用户名: 密码: 验证码:
西藏甲玛铜多金属矿床成因模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏甲玛铜多金属矿位于全球第二大斑岩成矿域-特提斯-喜马拉雅巨型斑岩成矿域冈底斯成矿带中东段,属于与中新世中酸性浅成岩浆建造有关的铜、钼、铅锌、钨、金、银矿床成矿亚系列,是“后碰撞”构造环境中斑岩铜多金属矿的典型代表。论文以矿床地质为基础,总结了矿床岩浆岩的分布及气液蚀变-矿化特征,结合岩石/矿物地球化学、包裹体、同位素组成及年代学资料,讨论了矿床岩浆岩的起源、演化、流体出溶和矿质来源及富集机制,气-液蚀变的来源、演化及矿质沉淀机制,建立了初步的矿床成因模式。主要有以下几点认识:
     1、以精细地质调查为基础,通过室内镜下鉴定、常量元素、微量元素、稀土元素和同位素的综合分析研究,揭示了甲玛矿区中新世的浅成侵入岩主要为云斜煌斑岩、闪斜煌斑岩、闪长玢岩、二长花岗斑岩、花岗闪长斑岩和花岗斑岩,表现花岗斑岩→闪长玢岩→云斜煌斑岩→二长花岗斑岩→闪斜煌斑岩→花岗闪长斑岩→闪斜煌斑岩的侵位序列。其中云斜煌斑岩和闪斜煌斑岩为同源岩浆,分属于钙碱性煌斑岩的钾质系列和钠质系列,源区为受俯冲板片释放的流(熔)体交代的地幔楔;闪长玢岩为I型高钾钙碱性系列,显示埃达克岩的地球化学亲和性,源区为新生下地壳;花岗斑岩属于S型钾玄岩系列,为后碰撞强过铝质花岗岩类,源区为中下地壳的变质杂砂岩;二长花岗斑岩和花岗闪长斑岩为I型高钾钙碱性系列,是上述三种岩浆熔体不同比例岩浆混合的产物。
     2、通过精细的野外地质填图、钻孔编录和岩矿鉴定,确定了矿床的蚀变类型和蚀变分带及与矿化的关系。甲玛矿床的斑岩矿化体系发育钠硅酸盐化(电气石)、钾硅酸盐化、矽卡岩化、石英-绢云母化、青磐岩化和泥化,并叠加不同类型的铁矿化。矿床浅成低温热液体系主要发育石英-碳酸盐化、泥化、玉髓化、萤石化和锰化。不同蚀变类型的矿化特征不同,钠硅酸盐化(电气石)与岩体内部的黄铜矿-辉钼矿矿化囊和岩体顶部隐爆状的黄铜矿-辉钼矿矿化有关;以石英+黑云母为主的钾硅酸盐化与黄铜矿矿化有关;以硅灰石为主的晚期矽卡岩化与斑铜矿矿化有关;石英-绢云母化与辉钼矿、黄铜矿矿化关;青磐岩化与黄铜矿矿化有关;浅成低温热液矿化与Cu、Au、Pb-Zn的二次矿化有关。
     3、通过流体包裹体、H-O同位素和稀有气体同位素研究,确定了矿床钠硅酸盐化、钾硅酸盐化、矽卡岩化、石英-绢云母化、青磐岩化和浅成低温热液矿化6个蚀变阶段的流体包裹体特征及成矿流体来源。流体包裹体类型包括富气相包裹体、富液相包裹体和含子晶多相包裹体。钠硅酸盐化的均一温度为437~650℃,盐度为2~46.2%NaCl;钾硅酸盐化的均一温度为315~457℃,盐度为1.0~47.1%NaCl;矽卡岩化的均一温度为220~413℃,盐度为2.7~47.3%NaCl;石英-绢云母化的均一温度为230~378℃,盐度为4.1~43.8%NaCl;青磐岩化的均一温度为80~410℃,盐度为1.7~5.7%NaCl;浅成低温热液阶段的均一温度为170~253℃,盐度为2.8~5.5%NaCl;各蚀变阶段流体包裹体离子成分主为K~++Na~++Ca~+,气相成分为H_2O-CO_2-CH_4-N_2型。岩浆热液过渡阶段的成矿元素Cu、Au、Zn-Pb均在气相流体包裹体的中富集,液相中的金属元素浓度较低。值得注意的是,钠硅酸盐化阶段的I-2型流体包裹体可能是捕获的超临界流体,温度为625℃,盐度为9.8%NaCl。成矿流体主要来自地壳深部的岩浆,在演化过程中不断有沉积或大气降水的混入;
     4、总结了矿区斑岩成因模式和蚀变-矿化成因模式。18Ma之前,印度大陆板片断离诱发软流圈上涌,导致岩石圈对流减薄、拆沉,岩石圈各不同源区的部分熔融,形成含Cu-Mo、富水和碱、高fO_2的玄武质熔体、含Cu-Mo-Au-Pb-Zn、富水和碱、高fO_2的闪长质熔体和花岗质熔体,18~14Ma,在区域应力挤压-伸展构造转换过程中,三种类型的熔体沿近东西向和近南北向的走滑断裂运移、侵位过程中发生岩浆混合作用,形成二长花岗斑岩和花岗闪长斑岩。随着不混溶阶段形成的超临界流体在深部岩浆房内发生相分离,形成低密度的气相和高盐度的流体相。低密度气相在岩体上部,形成弥散性的含Cu-Au的钠-钾硅酸盐化,高盐度的流体相是最早的成矿流体,以富钠为特征,是引起钠硅酸盐化的流体。Na、K分馏导致了钾硅酸盐化流体的形成,在钾硅酸盐化晚阶段,随着磁铁矿、石膏的大规模晶出导致还原硫释放,形成以石英+黑云母为主的钾硅酸盐化,并伴生黄铜矿;同时,成矿流体与大理岩、角岩发生矽卡岩化,形成石榴子石和硅灰石等,Ca离子的活化导致流体还原硫释放度的相对减弱,形成斑铜矿化;之后,随着流体压力由静岩压力转向静水压力,大气降水的混入导致流体K+/H+比值的减小,逐渐形成石英-绢云母化,并伴生辉钼矿、黄铜矿矿化;晚期,在地热系统的热对流作用下,长石分解蚀变后的元素重新组合,生成低温蚀变矿物,包括玉髓、方解石、萤石和软锰矿等,并伴生Cu、Au、Pb-Zn;最后,青藏高原的隆升和剥蚀,原生矿体抬升至地表,在表生氧化作用和次生富集作用下,Cu、Au再次富集,形成辉铜矿+褐铁矿+赤铁矿+硅孔雀石+铜蓝+金矿化。
Jiama polymetallic copper deposit locates in the middle-east of the Gangdesemetallogenetic belt which belong to the world’s second lagest porphyry metallogenicdomain-Tethys-Himalayan giant prophyry metallogenic domain. It’s a typicalrepresentative of porphyry copper polymetallic ore in “post collision” tectonicenvironment and an important part of the Miocene intermediate-acid hypabyssalmagmatic formation related to submetallogenic series of copper, molybdenum, leadand zinc, wolfram,gold and silver diposits. Based on the geology, geochemistry,fluid/melt inclusions, isotopic composition and chronology, we disscussed the originand evolution of magmatic rocks, fluid exsolution,origin and enrichment mechanismof the mineral source, origin and evolution of gas-liquid alteration and the mechanismof mineral precipitation, established a preliminary complete ore deposit genetic mode,Mainly the following understandings:
     1、Detailed field geological investigation, geochemistry, isotopic compositionsand the chronology make clear that the hypabyssal intrusive rocks in Jiama depositincluding minettes, spessarite, diorite porphyrite, monzo-granite porphyry, grano-diorite porphyry and granitic porphyry.Their emplacement age between17Ma-13.2Ma and their evolution sequence express granite porphyry->diorite porphyrite->minettes->monzogranite porphyry->spessartite->granite diorite porphyry->spessartite.The minettes and spessartite which belong to potassic calc-alkaline and sodiumcalcium alkaline lamprophyres severally are isogenesis and origin from meta-somatized mantle wedge by the flow (molten) from subducting slab;The dioriteporphyrite are metaluminous high-K calc-alkali rocks with the characteristics ofI-type granites and adakites origin from the new lower crust;The granite porphyry arealuminum shoshonite, and with the characteristics of the S-type granites origin frommetamorphic sandstone in lower crust;The monzogranite porphyry and the granitediorite porphyry are I-type high-K calc-alkali rocks, both are the mixing result of thethree magmatic melt.
     2、Determine the alteration types, alteration zoning and their relationship to themin-eralization. Porphyry mineralization system in Jiama deposit develop sodium silication (tourmaline), potassium silication, skarnization, sericitization, propylitiz-ation and argillization, and superposed different types of iron ore. Epithermal systemin Jiama deposit develop quartz-carbonatization, argillization, chalcedonization,fluorite-zation and manganesation. Sodium silication (tourmaline) are related to thechalco-pyrite-molybdenite mineralization capsule in the interior pluton and cryptoexplosive chalcopyrite-molybdenite mineralization in the top of pluton. The mainlyquartz-biotite potassium silicattion are related to chalcopyrite mineralization. Theskarni-zation and potassium silication which developed simultaneously are related tocopper mineralization; Sericitization are related to chalcopyrite and molybdeniteminerali–zation. Propylitization are related to copyrite mineralization. Epithermalminerali-zation related to Cu,Au,Pb-Zn mineralization.
