用户名: 密码: 验证码:
陕西宝鸡市渭河北岸大型黄土滑坡形成机理与危险性评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土塬边斜坡带是大型滑坡灾害的高易发区,论文选取渭河北岸宝鸡峡至扶风段塬边斜坡带为研究区,开展大型滑坡形成机理与危险性评估研究。利用地貌特征空间信息提取、构造变形的几何解析、动态数值分析与易滑地层蠕变、环剪试验等手段,探讨了斜坡带形成的构造地貌过程、原始斜坡结构、典型滑坡体的几何变形宏观特征及动力学过程,研究易滑地层形成滑带土的蠕变、滑动摩擦机制,评价斜坡带的滑坡危险性,取得下列新进展和认识。
     1、初步揭示渭河北岸塬边斜坡带演化四个阶段与侵蚀的分段特征
     研究揭示宝鸡峡至扶风斜坡带古滑坡形成于0.13Ma BPⅢ级阶地侵蚀期,老滑坡形成于0.009MaBPⅡ级阶地侵蚀期。从西向东坡面侵蚀程度与滑坡面密度表现出相同的分段性,宝鸡峡至千河口段滑坡面密度达91.0%-98.0%,千河至蔡家坡段滑坡面密度达到87.7%-95.1%,蔡家坡至扶风段滑坡面密度68.9%-82.8%,坡面侵蚀、老滑坡复活是今后斜坡带变形主要形式。
     2、初步揭示渭河北缘活动断裂以地堑式结构控制北坡塬边斜坡带结构及其大型深层滑坡变形
     通过地质调查与动态数值模拟研究,初步揭示渭河北缘活动断裂控制北坡塬边斜坡带地貌特征,影响滑坡变形过程,主要包括:①千河以西地段塬边主断裂面产状与大型黄土滑坡后缘滑壁面产状
     一致,文家山等大型滑坡后壁陡峻产状的一致性和成带性,表明塬边分布的活动断裂面可能影响滑坡后缘滑壁的形成过程。②活动断裂最大下挫距离7.1m,无论是蠕滑还是粘滑,都可能影响大型滑坡的发生过程。③滑坡的结构构造形态与北缘断裂面的出露位置有关,局部次级断面控制塬边多级滑动面的结构及其形成演化过程,局部滑坡剪出口产状陡峻受断裂结构控制,如祈家村滑坡,滑动带沿该优势断裂面剪出口,角度达72°。大部分未受到断裂面影响的滑坡剪出口角度平均为230。
     3、利用平衡剖面计算,探索研究了典型深层滑坡几何学特征及其运动学意义基于平衡剖面解析与PFC2D数值分析,对塬边大型深层滑坡的几何学样式、运动学过程进行了定量研究。塬边深层滑坡主要为坡基础、坡体型两类,其中坡基型以卧龙寺滑坡为代表,滑动面后缘破裂壁的倾角为57°,剪切口角度为12°,中部近水平。位移变形集中于滑体后缘与坡脚,后缘下降最高达58m,前缘隆起最高达27m,水平滑移约为335m。坡体型以蔡家坡滑坡为代表,滑动面后缘破裂壁的倾角为48°,中前部呈近水平状尖灭。后缘下降约36m,滑体前缘向外剪出隆起达22m,水平滑移距离约为130m。基于上述几何形态的PFC2D数值分析验证了平衡剖面解析的正确性,获得蔡家坡滑坡平均滑动速度为3m/s。
     4、初步揭示深层大型滑坡滑动带微观变形过程、强度衰减趋势及其滑动摩擦机理
     通过深层滑坡滑动带变形前后组构、变形特征的对比研究发现:粘土岩从原岩转变为滑带土过程中,蠕变变形引起岩土结构的重新调整,表现为无裂纹状体积塑性膨胀,导致蔡家坡等滑动带出现塑性挤出。而块体摩擦滑动促进了粘十岩从完整的絮状结构变为片理状,并留下擦痕、泥质薄膜。强度衰减伴随原岩的结构改变,蠕变长期强度近似为原岩峰值强度的27.8%,摩擦过程中的残余强度近似为原岩峰值强度的1.43%,二者导致滑体表现为滑动面贯通后的块体滑动;
     5、完成了蔡家坡斜坡带滑坡灾害活动强度及危险性
     利用历史地貌演化法,采用1:2000地形底图,确定了蔡家坡段滑坡形成时序,对滑坡活动类型进行了分类,确定了相应的活动强度,并根据110年来灾害记录确定了滑坡活动的频率,确定该滑坡段高危险区集中于陕棉九厂、蔡家坡及农副公司,而古滑坡复活体、蔡家坡新滑坡周缘的地貌陡坎带为中危险区。滑坡的危险区仅仅限于已有的滑体周边。
The plateau slope zone is a large area susceptible to landslide hazard. The paper selects the plateau slope between the north bank of Weihe River and Fufeng, and conducted detailed studies in the formation mechanism and hazard assessment of large landslide therein. By means of extraction of spatial information of geomorphic feature, geometrical analysis of structural deformation, dynamic numerical analysis and creep and ring shear tests of sliding stratum, etc., it discusses the structural and geomorphological process of slope zone, primary slope structure, geometrical deformation gross feature and dynamic process of typical landslide, researches the creep and sliding friction mechanisms of sliding stratum that form slip soil, and evaluates the landslide hazard in the slope zone. Some new breakthroughs have been achieved as follows.
