atmos. Chem. Phys.2009,9(12):4011-4021.
    Huang J, Lin B, Minnis P, et al. Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia[J]. Geophysical Research Letters.2006,33(19): L19802.
    Huang J, Minnis P, Lin B, et al. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES[J]. Geophysical Research Letters.2006, 33(6):L06824.
    Huang J, Minnis P, Yi Y, et al. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau[J]. Geophysical Research Letters.2007,34:L18805.
    Huntington T G. Evidence for intensification of the global water cycle:review and synthesis[J]. Journal of Hydrology.2006,319(1):83-95.
    Li J, Zeng Q. A new monsoon index and the geographical distribution of the global monsoons[J]. Advances in Atmospheric Sciences.2003,20(2):299-302.
    Li J, Zeng Q. A unified monsoon index[J]. Geophysical Research Letters.2002,29(8):1274.
    Li JP, Zeng Q. A new monsoon index, its inter-annual variability and relation with monsoon precipitation[J]. Climatic Environment Research.2005,10(3):351-65.
    Li JP. Institute of Atmospheric Physics, Chinese Academy of Sciences.2012, Available at: http://ljp.lasg.ac.cn/dct/page/65576.
    Li Z, Li C, Chen H, et al. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC):An overview[J]. Journal of Geophysical Research.2011, 116(D7):D00K34.
    Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades[J]. International journal of climatology.2000,20(14):1729-1742.
    Lorenz D J, DeWeaver E T. Tropopause height and zonal wind response to global warming in the IPCC scenario integrations[J]. Journal of Geophysical Research.2007,112(D10):D10119.
    Polvani L M, Kushner P J. Tropospheric response to stratospheric perturbations in a relatively simple general circulation model[J]. Geophysical research letters.2002,29(7):1114. http://dx.doi.org/10.1029/2001GL014284.
    Rossow W B, Garder L C. Validation of ISCCP cloud detections[J]. Journal of Climate.1993,6: 2370-2393.
    Rossow W B, Walker A W, Garder L C. Comparison of ISCCP and other cloud amounts[J]. Journal of Climate.1993,6:2394-2418.
    Rossow WB, Walker AW, Beuschel DE, Roiter MD. International Satellite Cloud Climatology Project (ISCCP) documentation of new cloud datasets. WMO/TD-No.737, World Meteorological Organization.1996, Available at:http://isccp.giss.nasa.gov/docs/ documents.html.
    Seidel D J, Fu Q, RanDel W J, et al. Widening of the tropical belt in a changing climate[J]. Nature Geoscience.2007,1(1):21-24.
    Williams G P. Circulation sensitivity to tropopause height[J]. Journal of the atmospheric sciences. 2006,63(7):1954-1961.
    Wu G, Zhang Y. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea[J]. Monthly Weather Review.1998,126(4):913-927.
    Xu XD, Lu CG, Shi XH, et al. World water tower:An atmospheric perspective. Geophys Res Lett. 2008,35:L20815, doi:10.1029/2008GL035867.
    Yang K, Ye B, Zhou D, et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau[J]. Climatic change.2011,109(3-4):517-534.
    Zhang YC, Guo LL. Multi-model ensemble simulated changes in the subtropical westerly jet over East Asia under the global warming condition[J]. Scientia Meteorologica Sinica.2010, 30(5):694-700.
    陈少勇,董安祥.青藏高原总云量的气候变化及其稳定性[J].干旱区研究.2006,23(2):327-333.
    陈勇航,黄建平,王天河,等.西北地区不同类型云的时空分布及其与降水的关系[J].应用气象学报.2005,16(6):717-727.
    戴加洗.青藏高原气候[M].北京:气象出版社,1990.
    高庆先,任阵海,姜振远.云的辐射强迫效应研究[J].环境科学研究.1998,11(1):2-4.
    高蓉,陈少勇,董安祥.青藏高原低云量的年际变化及其稳定性[J].干旱区研究.2007,24(6):760-765.