     3、Ascertain the characters of the fluid/melt inclusions and the source of the fluidby the H-O and inert gases isotopes. The fluid inclusions in the Jiama deposits aremainly gas phase rich inclusions, liquid phase rich inclusions and daughter crystalscontaining multiphase inclusions. The homogenization temperature of the the silicatephase fluid inclusions change in437~650℃,salinity changes in2~46.2%NaCl;Thehomogeniz ation temperature of potassium silicate phase fluid inclusions changes in315~457℃, salinity changes in1.0~47.1%NaCl;The homogenization temperatureof the skarn stage fluid inclusions changes in220~413℃, salinity changes in2.7~47.3%NaCl;The homogenization temperature of phyllic stage fluid inclusionschanges in230~378℃, salinity changes in the4.1~43.8%NaCl;Thehomogenization temperature propylitic rock stage fluid inclusions changesin380~410℃and salinity changes in the1.7~5.7%NaCl;The homogenization temperatureof shallow epithermal stage fluid inclusions changes in170~253℃, salinity changesin2.8~5.5%NaCl;Each alteration phase ion composition of fluid inclusions LordK++Na++Ca+,the gas phase composition is H2O-CO_2-CH_4-N_2type. Fe, Cu, Zn, Pb andAu in magmatic hydrothermal transition stages are all enriched in the vapor phase ofthe fluid inclusions, but the metal element concentration in the liquid phase isrelatively lower,suggesting a strong gas-liquid fractionation of metallogenicmaterials.Noting that the I-2type fluid inclusions in sodium silicate salinization stagemay be supercritical fluid captured with temperature of625℃and9.8%NaClsalinity.The alteration and mineralization fulids mainly come from deep crust andmixed some deposition or precipitation fulid.
     4、Summarize the porphyry genetic model and alteration genetic model of theJiama deposit.18Ma before, the upwelled asthenosphere leaded to convection anddelamin-ation of the thinned lithosphere,.cause partial melting of the different sourcearea of the lithosphere, foming basaltic melts containing Cu-Mo, water and alkali richand high fO_2, granodioritic and granitic melt containing Cu-Mo-Au-Pb-Zn,water andalkali rich and high fO_2.During18~14Ma, In the extrusion and extension structureconversion process, the three types of melt migrated and emplaced along the EW andNS-trending strike-slip fracture fromed lamprophyre、diorite porphyrite and graniteporphyry respectively, the monzogranite porphyry and the granite diorite porphyry arethe mixing result of the three magmatic melt. The supercritical fluid formed inimmiscible phase and separate into low-density gas and high salinity fluid during the magmatic hydrothermal transitional stage. Low-density gas formed the earliestscattered Na-K silication alteration with Cu-Au mineralization and later fromed theepidotization by addition of the meteoric water. High salinity fluid caused sodiumalteration is the earlier ore-forming fluid. The potassium alteration fluid origin fromthe fractionation of the sodium and potassic of the high salinity fluid, in the later, thesulfur fugacity of the potassic fluid reduced with the magnetite and gypsum crystaledcaused quartz+biotite potassium silication associated chalcopyrite; Meanwhile, theskarnizationwhich origined from the fulid interacted with hornfels and marble caucedthe activation of the Ca2+and induced content of the sulfur,mainly fromed thebornite.After then, the fluid pressure turn lithostatic pressure to hydrostatic pressure,the increasion of atmospheric precipitation decreased the H+/K+ratio, and formedsericitization associated molybdenum and chalcopyrite mineralization. In the heatconvection of the geothermal system, the mineral (Cu, Au, Pb-Zn) recombinated andformed a series of low temperature alteration, including chalcedony, calcite, fluoriteand pyrolusite, etc. Finaly, owing to the uplift and denudation of the Tibet plateau, theprimary ore upraise to the surface, Cu and Au enrichment again under supergeneoxidation and secondary enrichment, formed chalcocite+limonite+hematite+chryso-colla+covellite+gold mineralization.
引文
[1].王奖臻,李朝阳,胡瑞忠等.斑岩铜矿研究的若干进展[J].地球科学进展,2001,4:15-17.
    [2].郑文宝.西藏甲玛铜多金属矿床成矿模式与找矿模型[D].博士学位论文,成都:成都理工大学,2012,1-10.
    [3].唐菊兴,王登红,钟康惠,等.西藏自治区墨竹工卡县甲玛铜多金属矿区0-16-40-80、0-15线矿段铜多金属矿勘探报告[R].拉萨:西藏国土资源厅.2009.
    [4].唐菊兴,王登红,钟康惠,等.西藏自治区墨竹工卡县甲玛矿区外围铜多金属矿详查报告[R].拉萨:西藏国土资源厅.2009.
    [5].唐菊兴,王登红,钟康惠,等.西藏自治区墨竹工卡县甲玛矿区牛马塘矿段铜多金属矿勘探报告[R].拉萨:西藏国土资源厅,2011.
    [6].唐菊兴,王登红,钟康惠,等.西藏自治区墨竹工卡县甲玛矿区外围则古朗矿段铜多金属矿详查报告[R].拉萨:西藏国土资源厅,2011.
    [7].潘风雏.西藏甲马喷流交代矽卡岩型铜多金属矿床成矿模式[D].硕士学位论文,北京,中国地质大学(北京),2001.
    [8].潘风雏,粟登奎,姚鹏等.西藏甲马喷流矽卡岩型铜多金属矿床地质特征[J]西藏地质,1997,18(2):62-73.
    [9].潘凤雏,邓军,姚鹏等.西藏甲马铜多金属矿床矽卡岩的喷流成因[J].现代地质,2002,16(4):359-364.
    [10].杜光树,姚鹏,潘凤雏等.喷流成因矽卡岩与成矿-以西藏甲马铜多金属矿床为例[M].成都:四川科学技术出版社,1998.
    [11].姚鹏,杜光树.西藏甲马多金属矿床容矿岩石的地球化学特征及其成因初步研究[J].特提斯地质,1999,(23):46-57.
    [12].姚鹏,郑明华,彭勇民等.2002.西藏冈底斯岛弧带甲马铜多金属矿床成矿物质来源及成因研究[J].地质论评,48(5):468-479.
    [13].李金高,王全海,郑明华等.西藏sedex型矿床赋矿性质对成矿元素的制约作用[J].沉积与特提斯地质,2001,21(4):ll-20.
    [14].彭勇民,姚鹏,李金高.西藏甲马铜多金属矿区上侏罗统-白垩系层序地层与成矿.地质论评[J],2001,47(6):584-589.
    [15].王全海,王保生,李金高等.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估[J].地质通报,2002,2l(1):35-40.
    [16].任云生,粟登逵,张金树.西藏甲马铜多金属矿床金的叠加成矿[J].吉林大学学报(地球科学版),2002,32(3):225-228.
    [17].李胜荣,袁万明,屈文俊,邓军,侯增谦.西藏墨竹工卡县甲马多金属矿床几组年龄数据的比较与成因研究[J].岩石学报,2008,24(3):511-518.
    [18].Feng XL and Mu CL. A Disscussion on the Genesis of the JiaMa Copper-PolymetallicDeposit, Maizhorun-Gger, XiZang[J]. Earth Science Frontier,2000,7(Supp):431.
    [19].冯孝良,管仕平,牟传龙等.西藏甲马铜多金属矿床的岩浆热液交代成因:地质与地球化学证据[J].地质地球化学,2001,29(4):40-48.
    [20].曲晓明,侯增谦,黄卫.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?[J].矿床地质,2001,20(4):355-366.
    [21].李光明,王高明,高大发,黄志英,姚鹏.西藏冈底斯南缘构造格架与成矿系统[J].沉积与特提斯地质,2002,22(2):1-7.
    [22].侯增谦,曲晓明,王淑贤等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景[J].中国科学(D辑),2003,33(7):609-618.
    [23].Qu XM,Hou ZQ,Khin Z et a1. Characteristics and genesis of Gangdese porphyry copperdeposits in the southern Tibe tan Plateau: Preliminary geochemical and geochronologicalresults[J].Ore Geology Reviews,2007,31(1-4):205-223.
    [24].连玉,徐文艺,杨丹,等.西藏冈底斯甲玛和南木矿床流体包裹体SR-XRF研究[J].岩石矿物学杂志,2008,3(27):185-198.
    [25].唐菊兴,王登红,汪雄武,等.西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J].地球学报,2010,31(4):495-506.
    [26].钟康惠,李磊,周慧文,等.西藏甲玛-卡军果推-滑覆构造系特征[J].地球学报2012,33(4):411-423.
    [27].Ransome F L. The geology and ore deposits of the Bisbee Quadrangle, Arizona [C]. U. S.Geological Survey, Professional Paper,1904,21:1-168.
    [28].Emmons W H. Principles of economic geology [M].1st ed.New York: McGraw-Hill,1918,1-550.
    [29].Lowell JD and Guilbert JM.Lateral and vertical alteration-mineralization zoning in porphyryore deposits [J]. Econ. Geol,1970,65:373-408.
    [30].Cooke DR, Hollings P and Walshe JL. Giant Porphyry Deposits: Characteristics, distribution,and tectonic controls [J]. Econ.Geol,2005,100:801-818.
    [31].Hollister VF, Potter RR and Barker AL. Porphyry-type deposits of the Appalachian orogen [J].Econ. Geol,1974,69:618-630.
    [32].Hou ZQ, Ma HW, Zaw K, Zhang YQ, Wang MJ, Wang Z, Pan GT and Tang RL. TheHimalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in EasternTibet [J].Econ. Geol.,2003,98:125-145.
    [33].芮宗瑶,侯增谦,李光明,刘波,张立生,王龙生.冈底斯斑岩铜矿成矿模式[J].地质论评,2006,52:459-466.
