用户名: 密码: 验证码:
集群环境下中小地震震源机制波形反演的准自动系统构建及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震所造成的灾害与地震的震源参数,尤其足震源机制、矩震级的大小及震源深度等直接相关。其中的震源机制解是地震破裂的几何学与运动学特征的直观反映,对了解震后活动趋势、震源区介质特征、区域应力状态与发震构造等具有重要意义。
     地震发生后,除了提供震中和震级等地震的基本参数之外,快速反演得到准确可靠的震源机制乃至震源破裂过程,将对发震机制、震害评估、震情趋势判定等必要的分析提供重要的科学依据。对于震源机制的测定,目前使用的P波初动极性和振幅比方法对观测台站的分布要求较高,当地震发生在监测台网边缘或网外时,其结果常常难以令人信服。而利用日益增多的大量数字地震波形(P波、S波和面波)记录来反演震源机制,将增强对震源参数的约束精度与解析能力。波形反演中小地震震源机制的方法近十几年来发展迅速,并在美国、日本和欧洲一些国家及我国台湾地区逐渐投入到地震台网的运行中,对一些3.0-5.0级地震的震源机制进行自动或半自动测定,但我国尚缺乏中小地震震源机制的波形反演应用系统。为此,本论文基于Zhu and Helmberger(1996)的波形拟合反演震源机制Cut-And-Paste(CAP)的方法,构建了一个准自动波形反演系统来实现中小地震震源机制的快速确定,并探索将CAP方法拓展应用于小地震和深震震源机制反演的可能性。
     作者首先在高性能集群计算系统中构建了基于CAP方法的准自动波形反演系统,同时对CAP方法进行了必要的拓展,使之适用于不同参考震中距或无距离校正等情形的反演;并在详细描述方法特点及反演流程基础上,发展了适合在集群计算系统中运行的自动反演程序(run.cap.auto.mpi)。考虑到中小地震激发能量相对较弱的特点,程序可对不同震级档采用不同的反演参数(特别是滤波参数范围),从而实现了大批量震源机制的并行反演并得到波形拟合最佳的震源机制结果。最后发展了CAP方法的图形用户界面,使得用户只需要简单或初步的指导就可以实现震源机制的反演工作。
     本研究实现了不同操作系统环境下应用频率-波数(F-K)方法计算格林函数库,且在高性能集群计算系统中实现了F-K计算程序的多任务并行处理,达到了快速方便计算理论地震波形的目的。并根据通常基于一维速度结构模型计算理论地震波形的实际需要,采用以不同深度划分计算任务并提交到不同计算节点上计算处理,以达到尽快取得所需深度范围的全部格林函数库的目的。
     本研究探索应用所构建的波形反演系统,反演了2009年发生在小浪底库区监测台网内的一次小震群活动的震源机制解。该震群主要发生在石井河断层中段的上盘,其震源机制以走滑为主、并伴随少量逆断型,而正断型机制很少。反演结果同该区域的地质构造特征较为吻合,结果表明CAP方法也适用于台网观测波形质量好的小震震源机制解反演。
     本研究也首次尝试将CAP方法应用于我国东北在2010年和2011年分别发生的2个深震震源机制的反演。近震观测波形和理论波形的良好拟合效果,表明CAP反演结果稳定、可靠,说明该方法也同样适用于深震的震源机制反演。2010年2月18日深震的震源机制反演结果与国外有关机构得出的结果基本一致。而反演得到的2011年5月10日以低角度逆冲为主的深震震源机制,清晰地展示出日本俯冲带的动力作用过程中的响应活动特征,属于日本东北近海Mw9.0地震造成的大范围同震水平位移和震后滑移的构造应力调整活动。
     本研究进一步由23个历史深震震源机制解资料,应用LSIB(Linear Stress Inversion with Bootstrapping)方法反演得到我国东北深震活动区的构造应力场特征如下:最大主压应力呈北西西向(272.6°),轴向近水平(26.4°);最小主压应力呈南东东向,轴倾角为62.4°。表明近东西向构造应力场可能是太平洋板块从日本海沟处以北西西向俯冲到欧亚板块之下形成的。
The earthquake disaster is directly related to the source parameters of the earthquake,especially its focal mechanism and depth,and its moment magnitude. The focal mechanism solution can reflect the geometry and kinematics features of the earthquake rupture,which is very significant to analyze the activity of aftershocks and to understand the stress status of hypocentral area and seismogenic structure.