     1. This paper preliminarily reveals the four stages and multi-stage features of corrosion of the evolution of plateau slope on the north bank of Weihe River
     According to the research, the ancient landslide in the Baoji Gorge-Fufeng slope formed on0.13Ma.BP third terrace in the corrosion period, and the old landslide came into being on0.009Ma.BP second terrace in the corrosion period. From west to east, the erosion degree of the slope surface shows an identical multi-stage characteristic as the landslide density. The landslide density of the Baoji Gorge-Qianhegou section is91.0%-98.0%, while that of the Qianhegou-Caijiapo section,87.7%-95.1%, and that of the Caijiapo-Fufeng section,68.9%-82.8%. Slope erosion and revival of old landslide will be the main forms of slope deformation.
     2. This paper initially discloses that along the active fault of the north rim of the Weihe River, the graben structure controls the north plateau slope structure and its large deep-seated landslide deformation: Through geological survey and dynamic numerical simulation research, this paper initially reveals that the active fault of the north rim of the Weihe River controls the geomorphic feature of the north plateau slope zone and affects the deformation process of the landslide.(1) Active faults in northern margin of the Weihe River, as graben-like structures, control the terrain and physiognomy of slope zone of the plateau edge on the northern bank. The details are that principal fracture surface is S-dipping and the dipping angle is68°on average controls the angle of plateau edge in bank slope; and the assemblage of secondary faulted structure controls the slope structure and affects the structure of large loess landslide on the plateau edge;(2) The principal fracture surface of the plateau edge is consistent with the smooth wall of back scarp of many large loess landslide, and it has influenced on the configuration and occurrence of large landslide. The maximum distance of fault offset is7.1m;(3) Active faults have graben-like structure and local secondary fracture surface, controlling the structure of multi-order sliding surface of plateau edge and its formation and evolution. For instance, in the Yangjiacun Landslide, some landslides are controlled and sheared by faulted structure with shear angle reaching at72°. The toe of surface of rupture of most landslides were not affected by fracture surface and their angles are23°on average
     3. By calculation of balanced section, this paper researches and discloses the geometrical characteristics of deep-seated landslide and its dynamical significance
     Based on the balanced section and PFCC2D numerical analysis, geometrical pattern and kinematic process of large deep-seated plateau landslide are researched in a quantitative manner. Deep plateau landslide mainly includes slope-foundation type and slope-body type, of which the former is featured by the Wolongsi Temple landslide. The dip angle of the rear fractured wall of the sliding face is57°, its shear crack is12°and its middle is approximately horizontal. Its displacement deformation concentrates in the rear edge and slope toe of the sliding body. The rear edge descends as high as58m, the front edge uplifts27m, and the horizontal displacement is about335m. The slope-body type is characterized by the Caijiapo landslide, of which the dip angle of the rear fractured wall of the sliding face is48°, and its front-middle part wedges out almost horizontally. The rear edge of the sliding body descends about36m and its front edge is sheared outwardly and rises by22m, and its horizontal slippage is about130m. Based on PFC2D numerical analysis of the above geometrical morphology, this paper verifies the correctness of analysis on balanced section and obtains that the average speed of the Caijiapo landslide in sliding is3m/s.
     4. This paper initially suggests the microcosmic deformation process and intensity attenuation trend of large landslide sliding zone and its sliding friction mechanism
     According to the comparative study on the fabric and deformation characteristics before and after the deformation of deep landslide sliding zone, it may be found that in transforming from primary rock to sliding zone, the creep deformation of clay rock causes readjustment of geotechnical structure, which is shown as flawless volume expansion, swelling, resulting in plastic extrusion of the Caijiapo sliding zone. On the other hand, frictional sliding between sliding bodies promotes the clay rock to change from flocculent structure to schistosity and leaves striation and argillaceous film. Intensity attenuation changes with the primary structure. The long-term strength of creep is approximate to27.8%of the primary rock peak strength. The residual strength during the friction is approximate to1.43%of the primary rock peak strength, both of which cause the sliding body to show a block glide with the sliding face being connected.
     5. The activity intensity and risk of landslide hazard in the Caijiapo sliding zone has been suggested.
     On the basis of1:2000landform base map, this paper determines the time series of the landslide in Caijiapo section and defines its strength by classifying the landslide, by using the historical geomorphic evolution method. According to the frequency of landslide activities within nearly110years, this paper suggeststhat the high risk zones of such landslide section concentrate on Ninth Shaanxi Cotton Factory, Caijiapo and Agricultural Company, while the reviving bodies of ancient landslide, the steep cliffs around the new landslide in Caijiapo fall into middle risk areas. The risk area of landslide is strictly limited on the periphery of the pre-existing sliding body
引文
[1]刘东生.黄土与环境[M].北京:科学出版社,1985.