    [34].杨志明,侯增谦.初论碰撞造山环境斑岩铜矿成矿模型[J].矿床地质,2009,28(5):515-538.
    [35].朱训,黄崇轲,芮宗瑶,等.德兴斑岩铜矿[M].北京:地质出版社.1983,1-336.
    [36].Sillitoe R.H. Porphyry Copper Systems [J]. Economic Geology,2010,105:3–41.
    [37].Seedorf E, Barton MD, Stavast W J A and Maher D J. Root zones of porphyry systems:Extending the porphyry model to depth [J]. Econ. Geol.,2008,103:939-956.
    [38].芮宗瑶,黄崇轲,齐国明,徐珏,张洪涛.中国斑岩铜(钼)矿床[M].北京:地质出版社,1984,1-350.
    [39].Kerrich R, Goldfarb R, Groves D, Garwin S. The geodynamics of world-class gold deposits:Characteristics, space-time distributions, and origins: Reviews in Economic[J] Geology,2000,13:501-551.
    [40].Hedenquist J W, Arriba A J, Reynolds T J. Evolut ion of an intrusion-centered hydrothermalsystem: Far Southeast-Lepanto porphtyry and epithermal Cu-Au deposits, Philippines [J].Economic Geology,1998,93:373~404.
    [41].Sillitoe RH. A platet ectonic model for the origin of porphyry copper deposits [J]. Econ. Geol.1972,67:184~197.
    [42].Richards JP. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation [J].Economic Geology,2003,98:1515-1533.
    [43].Singer DA, Berger VI, MenzieWD, Berger BR. Porphyry copper deposit density[J]. Econ.Geol.,2005,100:491~514.
    [44].王植,闻广.中条山式斑岩铜矿[J].地质学报,1957,37(4):401-415.
    [45].Tatsumi Y, Hamilton DL, Nesbit t RW. Chemical characteristics of fluid phase released froma subducted lithosphere and the origin of arc magmas: Evidence from high pressureexperiments and natural rocks [J]. Journal of Volcanology and Geothermal Research,1986,29:293~309.
    [46].Davidson JP. Deciphering m ant le and crustal signatures in subduction zone magmatism[J].Geophysical Monograph,1996,96:251-262.
    [47].Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX. Origin ofadakit ic in t rusives generated duringmid-Miocene east-west extension in southern Tibet [J]. Earth and Planetary Science Letters,2004,220:139-155.
    [48].侯增谦,高永丰,孟祥金,曲晓明,黄卫.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报,2004,20:239-248.
    [49].Skarmeta J, McClay K, Bertens A. Structural controls on porphyry copper deposits innorthern Chile: New models and implications for Cu-Mo mineralizat ion in subductionorogensm [abs.]: Dcimo Congreso Geologico Chileno, Concepcin,2003, ConferenceProceedings: Departamento Cienciasdela Tierra, Universidadde Concepcin,2003,109~110.
    [50].Gow P, Walshe JL. The role of preexisting geologic architecture in the formation of giantporphyry-related Cu-Au deposits: Examples from New Guinea and Chile [J].Econ. Geol.,2005,100:819~833.
    [51].Sillitoe RH, Gappe IM. Philippine porphyry copper deposits、geologic setting andcharacteristics[J].Bangkok, Thailand, United Nations ESCAP, CCOP Technicat Publication,1984,14:9.
    [52].Sasso A M, Clark A H. The Farallon Negro Group, Northwet Argentina: magmatic,hydrothermal and tectonic implications for Cu Au metallogeny in the Andean backarc.Society of Economic Geologists Newsletter,1998,34:6~8.
    [53].Liang HY, Sun WD, Su WC, Zartman RE. Porphyry copper-gold mineralization at Yulong,China, promoted by decreasing redox potential during magnetite alteration. EconomicGeology,2007,104:587~596.
    [54].侯增谦,曲晓明,黄卫,高永丰.冈底斯斑岩铜矿成矿带有望成为西藏第二条玉龙铜矿带.中国地质,2001,28(10):27~30.
    [55].Gao YF, Hou ZQ, Kamber BS, Wei RH, Meng XJ and Zhao RS. Adakite-like porphyriesfrom the southern Tibetan continental collision zones: evidence for slab melts metasomatism[J]. Contribution to Mineral Petrology,2007,153:105-120.
    [56].James DE and Sacks IS. Cenozoic formation of the Central Andes: a geophysical perspective
    [A].In: Skinner B J, ed. Geology and ore deposits of the Central Andes [M]. Spec. Pub. Soc.Econ.Geol.1999,7:1225.
    [57].Chung SL, Liu D, Ji J, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang Q.Adakites from continental collisionzones: melting of thickened lower crust beneath southernTibet [J].Geology,2003,31:1021-1024.
    [58].Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N,Kelley S, Van CalsterenP and Deng W.. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications forconvective thinning of the lithosphere and the source of ocean island basalts [J]. Journal ofPetrology,1996,37:45-71.
    [59].Misra KC. Understanding mineral deposits. Kluwer Academic Publishers,2000,353~413.
    [60].Kesler SE. Copper, molybdenum and gold abundances in porphyry copper deposits. Econ.Geol.,1973,68:106-112.
    [61].Singer DA, Berger VI, Menzie WD, Berger BR. Porphyry copper deposit density. Econ. Geol.,2005,100:491-514.
    [62].侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J].地质学报,2009,83(12):1779-1817.
    [63].Cloos M. Bubbling magma chambers, cupolas, and porphyry copper deposits [J].International Geology Review,2001,43:285-311.
    [64].Richards JP. Cumulative factors in the generation of giant calcalkaline porphyry Cu deposits[A]. In: Porter T M, ed. Super porphyry copper&gold deposits: A global perspective [M].PGC Publishing, Adelaide.2005,1-225.
    [65].Harris AC, Kamenetsky VS, White NC, Steele DA. Volatil ephase separation in silicicmagmas at Bajodela Alumbrera porphyry Cu-Au deposit, NW Argentina. Resource Geology,2004,54:341-356.
    [66].Harris AC and Golding SD. New evidence of magmatic-fluid-related phyllic alteration:Implications for the genesis of porphyry Cu deposits [J]. Geology,2002,30:335-338.
    [67].Hedenquist JW and Richards JP. The influence of geochemical techniques on thedevelopment of genetic models for porphyry copper deposits [J]. Reviews in EconomicGeology,1998a,10:235-256.
    [68].Hedenquist JW, Arriba AJ and Reynolds TJ. Evolution of an intrusion-centered hydrothermalsystem: Far Southeast Lepanto porphtyry and epithermal Cu-Au deposits, Philippines [J].Econ.Geol,1998b,93:373-404.
    [69].侯增谦.斑岩Cu-Mo-Au矿床:新认识与新进展[J].地学前缘,2004,11(1):131-144.
    [70].Einaudi MT. High sulfidation/low sulfidation porphyry copper/skarn systems: characteristics,continua, and causes. SEG International Exchange Lecture, June,1994.
    [71].Perello J,Cox D,Garamjav D,et al. Oyu Tolgoi,Mongolia: Siluro Devonian porphyryCu-Au-(Mo) and high-sulfidation Cu mineralization with a Cretaceous chalcocite blanket[J].Econ Geol,2001,96:1407-1428.
    [72].Sillitoe RH. Gold deposits in Western Pacific island arcs: The magmatic connection [J]. EconGeol Mon1989,6:274-291.
    [73].Sillitoe RH. Major regional factors favouring large size, high hypogene grade, elevated goldcontent and supergene oxidation and enrichment of porphyry copper deposits [A]. earth,Adelaide: Australian Mineral Foundation/PGC Publishing,1998,49-60
    [74].Perello J. Geology, porphyry Cu-Au, and epithermal Cu-Au-Ag mineralization of theTombuliato district, North Sulawesi, Indonesia [J].Jour Geochem Explor,1994,50:221-256.
    [75].Perello J, Cox D, Garamjav D, et al. Oyu Tolgoi, Mongolia: Siluro Devonian porphyryCu-Au-(Mo) and high-sulfidation Cu mineralization with a Cretaceous chalcocite blanket[J].Econ Geol,2001,96:1407-1428.
    [76].Hedenquist JW, Arribas A J, Reynolds TJ. Evolution of an intrusion centered hydrothermalsystem: Far South-east Lepanto porphyry and epithermal Cu-Au deposits, Philippines [J].Econ Geol,1998,93:373-404.
    [77].Hedenquist JW, Arribas A J, Gonzal E. Exploration for epithermal gold deposits [J].Reviewsin Economic Geology,2000,13:245-277.
    [78].Arribas AJ. Characteristics of high-sulfidation epithermal deposits and their relation tomagmatic fluid [J]. Mineralogical Association of Canada Short Course Series,1995,23:419-454.
    [79].Sillitoe RH. Styles of high-sulfidation gold, silver and copper mineralization in porphyry andepithermal environments [J]. Pacific Rim Congress, Bali, Indonesia, Australian Institute ofMining and Metallurgy, Proceedings,1999,29-44.
    [80].Corbett, GJ, Influence of magmatic arc geothermal systems on porphyry-epithermalAu-Cu-Ag exploration models: Terry Leach Symposium, Australian Institute of Geoscientists,Bulletin2008,48:25-43.
    [81].Greg Corbett. Anatomy of porphyry-related Au-Cu-Ag-Mo mineralised systems: Someexploration implications [J]. FOR: Australian Institute of Geoscientists North QueenslandExploration Conference,2009.