     The seismic networks routinely determine the locations and magnitudes of earthquakes immediately after they occur. However, many networks are still unable to provide the earthquake mechanisms which are very important to the analysis of the seismogenic environment and potential earthquake hazard in the near future.At present, the focal mechanisms of earthquakes are mostly determined by the first-motions and S/P amplitude ratios of seismic waves from good station coverage. When an earthquake happens at the edge or outside of a seismic network, its focal mechanism determination is often unacceptable.Nevertheless, the seismic waveforms(P, S and surface waves)can provide much better constraints on the earthquake source parameters.In recent years, methods and algorithms have been widely developed to use waveforms to invert the focal mechanisms of moderate and small earthquakes,and some have been incorporated into the routine operating networks in USA,Japan,some European countries and Chinese Taipei for earthquakes with magnitudes3.0-5.0.However, most of seismic networks in China are unable to automatically determine the focal mechanisms of moderate and small earthquakes.In this paper, the author will develop an automatic system to quickly and reliably determine the earthquake mechanism based on the Cut-And-Paste (CAP) waveform inversion method (Zhu and Helmberger1996),and test this system with the focal mechanism inversions of small earthquakes and deep earthquakes to check its applicability.
     The quasi-automated moment tensor inversion system based on CAP method had been built in a high-performance cluster computing system(HPCCS) with the capability of given reference epicentral distances or without distance calibration. Furthermore,the automated script program named run.cap.auto.mpi had been set in the HPCCS to work with different inversion parameters (as frequency ranges of waveform filtering) for source parameters determinations with various magnitude ranges of earthquakes. Finally, a graphical user interface of the CAP inversion has been deployed on the HPCCS and SUSE Unix system. It allows a user with very limited amount of training to near-real-time determine the focal mechanism of an earthquake.
     Frequency-Wavenumber(F-K) package suitable for Windows and Unix/Linux environments had been compiled to compute Green's function libraries for specific velocity model of study region. For the Green's function computation using1-D velocity model, all computing jobs can be created automatically for each depth of the study region and be submitted to different computing nodes to obtain all of Green' function libraries of all depths on HPCCS as soon as possible.
     The built HPCC CAP inversion system was used for the2009earthquake swarm occurred in the seismic network of Xiaolangdi Reservoir (XRSN in short) of Yellow river. The ML magnitude of this swarm ranges from1.0to2.6. The inverted focal mechanisms of this swarm show that all of24events, there were15events (62.5%) with strike-slip mechanisms, and seldom normal and thrust type earthquakes with only12.5%and25%respectively. The dominated shear mechanisms of this swarm occurred in the hanging wall of the middle segment of Shijinghe fault are in accordance with regional tectonics. Our results indicate that CAP method is suitable to inverse the focal mechanisms of small earthquakes with high signal-to-noise ratio waveforms from dense network.
     Then the CAP method was first time tried to invert source parameters of2deep earthquakes occurred in Northeast China in2010and2011respectively. The results with well fitted synthetic and observed waveforms indicate that this method is also suitable to invert the mechanism of deep earthquake. Our result of the2010event is a good agreement with the results from USGS and gCMT. Our low-angle thrust result for the2011deep earthquake reveals the activity of dynamic response of the subducting Pacific plate, and is associated with the tectonic stress adjustments of great coseismic displacements and postseismic slip induced by the2011Mw9.0Tohoku-oki earthquake in Japan.