    [2]孙广忠.西北黄土的工程地质力学特性及地质工程问题研究[M].兰州:兰州大学出版社,1989.
    [3]胡海涛,项式均,王肇芬等.关中西部滑坡的桔构、构造特征及稳定性分析.地质学报,1965,45(4):435-465.
    [4]胡胡广韬.宝鸡-常兴一带黄土塬边滑坡原因与因素的历史转化性.西安地质学院学报,1986,8(4):23-27.
    [5]胡广韬.滑坡动力学[M].北京:地质出版社,1995.
    [6]李滨.多级旋转型黄土滑坡演化机理研究[博土学位论文[D],长安大学,2009
    [7]刘传正,张明霞.宝鸡市狄家坡滑坡稳定性研究[J].工程地质学报,1998,6(2):103-113.
    [8]吴玮江,王念秦,王志荣.黄土滑坡的基本类型与活动特征[J].中国地质灾害与防治学报,2002,13(2):36-40.
    [9]王念秦.黄土滑坡发育规律及其防治措施研究[博十学位论文D],成都理工大学,2003
    [10]王家鼎,肖树芳,张倬元.灌溉诱发高速黄土滑坡的运动机理[J].工程地质学报,2001,9(30):241-246
    [11]王家鼎,惠泱河.黄土地区灌溉水诱发滑坡群的研究[J].地理科学,2002,22(3):305-310
    [12]王志荣,王念秦.黄土滑坡研究现状综述[J].中国水土保持,2004,11:16-18.
    [13]杨为民,吴树仁,谭成轩,等.陕西宝鸡地区对滑式黄土滑坡的特征及其碰撞诱发机理[J].地质通报.2008,27(11),1854-1861
    [14]马莉英,肖树芳,王清.黄土的流变特性模拟与研究[J].实验力学,2004,19(2):178-182
    [15]王有余.不同应力水平下黄十的蠕变试验研究[J].公路与汽运,2005,107:73-75
    [16]李同录,龙建辉,李新生.黄土滑坡发育类型及其空间预测方法[J].工程地质学报,2007,15(4):500-505
    [17]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3):433-454.
    [18]黄润秋,许强.中国典型灾难性滑坡[M].北京:科学出版社,2008
    [19]殷跃平.兰州皋兰山黄土滑坡特征及灾度评估研究[J].第四纪研究,2004,24(3):302-310.
    [20]吴树仁,王涛,石玲等.2008汶川大地震极端滑坡事件初步研究[J].工程地质学报,2010,18(2:145-159.
    [21]岳乐平.蓝田段家坡黄土剖面磁性地层学研究[J].地质论评,1989,35(5):479-488.
    [22]张永双,曲永新,周瑞光.南水北调中线工程上第三系膨胀性硬粘土的工程地质特性研究[J].工程质学报,2002,10(4):339-348
    [23]曲永新,张永双,覃祖淼.三趾马红土与西北黄土高原滑坡[J].工程地质学报,1999,7(2):257-265.
    [24]Karl-Heinz Schmidt, Ingo Beyer. High-magnitude landslide events on a limestone-scarp in central Germany:morphometric characteristics and climatic controls[J]. Geomophology.2002,49(3):323-342
    [25]Jose M. Azanona, Antonio Azor, J. Vicente Perez-Penab,et al. Carrillo. Late Quaternary large-scale rotational slides induced by river incision:The Arroyo de Gor area (Guadix basin, SE Spain). [J] Geomorphology,2005,69 (1):152-168.
    [26]Francisco Gutierrez, Pedro Lucha. Jorge Pedro Galve.Reconstructing the geochronological evol-ution of large landslides by means of the trenching technique in the Yesa Reservoir (Spanish Pyre- nees)[J].Geomophology,2010,124 (3):124-136.
    [27]Robert.B.Jacobson, Andrew J.Miller.The role of catastrophic geomorphic events in central App-alachi an landscape evolution[J].Geomophology.1989,2 (1):257-284.
    [28]L. Claessens, D.J. Lowe, B.W.Hayward. Reconstructing high-magnitude/low-frequency landslide events based on soil redistribution modelling and a Late-Holocene sediment record from New Zea-land[J].Geomophology,2006,74 (1):29-49
    [29]M.J. Crozier.Landslide geomorphology:An argument for recognition, with examples from New Zealand[J].Geomophology,2010,120 (1):3-15.
    [30]Burbank, D.W., Pinter, N. Landscape evolution:the interactionof tectonics and surface processes [J].Basin Research,1999,11 (1),1-6
    [31]Korup, O., McSaveney, M.J., Davies, T.R.H., Sediment generation and delivery fromlarge historic landslides in the Southern Alps, New Zealand[J]. Geomorphology,2004.61(1),189-207.
    [32]Guthrie, R.H., Evans, S.G., Work, persistence, and formative events:the geomorphic impact of landslides[J]. Geomorphology,2007,88 (3),266-275.
    [33]Ching-Weei Lin, Chjeng-Lun Shieh. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows:example from the Chenyulan River watershed, Nantou, Taiwan[J] Engineering Geology,2003,71 (1):49-61.