    [82].Corbett GJ, and Leach TM. Southwest Pacific gold-copper systems: Structure, alteration andmineralization: Special Publication6, Society of Economic Geologists,1998:238.
    [83].西藏地调院.中华人民共和国区域地质调查报告-1/25万泽当镇幅[R].拉萨,2007.
    [84].余光明,王成善.西藏特提斯沉积地质[M].北京:地质出版社,1990,1-185.
    [85].彭勇民,姚鹏,李金高.西藏甲玛弧内盆地的形成演化[J].沉积与特提斯地质,2001,21(2):101-107.
    [86].周肃,方念乔,董国臣,赵志丹,刘秀明.西藏林子宗群火山岩氩-氩年代学研究[J].矿物岩石地球化学通报,2001,20(4):317-319.
    [87].周肃,莫宣学,董国臣,赵志丹,邱瑞照,王亮亮,郭铁鹰.西藏林周盆地林子宗火山岩40Ar/39Ar年代格架[J].科学通报,2002,49(20):2095-2103.
    [88].董国臣,莫宣学,赵志丹,王亮,周肃.西藏林周盆地林子宗火山岩研究近况[J].地学前缘,2002,9(1):153.
    [89].莫宣学,赵志丹,邓晋福,董国臣,周肃,郭铁鹰,张双全,王亮亮.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,2003(10):135-148.
    [90].李皓扬,钟孙霖,王彦斌,朱弟成,杨进辉,宋彪,刘敦一,吴福元.藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证据[J].岩石学报,2007,23(2):493-500.
    [91].Chu MF, Chung SL, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoictectonics and crustal evolution of SouthernTibet. Geology,2006,34(9):745-748
    [92].Wen DR, Liu DY, Chung SL, et al. Zircon SHRIMP U-Pb ages of the Gangdese batholith andimplications for Neotethyan subduction in southern Tibet. Chem Geol,200,252:191-201
    [93].Debon F, Le Fort P, Sheppard S M, et al. The four plutonic belts of theTranshimalaya-Himalaya: a chemical, mineralogical, isotopic, and chronological synthesisalong a Tibet-Nepal section. J Petrol,1986,27:219-250
    [94].Harris NBW, Xu RH, Lewis CL, et al.1988.Plutonic Rocks of the Tibet Geotraverse, Lhasato Golmud [J]. Phil Trans R Soc Lond,327(1594):145-146
    [95].朱弟成,潘桂堂,王立全,等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J].地质通报,2008,27(9):1535-1550
    [96].朱弟成,潘桂堂,莫宣学,等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J].岩石学报,2006,22(3):534-546
    [97].耿全如,潘桂堂,金振民,等.西藏冈底斯带叶巴组火山岩地球化学及成因[J].地球科学,2005,30(6):747-760
    [98].耿全如,潘桂堂,王立全,等.西藏冈底斯带叶巴组火山岩同位素地质年代[J].沉积与特提斯地质,2006,26(1):1-7
    [99].董彦辉,许继峰,曾庆高,等.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?[J].岩石学报,2006,22(3):661-668
    [100].Zhu DC, Pan GT, Chung SL, et al. SHRIMP zircon age and geochemical constraints on theorigin of Early Jurassic volcanic rocksfrom the Yeba Formation, southern Gangdese in southTibet[J]. Inter Geol Rev,2008,50:442-471
    [101].李海平,张满社.西藏桑日地区桑日群火山岩石地球化学特征[J].西藏地质,1995,(1):84-92
    [102].姚鹏,李金高,王全海,等.西藏冈底斯南缘火山-岩浆弧带中桑日群adakite的发现及其意义[J].岩石学报,2006,22(3):612-620
    [103].Zhu DC, Zhao ZD, Pan GD, et al. Early Cretaceous subduction-related adakite-like rocks inthe Gangdese belt, southern Tibet:products of slab melting and subsequent melt-peridotiteinteraction?[J]. J Asian Earth Sci,2009,34:298-309
    [104].刘鸿飞.拉萨地区林子宗火山岩系的划分和时代归属[J].西藏地质,1993,(2):15-24
    [105].莫宣学,赵志丹,邓晋福,等.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,2003,10(3):135-148
    [106].周肃,莫宣学,董国臣,等.西藏林周盆地林子宗火山岩40Ar/39Ar年代格架[J].科学通报,2004,49(20):2095-2103
    [107].李皓揚,锺孙霖,王彦斌,等.藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证[J].岩石学报,2007,23(20):493-500
    [108].Mo XX, Niu YL, Dong GC, et al. Contribution of syn-collisional felsic magmatism tocontinental crust growth: a case study of the Paleogene Linzizong volcanic succession insouthern Tibet[J].Chem Geol,2008,250:49-67
    [109].Lee HY, Chung SL, Lo CH, et al. Eocene Neotethyan slab breakoff in southern Tibetinferred from the Linzizong volcanic record[J].Tectonophysics,200,doi:10.1016/.tecto.02.31.
    [110].董彦辉,许继峰,曾庆高,毛国政,王强.西藏南部叶巴组时代的厘定及其意义[J].2004年全国岩石学与地球动力学研讨会,2004,40.
    [111].Mo X, Zhao ZD, Deng J, et al. Petrology and geochemistry of postcollisional volcanic rocksfrom the Tibetan plateau: Implications for lithosphere heterogeneity and collision-inducedasthenospheric mantle flow[C]//Dilek Y, Pavlides S. Postcollisional tectonics and magmatismin the Mediterranean region and Asia. Geological Society of America Special Paper,2006,409:507-530.
    [112].Yin A, Harrison TM, Reyerson FJ, Chen W, Kidd WSF and Copeland P. Tertiary structuralevolution of Gangdese thrust system in southern Tibet [J]. Journal of Geophysical Research,1994,99(B9):18175-18201.
    [113].Wu Zhenhan, Hu Daogong, Ye Peisheng, Liu Qisheng. Thrusting of the North Lhasa Blockin the Tibetan Plateau. Acta Geologica Sinica,2004,78(1):246-259.
    [114].Yin A, Harrison, TM. Geologic evolution of the Himalayan-Tibetan orogen.[J].Ann. Rev.Earth Planet. Sci.2000,28:211–280.
    [115].Blisniuk PM, Hacker BR., Glodny J, Ratschbacher L, Bi S, Wu Z, McWilliams MO, CalvertA. Normal faulting incentral Tibet since at least13.5Ma ago. Nature,2001,412:628–632.
    [116].Chung SL,Liu D, Ji J, Chu,MF,Lee HY,Wen DJ,Lo CH,Lee TY,Qian Q, Zhang Q. Adakitesfrom continental collision zones: melting of thickened lower crust beneath southern Tibet[J],Geology,2003,31:1021–1024.
    [117].Zhang, J, Ding, L. East-west extension in Tibetan Plateau and its significance to tectonicevolution. Chin [J]. Geol.2003,38:179–189(in Chinese with English abstract).
    [118].Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. Origin of adakitic intrusives generatedduring mid-Miocene east-extension in south Tibet [J], Earth Planet, Sci.2004,220:139-155.
    [119].Williams HM, Turner SP, Pearce JA, Kelley SP, Harris NBW. Nature of the source regionsfor post-collisional, potassic magmatism in Southern and Northern Tibet from geoch-emicalvariations and inverse trace element modeling[J].Petrol.2004,45:555–607.
    [120].Williams H, Turner S, Kelley S and Harris N. Age and composition of dikes in SouthernTibet: new constraints on the timing of east-west extensionans it’s relationship topost-collisional volcanism [J].Geology,2001,29:339-342.
    [121].Turner S, Hawkesworth C, Liu J Q, et al. Timing of Tibetan uplift constrained by analysis ofvolcanic rocks [J]. Nature,1993,364:50-54.
    [122].Coleman M and Hodges K. Evidence for Tibetan plateau uplift before14Ma ago from a newminimum age for east-west extension [J]. Nature,1995,374:49-52.
    [123].Harrsion TM, Copeland P, Kidd WSF, et al. Raising Tibet [J].Science,1992,255:1663-1670.
    [124].张进江,丁林.青藏高原东西向伸展及其地质意义[J].地质科学.2003,02:44-54
    [125].Blisniuk P.M, Hacker B.R, Glodny J, et al. Normal faulting in central Tibet since at least13.5Ma ago [J]. Nature,2001,412:628-632.
    [126].Williams HM, Turner SP, Pearce JA, Kelley SP, Harris NBW. Nature of the source regionsfor post-collisional, potassic magmatism in Southern and Northern Tibet from geochemicalvariations and inverse trace element modeling[J].Petrol,2004,45:555–607.
    [127].Wilkinson BH, Kesler SE. Quantitative identification of metallogenic provinces: Applicationto Phanerozoic porphyry copper deposits [J]. Economic Geology,2009,104:607622.
    [128].Amijo R, Tapponnier P and Han T. Late Cenozoic right-lateral strike-slip faulting insouthern Tibet. Journal of Geophysical Reasearch,1986,94:2878-2838.
    [129].Amijo R, Tapponnier P Mercier JL and Han T. Quaternary extension in south Tibet: Fieldobservation and tectonic implications [J]. Journal of Geophysical Reasearch,1989,91(B14):13803-13872.
    [130].Mercier JL, Soreld and Simeakisk. Changes in the state of stress in the overriding plate of asubduction zone: the Aegean Arc from the Pliocene to the present [J].Ann. Tecto-nicae,1987,1:20-39.
    [131].Molnar P, Tapponnier P. Active tectonics of Tibet [J].Journal of Geophysical Research.1978,83:5361-5375.