    江灏,王可丽.青藏高原地表热状况的卫星资料分析[J].高原气象.2000,19(3):323-330.
    刘瑞霞,刘玉洁,杜秉玉.利用ISCCP资料分析青藏高原云气候特征[J].南京气象学院学报.2002,25(2):226-234.
    刘艳,高歌,成天涛,等.中国地区云对地气系统太阳短波吸收辐射强迫的气候研究[J].气象科学.2000,20(3):260-269.
    刘艳,翁笃鸣.中国地区云对地气系统长波射(OLR)出辐射强迫的气候研究[J].气象科学.2001,21(3):1-2
    刘艳,翁笃呜.中国地区云对地气系统净辐射强迫的气候研究[J].气象科学.2002,22(4):416-424.
    马晓燕,季国良.利用ERBE资料分析中国地区云辐射强迫的时空变化[J].高原气象.2000,19(2):150-158.
    马晓燕,季国良.利用ERBE资料分析中国地区云辐射强迫的时空变化[J].高原气象.2000,19(2):151-158.
    盛裴轩,毛节泰,李建国,等.大气物理学[M].北京:北京大学出版社.2003.
    唐小萍,张核真,路红亚,等.西藏地区1971—2008年台站观测总云量的变化特征[J].气候变化研究进展,2009,5(6):343-347.
    汪宏七,赵高祥.云和辐射(Ⅰ):云气候学和云的辐射作用[J].大气科学.2011,18(z1):910-932.
    汪宏七,赵高祥.云和辐射(Ⅰ):云气候学和云的辐射作用[J].大气科学,1994,18(增刊):910-932
    王可丽,江灏,陈世强.青藏高原地区的总云量[J].高原气象.2001,20(3):252-257.
    王可丽,钟强.青藏高原地气系统云辐射强迫的气候学特征[J].高原气象.1997,16(1):16-22.
    王可丽,钟强.青藏高原地区云对OLR的强迫作用[J].高原气象.1992,11(3):259-265.
    魏丽,钟强.青藏高原云的气候学特征[J].高原气象.1997,16(1):10-15.
    魏丽,钟强.中国大陆卫星反演云参数的评估[J].高原气象.1996,15(2):147-156.
    翁笃鸣.中国辐射气候[M].北京:气象出版社.1997.
    翁笃呜,韩爱梅.我国卫星总云量与地面总云量分布的对比分析[J].应用气象学报.1998,9(1):32-37.
    吴鹤轩.青藏高原的低云[M].北京:气象出版社,1985.
    徐寅.基于ISCCP资料的云宏观特征分析[D].南京信息工程大学.2011.
    张雪芹,彭莉莉,郑度等.1971-2004年青藏高原总云量时空变化及其影响因子[J].地理学报.2007,162(9):959-969.
    赵柏林,张晓黎,朱元竟.中国地区云与辐射对气候的影响[J].北京大学学报(自然科学版).1992,28(3):371-383.
    David F. Y, Takmeng W, B. A. Wielicki, et al. Time Interpolation and Synoptic Flux Computation for Single and Multiple Satellites(Subsystem 7.0), Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document[Z], http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s7.0.pdf,1997:3-25.
    Houghton J T, Ding Y, Griggs D J, et al. IPCC, Climate Change 2001:The Scientific Basis[C]. Cambridge:Cambridge Univ Press, United Kingdom and New York, NY, USA, 2001:148-149
    Lin H Chambers, Lin Bing, Young David F. Examination of new CERES data for evidence of tropical iris feedback [J]. Journal of. Climate.2002,15:3719-3726.
    Minnis P, Young D F, Sun-Mack S, et al. CERES cloud property retrievals from imagers on TRMM, terra, and aqua. Proceedings of SPIE 10th Intl. symp remote sens, cloud and atmos.[C]. Bellingham, Washington, USA:SPIE,2003:37-48.