    [34]Shou-Hao Chiang, Kang-Tsung Chang,Alessandro C.Mondini, et al. Simulation of event-based landslides and debris flows at watershed level[J].Geomophology,2012,138(1):396-318
    [35]Lulseged Ayalew, Hiromitsu Yamagishi.Slope failures in the Blue Nile basin, as seen from lands-cape evolution perspective[J].Geomophology,2004,57 (1):95-116
    [36]王军,倪晋仁,杨小毛.重力地貌过程研究的理论与方法[J].应用基础与工程科学学报,1999,7(3):240-251
    [37]王文俊,唐晓春.灾害地貌链及其临界过程初探[J].灾害学,2000,15(1):42-46
    [38]杨达源.长江地貌过程[M].北京:地质出版社,2006
    [39]徐永辉,杨达源等.金沙江金坪子堆积体地貌过程与稳定性研究[J].工程地质学报,2007,15(2):169-173
    [40]袁仁茂,谭锡斌.地震破裂带特殊部位大型滑坡及其基于构造地貌发生模型机制解释:以东河口抛射型滑坡为例[J].地学前缘,2010,17(5):243-253
    [41]施炜.黄河中游晋陕峡谷的DEM流域特征分析及其新构造意义[J].第四纪研究,2008,28(2):288-298
    [42]李小林,马建青,胡贵寿.黄河龙羊峡-刘家峡河段特大型滑坡成因分析[J].中国地质灾害.与防治学报,2007,18(1):28-32
    [43]殷志强,程国明,胡贵寿,等.晚更新世以来黄河上游巨型滑坡特征及形成机理初步研究[J].工程地质报,2010,18(1):41-51
    [44]周保.黄河上游(拉干峡—寺沟峡段)特大型滑坡发育特征与群发机理研究[博士学位论文D],长安大学,2010.
    [45]E.Π.叶米里扬诺娃.滑坡作用的基本规律[M].重庆:重庆出版社,1986,232-236;
    [46]Y. Sasaki, A. Fujii,K. Asai. Soil creep process and its role in debris slide generation field measu-rements on the north side of Tsukuba Mountain in Japan[J].Engineering Geology,2000,56(4): 163-183
    [47]Skempton,A.W. Residual strength of clays in landslides foled strata and the laboratory [J], Geote-chnique,1985,35 (1):3-18
    [48]Skempton A.W.Long-term stability of clay slopes [J].Geotechnique,1964,14(2):77-101;
    [49]Anson R W W, Hawkins A B. Analysis of a sample containing a shear surface from a recent lan-dslip, south Cotswolds[J]. Geotechnique,1999,49(1):33-41;
    [50]GIBO S, EGASHIRA K, OHTSUBO M, et al. Strength recovery from residual state in reactivated landslides [J]. Geotechnique,2002,52(9):683-686;
    [51]Morgenstern N R, Tchalenko J S.Microscopic structures in kaolin subjected to direct shear [J]. Geo-technique,1967,17(4):309-328.
    [52]Wen B P, Aydin A. Microstructural study of a natural slip zone:quantification and deformation his-tory[J]. Engineering GeoIogy,2003,68(3-4),289-317;
    [53]G. Furuya,K. Sassa,H. Hiura, et al. Mechanism of creep movement caused by landslide activity and underground erosion in crystalline schist,Shikoku Island,southwestern Japan[J]. Engineering Geo-logy,1999,53(7):311-325;
    [54]骆银辉,朱春林,李俊东.云南红层边坡变形破坏机制及其危害防治研究[J].岩土力学,2003,(10):836-839;
    [55]张鲁新,周德培.蠕动滑坡成因及隧道变形机理的分析[J].岩石力学与工程学报,1999,18(2):217-221;
    [56]刘小丽,邓建辉,李广涛.滑带土强度特性研究现状[J].岩土力学,2004,25(11):1849-1856
    [57]葛孝椿.怀洪新河某段滑坡前的稳定性分析与滑坡后的验证[J].岩土力学,1999,21(1):115-118
    [58]陈祖煜.“怀洪新河某段滑坡前的稳定性分析与滑坡后的验证”讨论之二[J].岩土力学,1999,21(2):518-520
    [59]卢全中,赵法锁,彭建兵.某软弱基座型斜坡的稳定性分析[J].公路交通科技,2005,22(6):63-65.
    [60]刘红帅,年延凯.三维边坡稳定性分析中的边界约束效应[J].吉林大学学报(地球科学版),2010,40(3):638-644
    [61]徐张建,林在贯,张茂省.中国黄土与黄土滑坡[J].岩石力学与工程学报,2007,26(7):1297-1312.
    [62]王兰生,詹铮等.1981年暴雨期四川盆地地区岩质滑坡的发育特征[J].大自然探索,1982(1):44-45
    [63]龙建辉,李同录,雷晓锋,杨社强.黄土滑坡滑带十的物理特性研究[J].岩土工程学报,2007,29(2):289-293
    [64]龙建辉,李同录,张钊.电阻率法探测黄土滑坡滑动面(带)的实验研究[J].工程地质学报,2007,15(2):268-272
    [65]李晓,梁收运,郑国东.滑带土研究进展[J].地球科学进展,2010,25(5):484-491
    [66]Swann Zerathe.Thomas Lebourg.Thomas Lebourg.Evolution stages of large deep-seated landslides at the front of a subalpine meridionalchain (Maritime-Alps, France) [J].Geomophology,2012,138 (1):390-403
    [67]Itasca Consulting Group, Inc.Manual of Particle flow code in 2 dimensions [M].2002.