    [132].Molnar P and Tapponnier P. Active tectonics of Tibet [J]. Jour. Geophys. Res.,1974,83:5361-5375.
    [133].Cogan MJ, Nelson KD, Kidd WS F and Wu C D. Shallow structure of the Yadong-Gulu rift,southern Tibet, from refraction analysis of Project INDEPTH common midpoint data [J].Tectonics,1998,17:46-61.
    [134].Seeber L and Pêcher A. Strain partitioning along the Himalayan arc and the Nanga Parbatantiform. Geology,1998,26:791-794.
    [135].Harrsion TM, Copeland P, Kidd WSF, et al. Raising Tibet [J].Science,1992,255:1663-1670.
    [136].Kapp, P and Guynn, JH. Indian punch rifts Tibet: Geology,2004,32:993–996.
    [137].陈毓川,刘德权,唐延龄,王登红,董连慧,徐新,王晓地.中国天山矿产及成矿体系[M].北京:地质出版社,2008.
    [138].陈毓川,刘德权,应立娟,王登红,唐延龄.新疆觉罗塔格成矿带与南阿尔泰成矿带的对比研究[J].矿床地质,2009,28(1):2-14.
    [139].陈毓川,裴荣富,王登红.三论矿床的成矿系列问题[J].地质学报,2006,80(10):1501-1508.
    [140].陈毓川,王登红.重要矿产预测类型划分方案[M].北京:地质出版社,2010.
    [141].王登红,陈毓川,徐志刚.阿尔泰成矿省的成矿系列及成矿规律[M].北京:原子能出版社,2009.
    [142].王登红,陈郑辉,陈毓川,唐菊兴,李建康,应立娟,王成辉,刘善宝,李立兴,秦燕,李华芹,屈文俊,王彦斌,陈文,张彦.我国重要矿产地成岩成矿年代学研究新数据[J].地质学报,2010,84(7):1030-1040.
    [143].唐菊兴,多吉,刘鸿飞,郎兴海,张金树,郑文宝,应立娟.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究[J].地球学报,2012,33(4):393-410.
    [144].姚晓峰,王友,畅哲生,郑文宝,应立娟,邓世林,唐晓倩.西藏甲玛铜多金属矿矽卡岩特征及成因意义[J].成都理工大学学报(自然科学版),2011,38(6):662-670.
    [145].西藏地调院.西藏雅鲁藏布江成矿区东段铜多金属矿勘查报告[R].拉萨:西藏地调院,2006.
    [146].秦志鹏,汪雄武,多吉,唐晓倩,周云,彭惠娟.西藏甲玛中酸性侵入岩LA-ICPMS锆石U-Pb定年及成矿意义[J].矿床地质,2011a,30(2):339-348.
    [147].秦志鹏,汪雄武,唐菊兴,唐晓倩,周云,彭慧娟.西藏甲玛过铝质花岗岩的地球化学特征及成因意义[J].成都理工大学学报(自然科学版),2011b,38(1):76-84.
    [148].Chung SL, Chu MF, Zhang YQ, et al. Tibetan tectonic evolution inferred from spatial andtemporal variations in post-collisional magmatism[J]. Earth-Science Reviews,2005,68:173-196.
    [149].应立娟,唐菊兴,王登红,等.西藏甲玛超大型铜矿区斑岩脉成岩时代及其与成矿的关系[J].岩石学报,2011,27(7):2196-2102.
    [150].王葳平.西藏甲玛铜多金属矿床角岩岩石学与其蚀变-矿化演进序列研究[D].硕士学位论文,北京:中国地质科学院,2012.
    [151].姚晓峰,王友,畅哲生,郑文宝,应立娟,邓世林,唐晓倩.西藏甲玛铜多金属矿矽卡岩特征及成因意义.成都理工大学学报(自然科学版),2011,38(6),663-670.
    [152].王焕,唐菊兴,王立强,应立娟,郑文宝,唐晓倩.西藏墨竹工卡地区甲玛铜多金属矿床矽卡岩矿物学特征及其地质意义[J].地质通报,2011,30(5):783-797.
    [153].唐晓倩,王国芝,秦志鹏,姚晓峰,周宇雄.西藏甲玛铜多金属矿石榴子石矿物学特征及成因意义[J].地球学报,2012,33(4):633-640.
    [154].秦志鹏,周云,宋磊,唐晓倩,李伟.西藏甲玛铜多金属矿方柱石的分布及矿物学特征[J].矿床地质(增刊):2012,286-287.
    [155].Lowell JD and Guilbert JM. Lateral and vertical alteration-mineralization zoning inporphyry ore deposits [J]. Econ. Geol.,1970,65:373-408.
    [156].王崴平,唐菊兴.西藏甲玛铜多金属矿床角岩岩石类型、成因意义及隐伏斑岩岩体定位预测[J].矿床地质,2011,30(6):1017-1038.
    [157].Gustafson LB and Hunt JP. The porphyry copper deposit at El Salvador, Chile [J].EconomicGeology,1975,70:857-912.
    [158].ArancibiaON and ClarkAH. Early magnetite-amphibole-plagioclase alterationmineralization in the Island Copper porphyry copper-gold-molybdenum deposit, BritishColumbia [J].Economic Geology,1996,91:402-438.
    [159].Gustafson LB and Quiroga GJ. Patterns of mineralization and alteration below the porphyrycopper orebody at El Salvador, Chile [J]. Economic Geology,1995,90:2-16.
    [160].Dilles JH and Einaudi MT, Wall-rock alteration and hydrothermal flow paths about theAnn-Mason porphyry copper deposit, Nevada: A6km vertical reconstruction [J]. EconomicGeology,1992,87:1963-2001.
    [161].李光明,李金祥,秦克章等.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据[J].岩石学报,2007,23(5):935-952.
    [162].Le Maitre R W. A Classification of Igneous Rocks and Glossary of Terms. Blackwell,Oxford,1989:193.
    [163].Irvine T N and Barager W R A. A guide to the chemical classification of the commonvolcanic rocks. Canadian Journal of Earth Sciences,1971,8:523-548
    [164].路凤香,舒小辛,赵崇贺.有关煌斑岩分类的建议.地质科技情报[J].1991,10(增刊):55-62.
    [165].Peccerillo R, Taylor SR. Geochemistry of Eocene calc-alkaline volcanic rocks from theKastamonu area, Northern Turkey. Contrib. Mineral Petrol.,1976,58:63~81
    [166].Middlemost EAK. Magmas and Magmatic Rocks. London: Longman,1985,1~266
    [167].Ague JJ and Brimhall GH. Magmatic arc asymmetry and distribution of anomalous plutonicbelts in the batholiths of California: effects of assimilation, crustal thickness, and depth ofcrystallization. Geol Soc Amer Bull198,100:912-927.
    [168].Sunss, Mcdonough W F. Chemical and isotopic systematics of oceanicbasalts: implicationsfor mantle composition and processes. In: Saunders AD, NorryM J, eds. Magmatism in theOcean Basins, USAGeological Society Special Publication,1989,42:313-345.
    [169].彭惠娟,汪雄武,唐菊兴,等石英阴极发光在火成岩研究中的应用[J].矿物测试,.2010a,29(2):153-160.
    [170].彭惠娟,汪雄武,唐菊兴,等.石英显微构造阴极发光特征研究-以西藏甲玛岩体为例[J].矿物岩石地球化学通报,2010b,29(3):279-283.
    [171].彭惠娟,汪雄武,Müller Axel,等.西藏甲玛铜多金属矿区成矿斑岩的岩浆混合作用:石英及长石斑晶新证据[J].矿床地质,2011a,30(2):249-266.
    [172].彭惠娟.西藏甲玛铜多金属矿床成因矿物学与找矿矿物学初步研究[D].硕士学位论文,成都:成都理工大学,2011b,26-63
    [173].Hanchar JM, Rudnick RL. Revealing hidden structures: the application of cathodolum inescence and backscattered electron imaging to dating zircon from lower crustal xenoliths [J].Lithos,1995,36:289-303.
    [174].Pupin JP. Zircon and granite petrology [J]. Contributions to Mineralogy and Petrology,1980,73,207–220.
    [175].王登红,陈毓川.广西大厂电气石的成分与成因初探[J].岩石矿物学杂志,1996,15(3):280-287.
    [176].沈敢富,姚鹏.藏东西藏岩的电气石[J].高校地质学报,2000,6(2):356-363.
    [177].李秀云,李哲,应育浦,等.西藏南部花岗岩及有关岩石中的电气石[J].地质科学,1983,4(1):7l-77.
    [178].廖忠礼,莫宣学,潘桂棠等.藏南过铝花岗岩中电气石的矿物化学特征及成因意义[J].现代地质,2007,21(2):291-295.
    [179].Henry D J,Guidotti C V. Tourmaline as a petrogenetic indicator mineral:aIl example fromthe staurolite-grade metapelites of NW Maine[J].American Mineralogist,1985,70:1-15.
    [180].王崴平,唐菊兴.西藏甲玛铜多金属矿床角岩岩石类型、成因意义及隐伏斑岩岩体定位预测[J].矿床地质,2011,30(6):1017-1038.
    [181].周云.西藏墨竹工卡县甲玛铜多金属矿成矿流体特征及演化[D].硕士学位论文,成都:成都理工大学,2010.
    [182].周云,汪雄武,唐菊兴,等.西藏甲玛铜多金属矿含矿斑岩石英斑晶单个熔融包裹体的成分研究[J].成都理工大学学报(自然科学版),2011a,38(1):92-102.
    [183].周云,汪雄武,唐菊兴,等.西藏甲玛铜多金属矿床成矿流体来源及演化[J].矿床地质,2011b,30(2):231-248.
