用户名: 密码: 验证码:
北京地区热储层损害机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京地区地热资源丰富,但由于地热储层存在一定的敏感性矿物,在钻井、完井及生产、增产过程中造成储层损害。为高效、安全、持久地开发利用北京市地下蕴藏的热水资源,开展北京地区地热储层的损害机理研究,具有重要的理论意义和实用价值。
     论文选取北京地区碳酸盐类岩石地热储层为研究对象,通过选取部分现场样本结合一定量的室内实验,从岩样的基础物性、流体敏感性、应力敏感性、常用钻井液体系对岩样损害程度评价等方面研究了碳酸盐岩热储层的损害机理,取得以下主要结论和创新性成果:
     北京地区碳酸盐岩热储层属于超低渗透热储层,弱~中等偏弱速敏,中等偏弱~中等偏强水敏,弱~中等偏弱碱敏,具有极强的应力敏感性。模拟地热井施工井下环境钻井液对热储层的综合损害程度为中等偏弱,热储层岩样渗透率随温度升高、滤失量增大、压差增大而降低,在钻进施工过程中使用耐高温、低滤失量、低密度钻井液可保护储层。
     储层环境、储层岩石、储层流体为地热储层损害的潜在可能性,作业过程中形成的井下压差、温度及作业时间、流体等参数变化会使储层损害成为现实。
     建立了热储层受损害的微粒运移模型,得出单位时间内微粒扩散量及微粒扩散运移速度随微粒侵入深度的变化规律。
     通过井周应力变化损害热储层模型分析,建立了临界流量的影响因素和确定方法,提出了通过控制流量将塑性区限制在合理的范围内,寻求生产速度和保护储层之间平衡。
     针对目前施工现场使用钻井液抗温性能差的特点,研制了改进的保护地热储层聚合物体系、聚磺体系钻井液,有效地改善了钻井液的滤失量与泥饼的质量,提高了钻井液的抗温能力。
Beijing area is rich in geothermal resources. But because of the certain sensitivity minerals in geothermal reservoirs, some damage will be caused in drilling, completion and production process. Study of geothermal reservoir damage mechanism is of great theoretical and practical significance for efficient, safe and sustainable exploitation and utilization of underground hot water resources in Beijing area.
     Carbonate rocks geothermal reservoir in Beijing is acted as object in the paper. Damage mechanism of geothermal reservoir is studied through selecting some field samples as well as experiments in laboratory, for example:physical properties of rock, fluid sensitivity, sensitivity to stress, damage assessment of drilling fluids to rock specimen. The main conclusions and innovative results are as follows
     Geothermal reservoir in Beijing area belong to ultra-low permeability reservoir, Geothermal reservoir level of velocity sensitivity is weak low~medium, level of sensitivity to water is medium-low~medium strong, level of sensitivity to alkali is low~medium-weak, sensitivity to stress is extreme strong. The extent of damage of drilling fluid to reservoirs is medium-weak under environment simulated geothermal well. Rock permeability decreases as the temperature increase, the amount of fluid loss, pressure difference increase. High-temperature, low loss and low density drilling fluids are used during the drilling process for reservoir protection.
     Potential factors of reservoirs damage are environment, rocks, fluid of reservoirs. The formation of downhole pressure difference, time and changes of fluid parameters in the process of operation will make reservoir damage become a reality
     The particle transport model of heat reservoir damage is established. Particle diffusion amount per unit of time and the fact that the migration velocity of particle diffusion varies with invasion depth of particles have been got.
     By analyzing the model of the well circumferential stress changing damage geothermal reservoir, influence factors of critical flow and the method to determine are established. It is put forward that the plastic zone can be limited within a reasonable range by controlling the flow, seeking a balance between production rate and reservoir protection.
     Point at the characteristics of poor performance using a drilling fluid temperature in work-site, developed a geothermal reservoir protection improvement of polymer drilling fluid system, poly-sulfonate system, effectively improve the volume of drilling fluid filtrate cake quality, developed the capacity of drilling fluid resisted heat.