    [68]李果,黄润秋.软弱基座型滑坡震裂机理研究[J].工程地质学报,2011,19(5):712-718
    [69]董金玉,杨继红,伍法权.三峡库区软硬互层近水平地层高切坡崩塌研究[J].岩土力学,2010,31(1):151-157
    [70]成国文,李善涛,李晓.万州近水平地层区堆积层滑坡成因与变形破坏特征[J].工程地质学报, 2008,16(3):304-309
    [71]徐连民.剪切带形成过程中的边界约束和加载速度效应[J].水利学报,2005,36(1):4-17
    [72]李守定,李晓,刘艳辉.千将坪滑坡滑带地质演化过程研究[J].水文地质工程地质,2008,2::18-23
    [73]李守定,李晓,刘艳辉.大型基岩顺层滑坡滑带形成演化过程与模式[J].岩石力学与工程学报,2007,26(12):2474-2480
    [74]李晓,张年学,李守定.奉节白衣庵滑坡演化的工程地质与历史地质分析[J].岩石力学与工程学报,2007,25(12):2416-2424
    [75]廖秋林,李晓,李守定.三峡库区千将坪滑坡的发生地质地貌特征、成因及滑坡判据研究[J].岩石力学与工程学报,2005,24(17):3146-3153
    [76]柴波,殷坤龙.肖拥军.巴东新城区库岸斜坡软弱带特征[J].岩土力学,2010,31(8):2502-2506
    [77]柴波,殷坤龙.三峡库区巴东新城区库岸三叠系巴东组层间软弱带[J].工程地质学报,2009,17(6):809-816
    [78]殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究,地学前缘[J].2001.8(2),279-283.
    [79]向喜琼,黄润秋.地质灾害风险评价与风险管理[J].地质灾害与环境保护,2000,11(1):38-41
    [80]吴树仁.突发地质灾害研究某些新进展,地质力学学报[J].2006,12(2):265-267
    [81]吴树仁,石菊松,张春山等.地质灾害风险评估技术指南初论[J].地质通报,2009,28(8):995-1005
    [82]吴树仁,石菊松,王涛等.地质灾害活动强度评估的原理、方法和实例[J].地质通报,2009,28(8):1127-1137
    [83]吴树仁,石菊松,姚鑫等.四川汶川地质灾害活动强度分析评价[J].地质通报,2008,11(27):1900-1906
    [84]谭成轩,雷伟志,孙炜锋,等.中国典型粘黄土区地质灾害风险评估危险性影响因素分析[J].地质通报,2008,11(27):1771-1781
    [86]石菊松,石玲等,吴树仁.滑坡风险评估中的难点与对策[J].地质通报,2009,28(8):1020-1030
    [87]王涛,吴树仁,石菊松,等.国际滑坡风险评估与指南研究综述[J].地质通报,2009,28(8):1006-1019
    [88]韩金良,吴树仁,燕军军,等.陕西宝鸡陈仓区吴家湾滑坡风险评价[J].地质通报,2009,28(8):1118-1120
    [89]Jibson,R.W,E+L.Harp,J.A.Michael,A method for producing digital probabilistic seismic landslide hazard maps[J]. Eegineering Geology,2000,58(3-4):2711-289
    [90]Oldrich Hungr. A model for runout analysis of rapid flow slides,debris flow, and avalanches[J]. Geotechnical research of Canada,2000,58(3-4):271-289
    [91]Marina Pirulli.The thurwieser rock avalanches(Italian Alps):description and dynamic analysis[J]. Eegineering Geology,2009,109:80-92
    [92]岳乐平.黄土高原黄土、红色粘土与占湖盆沉积物关系[J].沉积学报,1996,14(4):148-153.
    [93]岳乐平,张云翔.中国北方陆相沉积5.30Ma磁性地层序列[J].地质论评,1999,45(4):444-448.
    [94]韩恒悦,米丰收,刘海云.渭河盆地带地貌结构与新构造运动[J].地震研究,2001,24(3):252-257.
    [95]陈云,童国榜,曹家栋等.渭河宝鸡段河谷地貌的构造气候响应[J].地质力学学报,1999,5(4):49-56.
    [96]雷祥义.黄土高原河谷阶地黄土地层结构模式[J].海洋地质与第四纪地质,2006,26(2):114-122
    [97]岳乐平,雷详义,屈红军.黄河中游水系的阶地发育年代[J].地质论评,1997,43(2):186-192.
    [98]胡广韬.宝鸡-常兴一带黄土塬边滑坡原因与因素的历史转化性[J].长安大学学报(地球科学版)1986,8(4):23-27.
    [99]冯希杰,戴王强,董星宏.从陕西省扶风县古水路堑剖面剖析渭河断裂第四纪活动[J].中国地震,2003,19(2):188-193.