    [184].周云,唐菊兴,秦志鹏,彭惠娟.西藏甲玛铜多金属矿床成因研究-来自流体包裹体的证据[J].地球学报,2012,33(4):485-500
    [185].Rusk BG, Reed MH, Dilles JH, Klemm LM and Heinrich CA. Compositions of magmatichydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyrycopper-molybdenum deposit at Butte, MT [J].Chemical Geology,2004,210:173-199.
    [186].Burnham CW. Magma and hydrothermal fluids [A]. BARNES H L.Geochemistry ofHydrothermal Ore Deposits [C]. New York: John Wiley,1979,71-136.
    [187].Eastoe CJ. Physics and chemistry of the hydrothermal system at the Pangua porphyrydeposit, Bougainville, Papua New Guinea [J]. Economic Geology,1982,77:127-153.
    [188].李建康,张德会,王登红,张文淮.富氟花岗岩浆液态不混溶作用及其成岩成矿效应[J].地质评论,2008,54(2):175-183.
    [189].秦志鹏.西藏甲玛铜多金属矿床似埃达克岩的成岩成矿作用[D].硕士学位论文,成都:成都理工大学,2010.
    [190].姚鹏.西藏甲玛铜多金属矿床控矿条件、定位机制及成矿远景预测[R].成都:西南地质调查中心,2000.
    [191].曲晓明,侯增谦,黄卫.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?[J].矿床地质,2001,20(4):355-367.
    [192].姚鹏,郑明华,彭勇明,等.西藏冈底斯岛弧带甲马铜多金属矿床成矿物质来源及成因研究[J].地质论评,2002,48(5):469-478.
    [193].李永胜.西藏甲玛铜多金属矿床地质特征及矿床成因探讨[D].硕士学位论文,北京:中国地质大学,2009:1-70.
    [194].Qu XM, Hou ZQ, Khin Z, et al. Characteristics and genesis of Gangdese porp-hyry copperdeposits in the southern Tibetan Plateau: Preliminary geochemical and geochronologicalresults [J]. Ore Geology Reviews,2007,31:205-223
    [195].周云.西藏墨竹工卡县甲玛铜多金属矿成矿流体特征及演化[D].硕士学位论文,成都:成都理工大学,2010.
    [196].连玉,徐文艺,杨丹,等.西藏冈底斯甲马和南木矿床流体包裹体SR-XRF研究[J].岩石矿物学杂志,2008,27(3):186-196.
    [197].苟正彬,汪雄武,彭慧娟等.西藏甲玛铜多金属矿床岩浆混合作用及对成矿的贡献[J].中国地质,2012,39(1):156-169.
    [198].Qiu Huaning, Wijbrans J R. The Paleozoic metamorphic history of the Central OrogenicBelt of China from40Ar/39Ar geochronology of eclogite garnet fluid inclusions. Earth andPlanetary Science Letters,2008,268(324),501-514.
    [199].邱华宁.新一代Ar-Ar实验室建设与发展趋势:以中国科学院广州地球化学研究所Ar-Ar实验室为例.地球化学,2006,35(2):133-140.
    [200].桑海清,王松山,胡世铃.石英40Ar/39Ar定年方法及Ar同位素质谱分析[J].质谱学报,1994,(2):138-148.
    [201].Sang Hai-qin, Wang Song-shan and Hu Shi-ling.40Ar-39Ar dating method and Ar isoto-picmass-spectrometric analysis [J].Journal of mass-spectrometry,1992,5(1):17-27(in Chinesewith English abstract).
    [202].Zeitler PK, Fitz GJD. Saddle-shaped40Ar/39Ar age spectra from young, microst ructurallycomplex potassium feldspars [J].Geochimica et Cosmochimica Acta,1986,50(6):1185-1199.
    [203].[22]Foland K A.40Ar/39Ar incremental heating plateaus for biotites with excess argon[J].Chemical Geology,1983,41(1):3-21.
    [204].秦志鹏,汪雄武,多吉,周云,彭惠娟,唐晓倩.西藏甲玛中酸性侵入岩LA-ICPMS锆石U-Pb定年及成矿意义[J].2011b,30(2).339-348.
    [205].李金祥,秦克章,李光明,杨烈坤.冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar/39Ar年龄:对岩浆-热液系统演化和成矿构造背景的制约[J].岩石学报,2007,23(5):953-966.
    [206].Mohammad Boomeri, Kazuo Nakashima, and David Richard Lentz. The Miduk porphyryCu deposit, Kerman, Iran: A geochemical analysis of the potassic zone including halogenelement systematics related to Cu mineralization processes [J].Journal of GeochemicalExploration,2009,103:17-29.
    [207].Page and McDougall. Ages of mineralization of gold and porphyry copper deposits in theNew Guinea Highlands[J].Economic Geology.1972,67:1034-1048
    [208].Rogerson and McKee. Geology,volcanism and mineral deposits of Papua NewGuinea.In:Hughes,F.E(editor),Geology of the mineral deposits of Australia and Papua NewGuinea.Australasian Institute of Mining and Metallurgy, Monograph,1990,14:1689-1701.
    [209].Leggo MD. Contrasting geochemical expressions of copper mineralisation at Namosi, Fiji.Jour.Geochem.Explor.1977,8:431-456
    [210].Gifkins C C, Herrmann W&Large R R. Altered Volcanic Textures: A Guide to Descriptionand Interpretation [A]. CODES, University of Tasmania, Hobart,2005.
    [211].黄智龙,刘丛强,朱成明.云南老王寨金矿区煌斑岩成因及其与成矿化的关系[M].北京:地质出版社,1999.
    [212].Rogers NW, Hawkesworth CJ, Parker KJ, et al. The geochemistry of potassic iavas fromVulsini, central Italy and implications for mantle enrichment processes beneath the Romanregion. Contrib Mineral Petro,1985,90:244-257.
    [213].Williams HM, Tumer SP, Pearce JA, et al. Nature of the source regions for post-coilisional,potassic-magmatism in southern and northern Tibet from geochemical variations and inversetrace element modeling. J Petro,2004,45:555-607.
    [214].Ma CQ, Li ZC, Ehlers C, et al. A post-collisional magmatic plum bing system: Mesozoicgranotoid plutons from the Dabie shan high pressure and ultrahigh pressure metamorphiczone, east-central China [J].Lithos,1998,45:431-456.
    [215].Tarney J, Jones CE. Trace element geochemistry of orogenicigne ousrocks and crustalgrowth models [J]. Journal of the geological society,1994,151:855-868.
    [216].邱检生,徐夕生,罗清华.鲁西富钾火山岩和煌斑岩的40Ar-39Ar定年及源区示踪.科学通报,2001,46(18):1500-1508.
    [217].马昌前,明厚利,杨坤光.大别山北麓的奥陶纪岩浆弧:侵入岩年代学和地球化学证据.岩石学报,2004,20(3):393-402.
    [218].董云鹏,张国伟,赵霞,等.鄂北大洪山岩浆带地球化学及其构造意义-南秦岭勉略洋盆东延及其俯冲的新证据.中国科学(D辑),2003,33:1144-1152.
    [219].沈渭洲,高剑峰,徐士进,等.四川盐边冷水箐岩体的形成时代和地球化学特征.岩石学报,2003,19(10):27-37.
    [220].Saunders AD. Transverse geochemical variations across the Antarctic Peninsula:implications for the genesis of cal alkaline magma. Earth Planetary Science Letters,1980,46:344-360.
    [221].舒小辛.扬子地台西缘钾质煌斑岩岩石化学所反映的姑古俯冲作用及其与金刚石含矿性的关系.大地构造与成矿学,1993,17(3):251-258.
    [222].Taylor SR, McClennan S. The continental crust: composition and evolution [J]. Boston:Blackwell Scientific Publications,1985,209-230.
    [223].Weaver BL. The origin of ocean island basalt end-menber composition: trace element andisotopic constraints.Earth Planet Sci Lett,1991,104:381-397.
    [224].HawkesworthCJ,KemptonPD,RogersNW,etal. Continental mantle lithosphere, and shallowlevel enrichment processes in the Earths mantle [J]. Earth Planetary Science Letters,1990,96:256-268.
    [225].Yaxley GM, GreenDH, KamenetskyV. Carbonatite metasomatism in the southeasternAustrelian lithosphere [J].Journal of Petrology,1999,39:1917-1930.
    [226].Stalder R, Foley SF, Brey GF, et al. Mineral aqueous fluid partitioning of trace elementsat900-1200℃a nd3.0-5.7GPa: New experimen al complications for mantle metasomatism [J].Geochimic aet Cosmochimica Acta,1998,62:1781-1801.
    [227].Zangana NA,Downes H,Thirlwall MF,etal. Geochemical variation in peridotite xenolithsand their constituent clinopyroxenes from Ray Pic(FrenchMassifcentral): implications for thecomposition of the shallow lithospheric mantle[J].Chemical Geology,1999,153:11-35.
    [228].Meen JK. Mantle metasomatism and carbonates: An experimental study of a complexrelationship [J].Geological society of America bulletin,1987,215:91-100.
    [229].郑建平,路凤香,O Reilly S Y,等.新疆托云地幔单斜辉石微量元素与西南天山岩石圈深部过程.科学通报,2001,46(6):497-502.
    [230].BlusztajnJ,ShimizuN. Trace element variations in clinopyroxeness from spinel peridotitexenoliths from southwest Poland[J].Chemical Geology,1994,111:227-243.
    [231].GreenTH. Significance of Nb/Ta asanindicator of geochemical processes in the crust-mantlesystem [J].Chemical Geology,1995,120:347-359.