引文
[1][尹立河.地热利用迎来又一个高峰—2010年世界地热大会见闻.中国国土资源报,2012.6.2
    [2]Cappetti G.Geothermal resources development and utilization in Italy. Proceedings of 2002 Beijing International Geothermal Symposium,Beijing. China.2002:16-24.
    [3]Lund J.Worldwide utilization of geothermal energy and its application to 2008 Olympic Games in Beijing,China.Proceedings of 2002 Beijing International Geothermal Symposium,Beijing,China,2002:3-12
    [4]Hunttrer G. W.The status of world geothermal power generation 1995~2000.2000.1-27.
    [5]Lund.J.W., Freeston.D.H., Boyd.T.L..World-Wide Direct Uses of Geothermal Energy 2005.Proceedings of the World Geothermal Congress2005, Turkey
    [6]Zheng,K.,Zhang,Z.,Zhu,H..Process and Prospects of the Industrialized Development of Geothermal Resources in China-Country Update Report for 2000-2004.Proceedings of World Geothermal Congress 2005,Turkey
    [7]宾德智,刘久荣,王小玲.北京地热资源.北京地热国际研讨会论文集,地质出版社,2002,169-176
    [8]黄尚瑶,杨毓桐.中国城市地热开发30年北京地热国际研讨会论文集,北京:地质出版社,2002,31-37
    [9]陈墨香,汪集旸,邓孝,等.中国地热资源—分布特点与潜力估算.北京:科学出版社,1994
    [10]叶艳,鄢捷年,邹盛礼.碳酸盐岩裂缝性储层钻井液损害评价新方法[J].石油学报,2008,29(5):752-756
    [11]何健,康毅力,刘大伟.等.川渝地区碳酸盐岩气层钻井碱敏性实验研究[J].天然气工业,2005,25(8):60-61
    [12]Bennion.D.B. Formation damage-the impairment of the invisible, by the inevitable and uncontrollable, resulting in an indeterminate reduction of the unquantifiable. JCPT, Feb.1999,38(2):11~17
    [13]Chang F F,Civan F.Predictability of Formation Damage by Modeling Chemical and Mechanical Processes.SPE 23793 presented at the SPE International'Symposium on Formation Damage Control held in Lafayette,Louisiana,1992:26~27
    [14]Di Jiao,Sharma M M.Mud Induced Formation Damage in Fractured Reservoirs.SPE30107 presented at the SPE European Petroleum Conference held in The Hague,The Netherlands,1995:15~16
    [15]Di Jiao,Sharma M. Formation Damage Due To Static and Dynamic Filtration of Water-Based Muds.SPE23823 presented at the SPE International Symposium on Formation Damage Control held in Lafayette,Louisiana,1992:26-27
    [16]Wojtanowicz A K,Krilov Z, Langlinais J P. Study on the Effect of Pore Blocking Mechanisms on Formation Damage.SPE 16233 presented at the SPE Production Operations Symposium held in Oklahoma City.Oklahoma,1987:8~10
    [17]Amaefule J O, Kersey D G,et. Advances in Formation Damage Assessment and Control Strategies.CIM, 1988:39~65
    [18]Suri Ajay,Sharma M M. Strategies for Sizing Particles in Drilling and Completion Fluids.SPE 68964 presented at the SPE European Formation Damage Conference held in The Hague,The Netherlands,2001:21~22
    [19]Patton J T,Phelan P F. Well Damage Hazards Associated With Conventional Completion Fluids.SPE 13800 presented at the SPE Production Operations Symposium held in Oklahoma City,Oklahoma,1985:10~12
    [20]赵风兰,鄢捷年.国外保护油气层技术新进展-关于油气层损害机理的研究[J].钻井液与完井液,2003:20(2):42-47