     Furthermore, the Linear Stress Inversion with Bootstrapping resampling (LSIB) method had been used to invert for tectonic stress field from23historical focal mechanisms within study region. Our results show that the direction of maximum principal stress is NWW (the trend of272.6°) with a near horizontal axis (the plunge of26.4°)while the orientation of minimum principal stress SEE with an axis plunge of62.4°.The near EW direction of stress field is highly caused by the subducting Pacific plate beneath the European-Asian plate from Japan trench to Northeast China.
引文
Aagaard B T.1999. Finite-element simulations of earthquakes[D]:[PhD]. USA:Caltech.
    Abers G A and Gephart J W.2001. Direct inversion of earthquake first motions for both the stress tensor and focal mechanisms and application to southern California[J]. J geophys Res,106:26 523-26540.
    Aki K and Richards P G.2002. Quantitative Seismology(2nd edition) [M].Sausalito,Califomia: University Science Books,1-200.
    Ammon C J, Velasco A A and Lay T.1993. Rapid estimation of rupture directivity:Application to the 1992 Landers (Ms=7.4) and Cape Mendocino (Ms=7.2), California earthquake[J]. Geophys Res Lett,20(2):97-100.
    Ammon C J, Ji C, Thio H K, et al.2005. Rupture Process of the 2004 Sumatra-Andaman Earthquake[J]. Science,308(5725):1133-1139.
    Ammon CJ, Velasco A A and Lay T.2006. Rapid estimation of first-order rupture characteristics for large earthquakes using surface waves:2004 Sumatra-Andaman earthquake[J]. Geophys Res Lett,33(14):L14314.
    Angelier J.1979. Determination of the mean principal directions of stresses for a given fault population[J]. Tectonophysics,56:T17-T26.
    Arnold R and Townend J.2007. A Bayesian approach to estimating tectonic stress from seismological data[J].Geophys J Int, doi:10.1111/j.1365-246X.2007.03485.X.
    Auger E D Auria L, Martini M,et al.2006. Real-time monitoring and massive inversion of source parameters of very long period seismic signals:an application to Stromboli Volcano, Italy[J]. Geophys Res Lett,33(4):L04301.
    Bao H S, Bjelak J, Ghattas O, et al.1998.Large-scale simulation of elastic wave propagation in heterogeneous media parallel computers[J].Computer Methods in Applied Mechanics and Engineering,152(1-2):85-102.
    Ben-Menahem A.1961.Radiation of seismic surface-waves from finite moving sources[J].Bull Seism Soc Am,51(3):401-435.
    Ben-Menahem A and Singh S J.1968.Multipolar elastic fields in a layered half-space[J].Bull Seism Soc Am,58:1519-1572.
    Brune J N.1970. Tectonic stress and spectra of seismic shear waves from earthquakes[J].J Geophys Res,75(26),4997-5002.
    Chen P, Jordan T H,Zhao L.2005.Finite-moment tensor of the 3 September 2002 Yorba Linda earthquake[J].Bull Seism Soc Am,95(3):1170-1180.
    Chen P, Jordan T H,Zhao L.2010.Resolving fault plane ambiguity for small earthquakes[J]. Geophys J Int,181(1):493-501.
    Chen Y T, Xu L S,Li X, et al.1996.Source process of the 1990 Gonghe, China, earthquake and tectonic stress field in the northeastern Qinghai-Xizang(Tibetan)plateau[J].Pure Appl Geophys,146(3/4):697-715.
    Dreger D S and Helmberger D V.1993.Determination of source parameters at regional distances with 3-component sparse network data[J].J Geophys Res,98(B5):8107-8125.
    Dziewonski A M,Chou T A and Woodhouse J H.1981.Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J].J Geophys Res, 86(B4):2825-2852.
    Dziewonski A M and Woodhouse J H.1983.An experiment in systematic study of global seismicity Centroid-moment tensor solutions for 201 moderate and large earthquake of 1981 [J]. J Geophys Res,88:3247-3271.
    Ebel J and Bonjer K.1990.Moment tensor inversion of small earthquakes in southwestern Germany for the fault plane solution[J].Geophys J Int,101:133-146.
    Efron B and Tibshirani R.1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy[J].Stat Sci,1(1),54-77.