    [232].Chung SL, Wang KL,Crawford AJ,et al. High Mg potassic rocks from Taiwan: implicationsfor the genesis of orogenic potassic lavas.Lithos,2001,59:153-170
    [233].Hofmann AW, Jochun KP, Seufert M, et al. Nband Pb in oceanic basalts: new constraintsonmantle evolution.Earth Planetary Science Letters,1986,79:33-45.
    [234].李友枝.西昆仑深源岩浆活动及金刚石成矿地质条件评价[博士学位论文].北京:中国地质大学,1999.
    [235].Irving AJ, Frey FA. Trace element abundance in megacrysts and their host basalts:constraintsion partition coefficients and magacryst genesis. Geochimicaet CosmochimicaActa,1984,48,1202-1221.
    [236].张招崇,王福生,郝艳丽,等.峨眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束[J].地质学报,2004,78(2):171-180.
    [237].Taylor SR, Mclenann SM. The continental crust: its composition and evolution. OxfordPress, Blackwell,1985,1-312.
    [238].董传万,李武显.高钾钙碱性I型花岗岩类的成因[J].世界地质,1994,13(4):8-12.
    [239].Defant M J and Drummond M S. Derivation of some morden arc magmas by of youngsubducted lithosphere. Nature,1990,347:662~665
    [240].据朱弟成,段丽萍,廖忠礼,潘桂棠.两类埃达克岩(Adakite)的判别[J].矿物岩石,2002,3(22):5-9.
    [241].Gao YF, Hou ZQ and Wei RH. Post-collisional adakitic porphyries in Tibet: Geochemicaland Sr-Nd-Pb isotopic constrains on partial melting of oceanic lithosphere and crust mantleinteraction [J]. Acta Geologica Sinica,2003,77:123-135.
    [242].侯增谦,莫宣学,高永丰,曲晓明,孟祥金.埃达克岩:斑岩铜矿的重要含矿母岩:以西藏和智利斑岩铜矿为例[J].矿床地质,2003,21:1-12
    [243].Qu XM, Hou ZQ and Li YG. Melt components derived from a subducted slab in lateorogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau [J].Lithos,2004,74:131-148.
    [244].Petford N and Atherton MP. Na-rich partial melts from newly underplated basaltic crust: TheCordillera Blanca batholith, Peru: Journal of Petrology,1996,37:1491–1521.
    [245].Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. Origin of adakitic intrusives generatedduring mid2Miocene east2west extension in southern Tibet [J]. Earth and Planetary ScienceLetters,2004b,220:139-155.
    [246].Gao YF, Hou ZQ, Kamber BS, Wei RH, Meng XJ and Zhao RS. Adakite-like porphyriesfrom the southern Tibetan continental collision zones: evidence for slab melt metasomatism[J].Contribu-tion to Mineral Petrology,2007,153:105-120.
    [247].Hoffman AW, Jochum KP, Seufert M, White WM. Nd and Pb in oceanic basalts: newconstrains on mantle evolution [J].Earth Planet.Sci.Lett.1986,79:33-45.
    [248].Johanne W, Holta F. Petrogenesis and experimental petrology of granitic rocks
    [M].Spring-Verlag,1996,1-335.
    [249].邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004,1-381.
    [250].Barker F. Trondhjemites, dacites and related rocks [M].New York, Elaew. Sci. Pub.1979,1-321.
    [251].Wyllie PJ. Constrains imposed by experimental petrology on possible and impossiblemagma source and products [J].Phil.Trans.R.Soe.Lond.A.1984,310:439-456.
    [252].Holloway JR, Burnhum CW.Melting relations of basalt with equilibrium water pressure lessthan total pressure [J].Petrol,1972,13:1-29.
    [253].Helz RT. Phase relations of basalts in their melting range at PH2O=5Kpa: Melt Compositison[J].Petrol,1976,7:139-193.
    [254].Rapp RP, Waton EB, Miller CF. Partial melting of amphibolite/eclogite and the origin ofArchean trondhjemites and tonalities [J].Precamb.Rem.1991,51:1-25.
    [255].Winther KT, Newton EC. Experimental melting of hydrous low-K tholeiite: evidence on theorigin of Archean cratons [J].Bull Geol.Soc.Den.1991,39:213-228.
    [256].Wolf MB, Wyllie PJ. Dehydratron-melting of amphibolite at10Kpa: the effects oftemperature and time [J].CMP.1994,115:369-383.
    [257].Johnston AD, Wyllie PJ. Constaints on the origin of Archean trondhjemites base on phaserelationships of Nukgneiss with tho at15Kpa [J].CMP,1988,100:35-46.
    [258].Carroll MR, Wyllie PJ. The system tonalita-H2O at15Kpa and the genesis of Calc-alkalinemagma [J].Am.Miner.1990,75:345-357.
    [259].Zindle A and Hart S R. Chemical geodynamics [J].Annu. Rev.Earth Plane,.Sci. Lett,1986,14:493-573.
    [260].Owens TJ, Zandt G. Implications of crustal property variations for models of Tibetan plateauevolution [J].Nature,1997,387:37-43.
    [261].Barbarin B. A review of the relationships between granitoid types, their origins and theirgeodynamic environments [J].lithos.1999,46:605-626.
    [262].Sylvester P J. Post-collisional strongly peraluminous granites [J]. Lithos,1998,45:29-44.
    [263].肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].地质出版社,2002.
    [264].Liegeois J.P. Preface-Some words on the post-collisional magmatism.Lithos.1998,45: XV-Xvii.
    [265].Chappell B W, Whit e A J R, Wyborn D. The importance of residual source material (restite)in granite petrogenesis[J].J Petrol,1987,28:1111-1138.
    [266].Rittman A., Structure and evolution of Mount Etna. Phil. Trans. R. Soc. London.1973,274(A):5-16
    [267].Pearce J A and Cann J R. Tectonic setting of basic volcanic rocks determined using traceelement analyses. Earth and Planetary Science Letters,1973,19:290-300
    [268].喻学惠,莫宣学,Martin Flower,苏尚国,赵欣.甘肃西秦岭新生代钾霞橄黄长岩火山作用及其构造含义,岩石学报,2001,17(3):366~377
    [269].Maniar PD, Piccoli PM. Tectonic discrimination of granitoids [J].Geologica isociety ofAmerica Buttetin,1989,101:635-643.
    [270].Batchelor R A and Bowden P. Petrogenetic interpretation of granitoid rock series usingmulticationic parameters [J]. Chem. Geol,1985,(48):43-55
    [271].Pearce JA, Harris NBW and Tindle AG. Trace element discrimination diagrams for thetectonic interpretation of granitic rocks. Journal of Petrology,1984,25:956-983
    [272].White RS, Spence GD, Fowler SR. Magmatism at rifted continental margins [J].Nature,1987,229:328-333.
    [273].Mckenzie DP, Bickle MJ. The volume and composition of melt generated by extension ofthe lithosphere [J].Journal of petrology,1988,29:625-679.
    [274].Wang JH, Yin A, Harrison TM, et al. A tectonic model for Cenozoic igneous activities in theeastern Indo-Asian collision zone [J].Earth Planet Sci Lett,2001,188:123-133.
    [275].Chung SL, Lee TY, Lo CH, et al. Intraplate extension prior to continental extrusion alongthe Ailao Shan-Red River shear zone [J].Geology,1997,25:311-314.
    [276].Chung SL, Lee TY, Lo CH, et al. Diachronous uplift of the Yibatan plateau starting40Myrago[J].Nature,1998,394:769-773.
    [277].Leloup PH, Battaglia J, Ricard Y, et al. Sheer heating in continental strike-slip shear zones:numerical modeling and case studies [J].Geophys J Int,1999,136:19-40.
    [278].Ding L, Kapp K, Zhong DL, et al. Cenozoic volcanism in Tibet: evidence for a transitionform oceanic to continental subduction [J].J Petrol,2003,44:1833-1865.
    [279].Miller C, Schudter R, Klotzli, et al. Post-collosoonal potassic and ultrapotassic magmatismin SW Tibet: Geochenical and Sr-Nd-Pb-O isotopic constraints for mantle sourcechararteristics and petrogenesis [J].J Petro,1999,40:1399-1424.
    [280].Maheo G, Guillot S, Blichert J,et al. Aslab breakoff model for the Neogene thermalevolution of south Karakorum and south Tibet[J].Earth and Planetary Science Letters,2002,195:45-58.
    [281].Sata H. Nickel content of basaltic magmas: identification of primary magmas and a maetureof the degree of thr olivine fractionation [J].Lithos,1977,10:113-120.
    [282].Ringwood AE. Composition and petrology of the Earth’s mantle [M]. McGraw-Hill, NewYork,1975.
    [283].Pearce, J A, Norry M J. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations inVolcanic Rocks [J].Contributions to Mineralogy and Petrology,1979,69:33-47.
    [284].Villemant B, Jaffrezic H, Joron J L,et al. Distribution Coefficients of major and TraceElements; Fractional Crystallization in the Alkali Basalt Series of Chaine des Puys (MassifCentral, France)[J].Geochim Cosmochim Acta,1981,45:1997-2016.
    [285].Mahood G, Hildreth W. Large Partition Coefficients for Trace Elements in HighsilicaRhyolites [J]. Geochim Cosmochim Acta,1983,47:11-30.
    [286].Mahood G A.Pyroclastic Rocks and Calderas Associated with Strongly PeralkalineMagmatism [J]. Journal of Geophysical Research,1984,89:8540-8552.