    Ramanathan V. The role of earth radiation budget studies in climate and general circulation research[J]. Journal of Geophysical Research,1987,92(D4):4075-4095.
    Rossow W B, Schiffer R A. Advances in understanding clouds from ISCCP[J]. Bulletin-American Meteorological Society.1999,80:2261-2288.
    Takmeng Wong, D F. Young, P. Minnis et al. Time Interpolation and Synoptic Flux Computation for Single and Multiple Satellites(Subsystem 7.0), Clouds and the earth's radiant energy system (CERES) validation plan[Z], http://ceres.larc.nasa.gov/documents/validation/pdf/ceresval r4.0 ss7.pdf.2000:2-4.
    曹泊,潘保田,高红山,等.1972-2007年祁连山东段冷龙岭现代冰川变化研究[J].冰川冻土.2010,32(2):242-248.
    曹建廷,秦大河,康尔泗,李原园.青藏高原外流区主要河流的径流变化[J].科学通报.2005,50(21):2403-2408.
    陈锋,康世昌,张拥军,等.纳木错流域冰川和湖泊变化对气候变化的响应[J].山地学报.2009,27(6):641-647.
    丁永健,叶柏生,韩添丁,刘时银,等.过去50年中国西部气候和径流变化的区域差异[J].中国科学.2007,37(2):206-214.
    董晓辉,姚治君,陈传友.黄河源区径流变化及其对降水的响应[J].资源科学.2007,29(3):67-73.
    韩添丁,叶柏生,丁永健.近40a来黄河上游径流变化特征研究[J].干旱区地理.2004,27(4):553-557.
    柯长青,李培基.青藏高原积雪分布与变化特征[J].地理学报.1998,53(3):209-215.
    赖祖铭.气候变化对青藏高原大江河径流的影响[J].冰川冻土.1996,18 special issue:314-320.
    蓝永超.黄河上游春季径流的特征[J].冰川冻土.1989,11(4):383-391.
    李吉均,郑本兴,等.西藏冰川[M].北京:科学出版社,1986,13-24.
    李培基.近30年来我国雪量变化的初步探讨[J].气象学报.1990,48(4):433-437.
    李占玲,徐宗学,巩同梁.雅鲁藏布江流域径流特性变化分析[J].地理研究.2008,27(2):353-360.
    梁川,刘睿,潘妮.长江源高寒区降水和径流周期变化及突变性分析[J].南水北调与水利科技.2011,9(1):53-59.
    刘剑,姚治君,陈传友.雅鲁藏布江径流变化趋势及原因分析[J].自然资源学报.22(3):471-477.
    刘剑,姚治君,陈传友.雅鲁藏布江径流变化趋势及原因分析[J].自然资源学报.2007,22(3):471-477.
    刘时银,鲁安新,丁永健,等.黄河上游阿尼玛卿山区冰川波动与气候变化[J].冰川冻土.2002,24(6):7.1-707.
    刘时银,上官冬辉,丁永健,等.20世纪初以来青藏高原东南部岗日嘎布山的冰川变化[J].冰川冻土.2005,27(1):55-63.
    刘时银,上官冬辉,丁永健,等.基于RS与GIS的冰川变化研究[J].冰川冻土.2004,26(3):244-252.
    刘天仇.雅鲁藏布江水文特征[J].地理学报.1999,54:157-164.
    刘宇硕,秦翔,张通,等.祁连山东段冷龙岭地区宁缠河3号冰川变化研究[J].冰川冻土.2012,34(5):1031-1036.
    鲁安新,姚檀栋,刘时银,等.青藏高原各拉丹冬地区冰川变化的遥感监测[J].冰川冻土.2002,24(5):559-562.
    鲁安新,姚檀栋,王丽红,等.青藏高原典型冰川和湖泊变化遥感研究[J].冰川冻土.2005,27(6):783-792.
    洛桑.青藏高原水资源的保护与利用[J].资源科学.2005,27(2):23-27.
    聂勇,张镱锂,刘林山,等.近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J].地理学报.2010,65(1):14-28.