    [21]崔迎春,张淡.储层损害和保护技术的研究现状和发展趋势[J].探矿工程,1999,增刊:299-302
    [22]Civan F. A Multi-Phase Mud Filtrate Invasion and Wellbore Filter Cake Formation Model. SPE 28709, in SPE International Petroleum Conference&Exhibition of Mexico held in Veracruz,Mexico,1994:10~13
    [23]Kalam.M.Z,Alawi.S.M,et. Assessment of Formation Damage Using Artificial Neural Networks. SPE31100 presented at the SPE International Symposium on Formation Damage Control held in Lafayette,Louisiana, 1996:14-18
    [24]Civan F. Evaluation and Comparison of the Formation Damage Model.SPE 23787 presented at the SPE International Symposium on Formation Damage Control held in Lafayette, Louisiana,1992:26~27
    [25]Ohen H A, Civan F. Simulation of Formation Damage in Petroleum Reservoirs. SPE 19420 presented at the SPE Symposium on Formation Damage Control held in Lafayette, Louisiana,1990:22-23
    [26]Vitthal S,Sharma M M,Sepehrnoori K. A One~Dimensional Formation Damage Simulator for Damage Due to Fines Migration.SPE 17146 presented at the SPE Symposium on Formation Damage Control held in Bakersfield,California,1988:8~9
    [27]谢长芳,徐学全.北京地热田地质构造分析[J].水文地质工程地质,1982,(6):14~18
    [28]底青云,王若,石昆法,等CSAMT法在北京强干扰区深层地热探测中的应用.工程地质力学创新与发展暨工程地质研究室成立50周年学术研讨会论文集,2008
    [29]张春沛.北京延庆北部地区地下热水资源研究[J].中国煤田地质,2002,14(3)
    [30]吕金波,等.1:250000北京市幅区域地质调查报告[R].2002
    [31]增瑞祥,王治,张进平,等.北京良乡地区地热资源及其开发利用现状.北京地热国际研讨会论文集,2002:259~263
    [32]曼弗赖德,霍克斯坦,郑克棪.北京平原地区地热勘查评价.北京地热国际研讨会论文集,2002:197-204
    [33]地质矿产部水文地质工程地质技术方法研究.水文地质手册[M].北京:地质出版社,1983
    [34]李鼎容,彭一民,刘清泗,等.北京平原区上新统—更新统的划分[J].地质科学,1979,(4):342~349
    [35]国家技术监督局.GB/T13727-92.天然矿泉水地质勘探规范.北京:中国标准出版社,1993
    [36]柯柏林.北京城区地热田西北部地热地质特征[J].现代地质.2009,23(1):49~56
    [37]刘静,康毅力,陈锐,等.碳酸盐岩储层损害机理及保护技术研究现状与发展趋势[J].油气地质与采收率,2006,13(1):99-103
    [38]王欣,张达明.储层微粒运移机理研究[J].钻井液与完井液,1995,8(3):51-64.
    [39]M ungan N. Perm eab ility reduction through changes in pH and salinity[J]. JPT,1965,17 (12):1449~1453.
    [40]梅来宝,邓敏,唐明述.碱~碳酸盐反应研究进展[J].南京工业大学学报,2002,24(2):104-110
    [41]刘铮,吕忆农,唐明述,等.碱~碳酸盐反应和pH值[J].南京化工学院院报,1990,12(4):25-29
    [42]吕忆农,兰祥辉,陈东明,等.碱~自云石反应及碱~碳酸盐反应的膨胀机理[J].碳酸盐学报,1994,22(4):135~324
    [43]邓敏,钱光人,唐明述,等,白云石品休的有序度与去白云石化反应[J].南京工业大学学报,2001,23(1):1-5
    [44]邓敏,钱光人,兰祥辉,等.混凝土中自云岩与去自云石化反应与机理[J].南京工业大学学报,2002,24(4):1-8
    [45]刘铮.混凝土中的碱~碳酸盐反应[J].南京化工学院学报,1991,13(2):25~31
    [46]唐明述.碱硅酸反应与碳酸盐反应[J].中国科学工程,2000.2(1):34-40
    [47]唐明述,邓敏.碱集料反应新进展[J].建筑材料学报,2003,6(1):1-8
    [48]韩苏芬,吕忆农,钱春香.我国的碱活性集料与碱-集料反应[J].混凝土,1990,(5):7~15
    [49]李俊峰.黎雪梅.林建旺,等.天津地热流体中的沉积物成分分析[J].水文地质工程地质,2012,39(4):137~144
    [50]孙凯,李黔,潘仁杰.高温高压超深井钻井液密度设计方法探讨[J].钻采工艺,2009,32(2):1-2
    [51]黄浩清.安全环保的新型水基钻井液[J].钻井液与完井液,2004,11:4~8
    [52]杨虎,鄢捷年.欠平衡钻井中钻井液密度的确定与控制方法[J].石油钻采工艺,2003,25,(6):5~10
    [53]李怀科,王楠,田荣剑,等.深水条件下气制油合成基钻井液流变性和流变模式研究[J].中国海上油气,2010,22(6):406-408.