    [287].Maas R, Nicholls I A, Legg C. Igneous and metamorphic encalves in the S-type DeddickGranodiorite, Lachlan Fold Belt, SE Aust ralia: Petrographic,geochemical and Nd-Srisotopic evidencef or crust al melting and magma mixing[J]. J Petrol,1997,38:815-841.
    [288].Dahlquist J A. Mafic microgranular enclaves: early segregation from metaluminous magma(Sierra de Chepes), Pampean Ranges, NW Argentina [J]. JS AmEarth Sci,2002,15:643-655
    [289].Kumar S, Rino V. Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoids, central India: evidence of magma mixing, mingling, andchemical equilibration [J]. ContribMineral Petrol,2006,152:591-609
    [290].Yang JH, Wu FY, Wilde SA, et al. Petrogenesis of Late Triassic granitoids and their enclaveswith implications for post-collisionallithospheric thinning of the Liaodong Peninsula, NorthChina Craton [J]. Chem Geol,2007,242:155-175
    [291].温志亮.西秦岭教场坝岩体岩浆混合成因的新认识[J].矿物岩石,2008,28(3):29-36.
    [292].Vogel TA. Magma mixing in the acidic-basic complex of Ardnamurch an: Implications onthe evolution of shallow magma chambers [J].Contrib Mineral Petrol,1982,79:411-423.
    [293].Zorpi MJ, Coulon C, Orsini J B, et al. Magma mingling zoning and emplacement incalcalkaline granitoid plutons [J].Tectonophysics,1989,157:315-329.
    [294].Hibard MJ. The magma mixing origin of mantled feldspars [J]. Contrib. Mieral. Petrol,1981,76:159-170.
    [295].Castro, Patino DAE, Corretg LG, et al. Origin of peraluminous granites and granodiorites,Iberian massif, Spain: An experimental test of granite petrogenesis [J].Contrib.Mineral.Petrol,1999,135:255-276.
    [296].Tsuchiyama A. Dissolution kinetics of plagioclase in the melt of the systemdiopside-albite-anorthite, and origin of dusty plagioclase in andesites [J].Contrib. Mineral.Petrol,1985,89:1-16.
    [297].Pupin J. P. Zircon and granite petrology [J].Contributions to Mineralogy and Petrology,1980,73,207-220.
    [298].Hoskin. Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laserablation ICPMS: a consideration and comparison of two broadly competitive techniques [J].Trace Microprobe Tech,1998,16:301-326.
    [299].Hoskin, Ireland. Rare earth element chemistry of zircon and its use as a provenanceindicator [J].Geology,2000,28:627-630.
    [300].Heaman LM, Bowins R, Crocket J. The chemical composition of igneous zircon suites:implications for geochemical tracer studies [J]. Geochim Cosmochim Acta,1990,54:1597-1607.
    [301].Belousova EA, Griffin WL, O’Reilly SY. Zircon crystal morphology, trace elementsignatures and Hf isotope composition as a tool for petrogenetic modeling: examples fromEastern Australian granitoids [J]. Petrol,2006,47(2):329–353.
    [302].Mung all JE. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cudeposits [J].Geology,2002,30(10):915-918.
    [303].Hibbard MJ. Myrmekites as a marker between preaqueous and postaqueous phase saturationin granitic systems [J].Geological Society of America Bulletin,1979,90(1):1047-1062.
    [304].Zhao Shan-chang, Meinert LD. The magmatic–hydrothermal transition evidence from quartzphenocryst textures and endoskarn abundance in Cu–Zn skarns at the Empire Mine, Idaho,USA [J]. Chemical Geology,2004,210:149–171
    [305].Candela PA,Blevin PL. Do some miarolitic granites preserve evidence of magmatic volatilephase permeability?[J].Economic Geology,1995,90:2310-2316.
    [306].Lowenstern J B,Sinclair WD. Exsolved magmatic fluid and its role in the formation ofcomblayered quartz at the Cretaceous Logtung W-Mo deposit,Yukon Territory,Canada[J].Transactions of the Royal Society of Edinburgh:Earth Sciences,1996,87:291-303.
    [307].李永胜,吕志成,严光生,甄世民,杜泽忠.西藏甲玛铜多金属矿床S、Pb、H、O同位素特征及其指示意义[J].地学前缘,2012,19(4):72-81.
    [308].Foster G, Lambert D D, Frick L R. Re-Os isotopic evidence for genesis of Archaean nickelores from uncontaminated komatiites [J]. Nature,1996,382:703-706.
    [309].孟祥金,侯增谦,董光裕,等.江西金溪熊家山铝矿床特征及其Re-Os年龄[J].地质学报,2007,81(7):946-951.
    [310].Lorand JP. Are spinel lherzoiite xenoiiths representative of the abundance of sulfur in theupper mantle?[J].Geochim Cosmochim Acta,1990,54:1487-1492.
    [311].Albarede F, Michard A. Crust/Mantle Recycling at Conuergence Zones [M].Kiuwer:Dordrecht,1989.
    [312].Stolper EM,Newman S. Fiuids in the source regions of subduction zone magmas:Cluesfrom the study of volatiles in Mariana Trough magmas [J]. Earth Planet Sci Lett,1994,121:293-325.
    [313].Clarke DB. Granite Rocks Chapman&Hall London,1992:1-283.
    [314].Burnham C W. Magma and hydrothermal fluids [A].Geochemist ry of Hydrothermal OreDeposits. New York: John Wiley,1979,71-136.
    [315].秦志鹏,多吉,汪雄武,刘鸿飞,周云,彭惠娟.西藏甲玛铜多金属矿二长花岗斑岩岩浆-热液过渡特征及成矿意义[J].地球学报,2012,33(4):501-509.
    [316].朱永峰,曾贻善,艾永富.长英质岩浆中的液态不混溶与成矿作用关系的实验研究[J].岩石学报,1995,1:1-8.
    [317].Veksler IV and Thomas R. An experimental study of B-, Pand F-rich synthetic granitepegmatite at0.1and0.2Gpa. Contrib. Mineral.&Petrol,2002,143:673~683.
    [318].罗照华,卢欣祥,陈必河等.透岩浆流体成矿理论[M].北京,地质出版社,2009,1-177.
    [319].王联魁,黄智龙.Li-F花岗岩液态分离与实验[M].北京:科学出版社,2000:1-280.
    [320].Migdisov AA, Williams Jones AE, Suleimenov OM. The solubility of chlorargyrite (AgCl)in water vapor at elevated temperatures and pressures [J].Geochimica et Cosmoc-himicaActa,1999,63:3817-3827.
    [321].Archibald AA,Migdisov, Williams J. An experimental study of stability of copper ch-loridecomplexes in water vapor at elevated temperatures and pressures[J]. Geochimica etCosmochimica Acta,2002,66(9):1611-1619.
    [322].Zhang Rong-hua and Hu Shu-min. Experimental observation of phase transitions usinghydrothermal diamond anvil cell with in situ spectroscopy under high temperatures andpressures[J].Jourmal of Wide Bandgap Materials,2000,(8):16-33.
    [323].Roedder E. Fliud Inclusions as tool in mineral exploration [J].Econ Geol,1997,72(3):503-525.
    [324].Roedder E. Fliud Inclusions [J].Review in mineralogy,1984,12:413-473.
    [325].李秉伦,王英兰,谢奕汉.气液包裹体气相色谱分析及其地质意义[J]地质科学,1982,(02):220-225.
    [326].Helgeson HC. Thermodynamics of hydrothermal system at elevated temperatures andpressure [J].Am J Sci,1969,267(7):729-804.
    [327].Craig H. Isotopic variations in meteoric waters [J].Scince,1961,133(3465):1702-1703.
    [328].Taylor, HP Jr. Oxygen and hydrogen isotopic relationships in hydrothermal mineraldeposits[A].In:Barnes HL(ed).Geochemistry of hydrothermal ore deposits(2nd ed)[C].NewYork: John&Sons,1979,236-277.
    [329].Taylor H P, Application of oxygen isotope studies to problem of hydrothemal alteration andore deposition[J].Econ.Geol,1974,69(6):843-883.
    [330].Burnard PG, Hu R,Turner G, et al. Mantle,crustal and atmopheric noble gases in Ailaoshangold deposits, Yunnan Province,China[J].Geochim Cosmochim Acta,1999,63:1595-1604.
    [331].Allegre CJ,Staudacher T, Sarda P. Rare gas systematics:formation of the atmosphere,evolution and structure of the earth’s mantle[J].Earth and Planetary Letters,1987,81:127-150.
    [332].Bodnar RJ, Burnham CW, Sterner SM. Synthetic fluid inclusions in natural Quartz.Ⅲ.Determination of phase equilibrium properties in the systemH2O-NaCl to1000℃and1500bar[J].Geochimica et Cosmochimica Acta,1985,49:1861-1873.
    [333].Ahmad SN,et al. Fluid inclusion in porphyry and skarn ore at Soute Rita,NewMexico[J].Econ.Geol.1980,75(5):229-250.
    [334].赵志丹,莫宣学,Nomade S,Renne PR,周肃,董国臣,王亮亮,朱弟成,廖忠礼.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J].岩石学报,2006,22(4):787-794.
    [335].陈建林,徐继峰,康志强,王保弟.青藏高原西部措勤县中新世布嘎寺组钾质火山岩成[J].岩石学报,2006,22(03):585-594.
    [336].宋磊;汪雄武;唐菊兴;秦志鹏;雷传扬;张俊成.从喷流成因到斑岩-矽卡岩成矿系统:甲玛铜多金属矿床成功勘查的几点启示[J].矿床地质,2011,30(2):219-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700