    蒲健辰,姚檀栋,王宁练,等.近百年来青藏高原冰川的进退变化[J].冰川冻土.2004,26(5):517-522.
    谯程骏.唐古拉山冬克玛底地区冰川变化遥感监测[J].安徽农业科学.2010,38(14)
    秦大河,效存德,丁永健,等.国际冰冻圈研究动态和我国冰冻圈研究的现状与展望[J].应用气象学报.2006,17(6):649-656.
    邵骏,袁鹏,颜志衡,等.基于HHT的雅鲁藏布江径流变化周期及趋势分析[J].中山大学学报(自然科学版).2010,49(1):125-130.
    施雅风,刘潮海,王宗太,等.简明中国冰川目录[M].上海:上海科普出版社.2005.
    施雅风,刘时银,上官冬辉,等.近30a青藏高原气候与冰川变化中的两种特殊现象[J].气候变化研究进展.2006,2(4):154-160.
    时兴合,秦宁生,汪青春,等.黄河上游径流变化特征及其影响因素初步分析[J].中国沙漠,2007.27(4):690-697.
    苏珍,刘宗香,王文悌,等.青藏高原冰川对气候变化的响应及趋势预测[J].地球科学进展.1999,14(6):607-612.
    苏珍,刘宗香,王文悌,等.青藏高原冰川对气候变化的响应及趋势预测[J].地球科学进展.1999,14(6):607-612.
    田洪阵,杨太保,刘沁萍.近40年来冷龙岭地区冰川退缩和气候变化的关系[J].水土保持研究.2012,19(5):34-38.
    王旭,周爱国, SIEGERT F, et al.念青唐古拉山西段冰川1977-2010年时空变化[J].地球科学-中国地质大学学报.2012,37(5):1082-1092,doi:10.3799/dqkx.2012.115.
    王祎婷,陈秀万,柏延臣,等.多源DEM和多时相遥感影像监测冰川体积变化-以青藏高原那木纳尼峰地区为例[J].冰川冻土.2010,32(1):126-132.
    韦志刚,黄荣辉.青藏高原地面站积雪的空间分布和年代际变化特征[J].大气科学.26(4):496-508.
    谢昌卫,丁永健,刘时银,王根绪.长江-黄河源寒区径流时空变化特征对比[J].冰川冻土.2003,25(4):414-422.
    谢昌卫,丁永健,刘时银.近50年来长江-黄河源区气候及水文环境变化趋势分析[J].生态环境.2004,13(4):520-523.
    杨建平,丁永建,刘时银,等.长江黄河源区冰川变化及其对河川径流的影响[J].自然资源学报.18(5):595-602.
    杨针娘,胡鸣高.青藏高原东部河川径流特征[J].冰川冻土.1990,12(3):219-226.
    姚檀栋,刘时银,蒲健辰,等.高亚洲冰川的近期退缩及其对西北水资源的影响[J].中国科学(D辑).2004,34(6):535-543.
    姚檀栋,姚治君.青藏高原冰川退缩对河水径流的影响[J].Chinese Journal of Nature.2010,32(1):4-8.
    张国梁,潘保田,王杰,等.基于遥感和GPS的贡嘎山地区1966-2008年现代冰川变化研究[J].冰川冻土.2010,32(3):454-460.
    张华伟,鲁安新,杨丽红,等.基于遥感的祁连山东部冷龙岭冰川变化研究[J].遥感技术与应用.2010,25(5):682-686.
    张瑞江,方洪宾,赵福岳,等.青藏高原近30年来现代冰川面积的遥感调[J].查国土资源遥感.2010,86:45-48.
    朱大岗,孟宪刚,郑达兴,等.青藏高原近25年来河流、湖泊的变迁及其影响因素[J].地质通报.2007,26(1):23-30.
    Barnett T P, Adam J C, Lettenmaier D P. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature.2005,438(7066):303-309.