    [100]徐张建,林在贯.张茂省.中国黄土与黄土滑坡[J].岩石力学与工程学报,2007,26(7):1297-1312.
    [101]陕西省宝鸡峡工程指挥部.宝鸡峡引渭灌溉工程技术总结[R].咸阳:陕西省宝鸡峡引渭灌溉管理局,1974.
    [102]张会平。青藏高原东缘、东北缘典型地区晚新生代地貌过程研究[博十学位论文D],中国地质大学(北京),2006
    [103]Burbank D W, Anderson R S.Tectonic geomorphology,Massachusetts:Blackwell Science,2002,1-274
    [104]赵信文,金维群,彭柯,等.清江中游隔河岩库区偏山滑坡形成机制及稳定性分析[J].吉林大学学报:地球科学版,2009,39(5):874-881.
    [105]刘红帅,年延凯,万少石.三维边坡稳定性分析中的边界约束效应[J].吉林大学学报:地球科学版,2010,40(3):638-644
    [106]袁风波,刘建,李蒲健,等,拉西瓦工程河谷区高地应力场反演与形成机理[J].岩土力学,2007,28(4):836-842
    [107]王晓春,聂德新,冯庆祖.V型河谷地应力研究[J].工程地质学报,2002,10(2):146-151。
    [108]祁生文,伍法权.高地应力地区河谷应力场特征[J].2011,32(5):1460-1464
    [109]徐则民,黄润秋.论河谷应力集中及岩体响应[J]工程勘察,2003,1(4):7-12.
    [110]魏丽敏,何群,林镇洪.考虑地下水影响的滑坡稳定性分析[J].岩士力学,2004,25(3):422-426.
    [111]马小强,李万花,刘世杰,等.黄河龙羊峡-寺沟峡段断裂对特大型滑坡的影响分析[J].青海环境,17(2):87-97
    [112]李进华,邓丽君,王俊晖,等.香港的新构造断裂活动与天然山体滑坡关系的初步研究[J].华南地质,2008,28(2):108-117
    [113]张寿庭,李忠权,王峰,等.断裂多期活动及其擦痕特征研究[J].成都理工学院学报,1998,25(3):364-368
    [114]孙红月,尚岳全.浙江上三公路6#滑坡的地下水作用与控制[J].岩石力学学报与工程,2006,25(3):505-510
    [115]贺可强,王荣鲁,李新志。堆积层滑坡的地下水加卸载动力作用规律及其位移动力学预测—以三峡库区八字门滑坡分析为例[J].岩石力学学报与工程.2008,28(8):1644-1651
    [116]张卫民,陈兰云.地下水位线对土坡稳定的影响分析[J].岩石力学与工程学报,2005,24(supp2):5319-5322
    [117]刘才华,陈从新,冯夏庭,等.地下水对库岸边坡稳定性的影响[J].岩土力学,2005,26(3):419-422.
    [118]Chit Ko Ko, Phil Flentje, Robin Chowdhury.Interpretation of probability of landsliding triggered by rainfall [J]. Landslide,2004,1:263-275
    [119]Dai F C,Lee C F, Ngai Y Y. Landslide risk assessment and management:an overview [J]. Engine-ering Geology,2002,64(1):65-87.
    [120]Diana Salciarini, Jonathan W.Godt, Willian Z.Savage, et al. Modeling regional initiation of rain-fall induced shallow landslides in the eastern Umbria Region of central ltaly[J].Landslide,20 06,3:181-194
    [121]Fausto Guzztti, Silvia Peraccacci, Mauro Rossi, et al.The rainfall intensity-duration control of sha-How landslides and debris flow:an update[J].Landslide,2008,5:3-17
    [122]Giovanna Capparelli, Pasquale Versace. FLaIR and SUSHI:two mathematical models for early warning of landslides induced by rainfall [J].Landslide,2010,5:228-235
    [123]Giovanna Capparelli,Davide Tiranti.Appication of the MoniFLaIR early warning system for rain-fall induced landslides inPiedmont region (Italy) [J].Landslide,2010,2:187-194
    [124]Iverson RM,2000.Landslide triggering by rain infiltration[J]. Water Resoures,36(7):1897-1910
    [125]Sassa K1. The mechanism starting liquefied landslides and debris flows[R]. Proc 4t h Int Symp On Landslides.1984,349~354
    [126]Tung-Lin,Hsin-fa Chen..Effects of degree of saturation on shallow landslides triggered by rainfall [J]. Environment Earth Science,2010,59:1285-1295
    [127]Hungr O,.Review of the classification of landslides of the flow type[J]. Environmental and Engi-neering Geoscience,2001,7.221-238.
    [128]Hungr O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches [J]. Canadian Geotechnical Journal.1995,32,610-523
    [129]Coussot P, Meunier M. Recognition, classification and mechanical descrip tion of debris flows [J] Earth-Science Reviews,1996,40 (3-4):209-227.
    [130]Pirulli M. The Thurwieser Rock Avalanches(Italian Alps):Description and Dynamic Analysis[J]. Engineering Geology,2009,109 (112):80-92.