    [54]孙涛,陈礼仪,邱存家,等.天然气水合物勘探低温钻井液体系[J].天然气工业,2004,24(2):61~63
    [55]刘东明,黄进军,王瑞莲,等.钻井液pH值的影响因素研究[J].石油钻采工艺,2007,28(6):43-45
    [56]马运庆,王伟忠,杨俊贞,等.浅谈钻井液pH值对处理剂的影响[J].钻井液与完井液,2008,25(3):77~79
    [57]蓝强,邱正松,王毅,等.pH值对硅酸盐钻井液性能的影响[J].石油钻采工艺,2007,29(3):80-84
    [58]张东海.中原油田保护油气层钻井液技术[J].钻采工艺,2000,23(3):99~100
    [59]舒刚,孟英峰,李红涛.等.裂缝内钻井液的漏失规律研究[J].石油钻采工艺,2011,33(6):29~32
    [60]孙玉学,杨立国,李继丰.吉林油田保护油气层钻井液的研制及应用[J].大庆石油学院学报,2004,28(3):17-21
    [61]安庆宝,崔迎春.复杂地层条件下钻井液优化使用的探讨[J].钻井液与完井液,2004,21(4):1-6
    [62]王松,魏霞,喻霞,等.钻井液泥饼强度评价研究[J].钻井液与完井液,201 1,28(1):11-15
    [63]罗立公,关增臣,苏常明,等.油基钻井液在特殊钻井中的应用[J].钻采工艺,1977,20(3):71-74
    [64]陈鑫,杨晓冰.钻井液固相控制技术探讨与建议[J].石油和化工设备,2011,14:45~47.
    [65]赵冲.硅酸盐钻井液体系在大港油田滩海地区的研究与应用:[D].东北石油大学,2010
    [66]吕开河,邱正松,徐加放.聚醚多元醇钻井液研制及应用[J].石油学报,2006,27,1:101-105
    [67]张晓东,王福贵.钻井液加重剂离心分离和回收参数优化设计[J].西南石油大学学报(自然科学版),2009,31,4:165-169
    [68]徐强,马峰,张文郁.水基钻井液降滤失剂的发展与应用[J].钻采工艺,2010,24,1:59-63
    [69]王建.KCI/聚磺水基钻井液体系研究[J].重庆科技学院学报(自然科学版),2010,12,5:88~91
    [70]刘选朋.新疆巴麦地区泥盆系储层损害机理及完井液性能优化:[D].中国地质大学(北京),2011
    [71]H.A.Ohen, F.Civan. Simulation of Formation Damage in Petroleum Reservoirs. SPE 19420,1990:185-195
    [72]中国石油天然气总公司.SY/T5717—95.中华人民共和国石油天然气行业标准-单井碎屑岩储层评价.北京,1997
    [73]杨景利,薛玉志,乔军等.钻井液充氮技术在深探井中的应用[J].钻井液与完井液,2003,20(1):17-18
    [74]王传富,乔军,薛玉志,等.钻井液充氮技术在水平井中的应[J].钻井液与完井液,2003,20(1):19~20.