    Duan J P, Wang L L, Ren J W & Li, L. Progress in glacier variations in China and its sensitivity to climatic change during the past century[J]. Prog. Geogr.2009,28,231-237.
    Hall D K, Foster J L, Salomonson V V, et al. Development of a technique to assess snow-cover mapping errors from space[J]. Geoscience and Remote Sensing, IEEE Transactions on.2001, 39(2):432-438.
    Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science.2010,328(5984):1382-1385.
    Li, Z. X.et al. Changes of climate, glaciers and runoff in China's monsoonal temperate glacier region during the last several decades[J]. Quat. Int.218,doi:10.1016/j.quaint.2009.05.010.
    Liu S Y, Ding Y J, Li J, et al. Glaciers in response to recent climate warming in western China.[J]. Quat. Sci.2006,26,762-771.
    Piao S L, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China[J]. Nature.2010,467:43-57,doi:10.1038/nature09364.
    Pu Z, Xu L, Salomonson V V. MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau[J]. GeophysicaL Research Letters.2007,34:L06706.
    Qin Dahe, Liu Shiyin, Li Peiji. Snow cover dist ribution, variability, and response to climate change in western China [J].Journal of Climate.2006,19:1820-1833.
    R. V. Cruz et al.. in Climate Change:Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate ChangefM]. New York:Cambridge University Press 2007.
    Riggs GA, Hall DK, Salomonson VV. MODIS sea ice products user guide. February 2003; Available at:http://modis-snow-ice.gsfc.nasa.gov/siugkc.html.
    Shi Y F, Hsieh T C, Cheng P S, et al. Distribution, Features and Variations of Glaciers in China[C].IAHS Publ,126:111-116.
    Wu Y H, Zhu L P. The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970-2000[J]. J. Geogr.Sci..2008,18:177-189,doi:10.1007/s11442-008-0177-3.
    Yao T D, Wang Y Q, Liu S Y, et al. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China[J].Science in China Ser. D Earth Science.2004, 47(12):1065-1075.
    Ye Q H, Chen F, Stein A, et al. Use of a multi-temporal grid method to analyze changes in glacier coverage in the Tibetan Plateau[J].Progress in natural science.2009,19:861-872.
    Ye Q H, Kang S C, Chen F,et al.Monitoring glacier variations on Geladandong Mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIStechnologies[J].Journal of Glaciology.2006,52(179):537-545.
    Ye Q H, Yao T D, Chen F, et al. Response of glacier and lake covariations to climate change in Mapam Yumco Basin on Tibetan Plateau during 1974-2003[J].Journal of China University of Geoscience.2008,19(2):135-145.
    Zhang Y, Li T, Wang B. Decadal Change of the Spring Snow Depth over the Tibetan Plateau:The Associated Circulation and Influence on the East Asian Summer Monsoon[J]. Journal of Climate. 2004,17(14):2780-2793.
    丁一汇,中国西部环境变化的预测.中国西部环境演变评估[M].北京:科学出版社.2002.
    丁一汇.高等天气学[M].北京:气象出版社.2005.
    韩永翔,奚晓霞,宋连春,等.青藏高原沙尘及其可能的气候意义[J].中国沙漠.2004,24(5):588-592.
    刘煜,李维亮.青藏高原臭氧低谷的加深及其可能的影响[J].气象学报.2001,59(1):97-106.
    罗四维等.青藏高原及其邻近地区几类天气系统的研究[M].北京:气象出版社.1992.
    秦大河,丁一汇,苏纪兰,等.中国气候与环境演变[M].北京:科学出版社.2005.
    王明星,杨昕.人类活动对气候影响的研究Ⅰ温室气体和气溶胶[J].气候与环境研究.2002,7(2):247-254.
    王体健,孙照渤.臭氧变化及其气候效应的研究进展[J].地球科学进展.14(1):37-43.
    翟盘茂,潘晓华.中国北方近50年温度和降水极端事件变化[J].地理学报.2003,58(增刊):1-10.