    [131]Francisco Gutierrez, Pedro Lucha, Jorge Pedro Galve. Reconstructing the geochronological evolution of large landslides by means of the trenching technique in the Yesa Reservoir (Spanish Pyrenees) [J]. Geomorphology,2010,124:124-136
    [132]F. Agliardia, G. Crostaa, A. Zanchib. Structural constraints on deep-seated slope deformation kinematics[J].Engineering Geology.2001,59:83±102
    [133]Jan Hradecky, Tomas Panek。 Deep-seated gravitational slope deformations and their influence on consequent mass movements (case studiesfrom the highest part of the Czech Carpathians) [J]Nature Hazards,2008,45:235-253
    [134]Agliardi F, Crosta G, Zanchi.A Structural constrains on deep-seated slope deformations kinematice [J].Engineering Geology,2001,59:83-102
    [135]Swann Zerathe, Thomas Lebourg.Evolution stages of large deep-seated landslides at the front of a subalpine meridional chain (Maritime-Alps, France) [J].Geomorphology,2012,138(l):390-403.
    [136]1. Baron, V. Cilek, O. Krejcil, et al. Structure and dynamics of deep-seated slope failures in the Magura Flysch Nappe, outerWestern Carpathians (Czech Republic) [J].Natural Hazards and Earth System Sciences,2004,4:549-562
    [137]I. Baronl, F. Agliardi, C. Ambrosi, et al.Numerical analysis of deep-seated mass movements in the Magura Nappe; Flysch Belt of the Western Carpathians (Czech Republic) [J].Natural Hazards and Earth System Sciences,2005,5,367-374
    [138]J. Klimes, I. Baron, T. P'anek, T. Kosacik, et al.Investigation of recent catastrophic landslides in the flysch belt of Outer Western Carpathians (Czech Republic):progress towards better hazard assessmnt[J]. Natural Hazards and Earth System Sciences,2009,9,119-128.
    [139]张永双,金逸民,吴树仁,等.2005.人工弃渣诱发泥石流的动力学研究-以三峡库区巴东县黄家大沟为例[J].地球学报,26(6):571-576.
    [140]刘小丽,邓建辉,李广涛.滑带土强度特性研究现状[J].岩土力学,2004,25(11):1849-1856.
    [141]程东幸,刘大安,丁恩保,等.滑带土长期强度参数的衰减特性研究[J].岩石力学与工程学报,2005,24(S2):5827-5833.
    [142]许强.滑坡的变形破坏行为与内在机理[J].工程地质学报,2012,2(2):145-151.
    [143]李守定,李晓,刘艳辉.清江茅坪滑坡形成演化研究[J].岩石力学与工程学报,2006,25(2):377-284.
    [144]吴树仁,张永双。韩金良,等.2006.三峡水库引水工程秦巴段工程地质条件研究[J].地球学报,27(5),487-494.
    [145]吴树仁,金逸民,石菊松,等.滑坡预警判据初步研究--以三峡库区为例[J].吉林大学学报(地球科版),2004,34(4):596-600.
    [146]Ping Sun, Yueping Yin, Shuren Wu, et al. Does vertical seismic force play an important role for the failure mechanism of rock avalanches? A case study of rock avalanches triggered by the Wenchuan earthquake of May 12,2008, Sichuan, China. Environmental earth sciences.2012,66(5):1285-1293
    [147]王琛,张永丽,刘浩吾.三峡泄滩滑坡滑动带土的改进Singh-Mitchell蠕变方程[J].岩土力学2005,26(3):415-418.
    [148]孙萍,殷跃平,吴树仁,等.东河口滑坡岩石微观结构及力学性质试验研究[J].岩石力学与工程学报,2010,29(suppl):2872-2879
    [149]油新华,汤劲松.土石混合体野外水平推剪试验研究[J].岩石力学与工程学报,2002,21(10):1537-1540.
    [150]SKEMPTON A.W. Residual strength of clays in landslides, foldedstrata and the laboratory[J]. Geotechnique,1985,35(1):3-18.
    [151]SASSA K, Fukuoka H, Wang GH, et.al. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics[J]. Landslide,2004,1:7-19.
    [152]GIBOS, EGASHIRA K, OHTSUBO M, et al. Strength recovery from residual state in reactivated landslides [J], Geotechnique,2002,52(9):683-686.
    [153]Hiroshi Fukuoka, Kyoji Sassa, Gonghui Wang.Influence of shear speed and normal stress on the shear behavior and shear zone structure of granular materials in naturally drained ring shear tests [J]. Landslides,2007,4:63-74
    [154]张先伟,王常明,王钢城,等.黄石淤泥质土的剪切蠕变特性及模型研究[J].吉林大学学报(地球科学版),2009,39(1):119-125
    [155]李业龙,曾巧玲,肖军华,等.北京地铁国贸站隧道周围士体的蠕变试验研究[J].岩土力学,2008,29(5):1382-1386
    [156]Takahiro Tagami.Thermochronological investigation of fault zones[J].Tectonophysics,2012,538-540:(67-85)
    [157]何昌荣,VERBERNE B A, SPIERS C J龙门山断裂带沉积岩和天然断层泥的摩擦滑动性质与启示[J].岩石力学学报与工程,2011,30(1):113-131
    [158]VERBERNE B A, HE C, SPIERS C J. Frictional properties of sedimentary rocks and natural fault gouge from the Longmenshan Fault Zone, Sichuan, China[J]. Bulletin of the Seismological Socie-ty of America,2010,100(B5):2767-2790.