    [75]乐平,杨建,冯仁鹏.钻井过程中的储层损害和储层保护技术研究现状[J].重庆科技学院学报(自然科学版),2009,11(5):26-29
    [76]申延晴.生产过程中储集层损害诊断与评价:[D].中国石油大学(华东),2006
    [77]魏波.锦150块油气层保护技术研究:[D].中国石油大学(华东),2008
    [78]梁小兵.川西浅层低渗气井压力脉冲—化学解堵技术研究与应用:[D].西安石油大学,2009
    [79]韩日宏.旁路耦合电弧焊热物理过程研究:[D].兰州理工大学,2012
    [80]李茂成.开发层损害机理与评价研究:[D].大庆石油学院,2003
    [81]段永刚,胡永全.临界流速的确定及其在油田开发中的应用[J].西南石油学院学报,1996,18,3:68~73
    [82]孙可明,赵阳升,杨栋.非均质热弹塑性损伤模型及其在油页岩地下开发热破裂分析中的应用[J].岩石力 学与工程学报,2008,27,1:42~52
    [83]张宁生.固相颗粒与油珠侵入地层孔隙的数学模型及模拟研究[J].天然气工业,1995.15,2:34-37
    [84]段玉廷,近井塑性带应力状态与地层损害关系[J].石油勘探与开发,1998,25,1:76-79
    [85]黄立新.微粒扩散迁移对钻开产层质量的影响[J].石油钻探技术,1999,17,3:19-20
    [86]刘想平,候立朋.油田注入水中固体颗粒对地层损害的数学模型[J].西南石油学院学报,1995,17,2:69~73
    [87]熊友明.地层损害评价方法[J].天然气.工业,1989,9,5:60-63
    [88]王业众,康毅力,张浩,等.碳酸盐岩应力敏感性对有效应力作用时间的响应[J].钻采工艺,2007,30(3):105-107
    [89]闫丰明,康毅力,李松,等.裂缝-孔洞型碳酸盐岩储层应力敏感性实验研究[J].天然气地球科学,2010,21(3):489~493,507
    [90]张浩,康毅力,陈一健,等.致密砂岩油气储层岩石变形理论与应力敏感性[J].天然气地球科学,2004,15(5):482--486
    [91]练章华,康毅力,徐进,等.裂缝面及井眼附近的应力分析[J].西南石油学院学报,2001,23(3):37-39
    [92]何健,康毅力,刘大伟,等.孔隙型与裂缝—孔隙型碳酸盐岩储层应力敏感性研究[J].钻采工艺,2005.28(2):84-86
    [93]杨洪志,陈友莲.应力敏感对低渗砂岩储层气井生产影响研究[J].天然气勘探与开发,2007,30(3):37-54
    [94]王丽红,宋德良.油气层损害的机理及其评价及有重要性.中国石油和化工标准与质量,2011,12:236
    [95]孔令乐.储层近井带堵塞诊断及防治措施优选软件系统研制:[D].中国石油大学(华东),2009
    [96]高云文.低渗透油层损害与防治—以西峰油田为例:[D].西安:长安大学,2006
    [97]李福军.基于智能计算的油气储集层损害诊断决策支持系统:[D].哈尔滨工程大学,2005
    [98]李花花.近井带地层堵塞预测、诊断与处理效果评价数学模型研究:[D].西安:西安石油大学,2009
    [99]王福平,张国芳,李刚,等.注水开发储层损害内因研究[J].科技与生活,2010,21:103
    [100]张光连.北京市再生水综合利用规划研究:[D].北京:中国农业大学,2005
    [101]胡文瑞,等.地热:新能源的机会[J].中国石油石化,2009,21:26
    [102]穆海旭.低渗透油田油层解堵措施研究:[D].大庆:大庆石油学院,2007
    [103]马龙.油井产层损害数值分析与处理技术[D].东北石油大学,2010
    [104]梁涛.地应力与井壁稳定性关系研究[D].中国地质大学(北京),2012
    [105]于援.北京城区地热田地下热水的水化学及同位素研究[D],中国地质大学(北京),2006
    [106]刘大有.从二相流方程出发研究平衡输沙-扩散理论和泥沙扩散系数的讨论.水利学报,1995,(4):62-67
    [107]张潦源.埕岛油田低损害低密度入井液研究及应用:[D].青岛:中国石油大学(华东),2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700