    Ackerman A S, Toon O B, Stevens D E, et al. Reduction of tropical cloudiness by soot[J]. Science. 2000,288(5468):1042-1047.
    Albrecht B A. Aerosols, cloud microphysics, and fractional cloudiness[J]. Science.1989, 245(4923):1227-1230.
    Winker D, Hostetler C, Hunt W. CALIOP:The CALIPSO Lidar, NASA Langley Research Center, MS/435, Hampton, Virginia 23681, USA.2006.
    Haigh J D, Blackburn M, Day R. The response of tropospheric circulation to perturbations in lower-stratospheric temperature[J]. Journal of Climate.2005,18(17):3672-3685.
    Hansen J, Sato M, Ruedy R. Radiative forcing and climate response[J]. Journal of Geophysical Research:Atmospheres.1997,102(D6):6831-6864.
    Huang J, Lin B, Minnis P, et al. Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia[J]. Geophysical Research Letters.2006,33(19): L19802.
    Huang J, Minnis P, Yi Y, et al. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau[J]. Geophysical Research Letters.2007,34:L18805.
    Powell K, Vaughan M, Winker D et al. Data Management System Data Products Catalog Release 3.2. Langley Research Center.2010.
    Liu D, Wang Z, Liu Z, et al. A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements[J]. Journal of Geophysical Research.2008,113(D12):16214.
    Lorenz D J, DeWeaver E T. Tropopause height and zonal wind response to global warming in the IPCC scenario integrations[J]. Journal of Geophysical Research.2007,112(D10):D10119.
    Middleton N J. A geography of dust storms in South-west Asia[J]. Journal of Climatology.1986, 6(2):183-196.
    Peixdto J P, Oort A H. Physics of climate[M]. New York:American Institute of Physics Press.1992.
    Polvani L M, Kushner P J. Tropospheric response to stratospheric perturbations in a relatively simple general circulation model[J]. Geophysical research letters.2002,29(7):1114. http://dx.doi.org/10.1029/2001GL014284.
    Prospero J M, Ginoux P, Torres O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product[J]. Reviews of geophysics.2002,40(1):2-1.
    Qian W, Lin X. Regional trends in recent precipitation indices in China[J]. Meteorology and Atmospheric Physics.2005,90(3-4):193-207.
    Qian W, Quan L, Shi S. Variations of the dust storm in China and its climatic control[J]. Journal of Climate.2002,15(10):1216-1229.
    Schwartz S E. Aerosol, clouds, and climate change[M]. Kyoto University Press, Brookhaven National Laboratory.2005.
    Seidel D J, Fu Q, RanDel W J, et al. Widening of the tropical belt in a changing climate[J]. Nature Geoscience.2007,1(1):21-24.
    Sekiguchi M, Nakajima T, Suzuki K, et al. A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters[J]. Journal of Geophysical Research:Atmospheres.2003,108(D22):4699.
    Twomey S. Pollution and the planetary albedo[J]. Atmospheric Environment.1974,8(12): 1251-1256.
    Wang X, Key J R. Recent trends in Arctic surface, cloud, and radiation properties from space[J]. Science.2003,299(5613):1725-1728.
    Wang Y, Zhou L. Observed trends in extreme precipitation events in China during 1961-2001 and the associated changes in large-scale circulation[J]. Geophysical Research Letters.2005, 32(9).
    Williams G P. Circulation sensitivity to tropopause height[J]. Journal of the atmospheric sciences. 2006,63(7):1954-1961.
    Xu XD, Lu CG, Shi XH, et al. World water tower:An atmospheric perspective. Geophys Res Lett. 2008,35:L20815, doi:10.1029/2008GL035867.
    Zhai P, Zhang X, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate.2005,18(7):1096-1108.
    Zhou X, Li W, Chen L, et al. Study on ozone change over the Tibetan Plateau[J]. Acta meteorologica Sinica-English Edition.2006,20(2):129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700