    [159]陈浩,杨春和,任伟中。蠕动滑坡变形机制的理论分析与模型试验研究[J].岩石力学学报与工程,2008.27(supp2):3705-3711
    [160]王琛,胡德金,刘浩吾,等.三峡泄滩滑坡体滑动带土的蠕变试验研究[J].岩土力学,2003,24(6):1007-1010
    []61]曲永新,张永双,陈情来。陕北晋西黄土滑塌灾害的初步研究-以西气东输工程为例[J].工程地质学报,2001,9(3):233-240
    [162]张永双,郭长宝,曲永新,等.云南腾冲膨胀性硅藻土的发现及其工程地质意义[J].工程地质学报,2012,20(2):266-275.
    [163]张永双,郭长宝,曲永新,等.膨胀性硅藻土的力学性质及其灾害效应研究[J].岩土力学,2013.34(1):23-31.
    [164]谭成轩,孙炜锋,张春山,等.宝鸡地区典型黄土剖面钻孔岩芯工程地质特性研究[J].工程地质学报,2011,19(5):732-748
    [165]Ping Sun, Jian-bing Peng, Li-wei Chen, et al. Weak tensile characteristics of loess in China — An important reason for ground fissures. Engineering Geology,2009, (108):153-159.
    [166]Van Westen, C.J., A. C. Seijmonsbergen, F. Mantovan. Comparing Landslide Hazard Evaluation: Three Case Support System for landslide Hazard Monitoring[J].Natural hazards,1999.20(23): 192-201
    [167]MowenXie, Tetsuro Esaki, Meifeng Cai.A time-space based approach for mapping rainfall induc-ed shallow landslide hazard[J].Environmental Geology,2004.46:840-850
    [168]Raj Hari Sharma, et al.2008.Rain induced shallow landslide hazard assessment for ungauged catchments[J].Hydrogeology Journal,16:871-877
    [169]S. Sterlacchini, S. Frigerio, P. Giacomelli, et al.Landslide risk analysis:a multi-disciplinary met-hodological approach[J]. Natural Hazards and Earth System Sciences,2007,20 (7):657-675
    [170]孙进忠,陈祥,王余庆。岩土边坡地震崩滑三级评价预测[J],地震研究,2004,27(3):256-263
    [171]张春山,何淑军,辛鹏,等.2009.陕西省宝鸡市渭滨区地质灾害风险评价[J],地质通报,28(8):1053-1063.
    [172]石菊松.基于遥感和地理信息系统的滑坡风险评估关键技术研究[博士学位论文D],中国地质科学院,2008
    [173]孙炜锋.千阳县千河谷地典型粘黄土区地质灾害危险性评价研究[博士学位论文D],中国地质科学院,2008
    [174]王涛.汶川地震重灾区地质灾害危险性评估研究[博士学位论文D],中国地质科学院,2010
    [175]孟庆华.秦岭山区地质灾害风险评估方法研究-以陕西凤县为例[博士学位论文D],中国地质科学院,2011
    [176]郭长宝.大瑞铁路高黎贡山越岭段重大工程地质问题研究[博士学位论文D],中国地质科学院,2011
    [177]齐信,唐川,铁永波.2010.基于GIS技术的汶川地震诱发地质灾害危险性评价-以四川省北川县为例[J].成都理工大学(自然科学版),37(2):160-167.
    [178]Esther W.E. Van Diggelen, Johannes H.P. De Bresser, Colin J. Peach et al. High shear strain beha-viour of synthetic muscovite fault gouges under hydrothermal conditions [J]. Journal of Structural Geology2010,32,1685-1700
    [179]M. Cardinalil, P. Reichenbachl, F. Guzzettil, A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy [J]. Natural Hazards and Earth System Scien-ces,2002,2:57-72
    [180]Y. Thiery a, J.-P. Malet a, S. Sterlacchini b, et al.Landslide susceptibility assessment by bivariate methods at largescales:Application to a complex mountainous environment [J]. Geomorphology, 2007.92:38-59
    [181]Mirco Galli, Francesca Ardizzone, Mauro Cardinali, et al.Comparing landslide inventory maps [J]. Geomorphology,2008,94 (3-4):268-289
    [182]Leonardo Cascini. Applicability of landslide susceptibility and hazard zoning at different scales [J]. Eegineering Geology,2008,102(3-4):164-177
    [183]Diana Salciarini, Jonathan W. Godt, William Z. Savage, et al.Modeling landslide recurrence in Seattle, Washington, USA[J]. Engineering Geology,2008,102(3-4):227-237
    [184]姚玉增,李仁冯,温守钦,等.2010.辽宁省凌源市山地地质灾害易发性评价研究[J].地球学报,31(1):109-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700