    Efron B and Tibshirani R.1991.Statistical data analysis in the computer age[J].Science, 253(5018):390-395
    Fan G W and Wallace T C.1991.The determination of source parameters for small earthquakes from a single very broadband seismic station[J].Geophys Res Lett,18:1385-1388.
    Frankel A and Vidale J.1992.A 3-dimensional simulation of seismic waves in Santa-Clara Valley, Califoria, from a Loma-Prieta aftershock[J]. Bull Seism SocAm,82(5):2045-2074.
    Furumura T, Kennett B L N and Furumura M.1998. Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method[J]. Geophys J Int,135 (3):845-860.
    Gephart J W.1985. Principal stress directions and the ambiguity in fault plane identification from focal mechanism[J]. Bull seism SocAm,75(2):621-625.
    Gephart J W.1990a. Stress and the direction of slip on fault planes[J]. Tectonics,9(4):845-858.
    Gephart J W.1990b. FMSI:A FORTRAN program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor[J]. Comput And Geosci,16(7), 953-989.
    Gephart J W and Forsyth D W.1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data:application to the San Fernando earthquake sequence[J]. J geophys Res,89:9305-9320.
    Glennon M A and Chen W P.1993. Systematics of deep-focus earthquakes along the Kuril-Kamchatka Arc and their implications on mantle dynamics[J]. J Geophys Res,98: 735-769.
    Graves R W.1996. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences[J]. Bull seism Soc Am,86(4):1091-1106.
    Graves R.W and Wald D J.2001. Resolution analysis of finite fault source inversion using one-and three-dimensional Green's Functions, I. Strong motions[J]. J Geophys Res,106: 8745-8766.
    Gudmundsson O and Sambridge M.1998. A regionalized upper mantle (RUM) seismic model[J]. J Geophys Res,103,7121-7136.
    Hardebeck J L and Hauksson E.2001. Stress orientations obtained from earthquake focal mechanisms:What are appropriate uncertainty estimates?[J]. Bull seism Soc Am,91,250-262.
    Hardebeck J L and Shearer P M.2002. A new method for determining first-motion focal mechanisms[J]. Bull Seism Soc Am,92,2264-2276.
    Hardebeck J L and Shearer P M.2003. Using S/P amplitude ratios to constrain the focal mechanisms of small earthquake[J]. Bull Seism Soc Am,93,2434-2444.
    Hardebeck J L and Michael A J.2004. Stress orientations at intermediate angles to the San Andreas fault, California[J]. J geophys Res,109, B11303, doi:10.1029/2004JB003239.
    Harkrider D G.1964. Surface waves in multilayered elastic media I. Rayleigh and Love from buried sources in a multilayered elastic half-space[J]. Bull seism Soc Am,54(2):627-679.
    Harris R A.1998. Introduction to special session:stress triggers, stress shadows, and implications for seismic hazard[J]. J Geophys Res,103(B10):24347-24358.
    Hartzell S H.1978. Earthquake aftershocks as Green's functions[J]. Geophys. Res. Lett.,5(1):1-4.
    Hartzell S H and Heaton T H.1983. Inversion of strong-motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake[J]. Bull Seism Soc Am,73(6):1553-1583.
    Haskell N A.1953. The dispersion of surface waves on multilayered media[J]. Bull Seism Soc Am, 43:17-43.
    Haskell N A.1963. Radiation pattern of Rayleigh waves from a fault of arbitrary dip and direction of motion in a homogeneous medium[J]. Bull Seism Soc Am,53(3):619-642.
    Haskell N A.1964. Radiation pattern of surface waves from point sources in a multi-layered medium[J]. Bull Seism Soc Am,54(1):377-393.
    Horiuchi S, Rocco G and Hasegawa A.1995. Discrimination of fault planes from auxiliary planes based on simultaneous determination of stress tensor and a large number of fault plane solutions[J]. J Geophys Res,100(5),8327-8338.
    Hwang R D, Yu G K and Wang J H.2001. Rupture directivity and source-process time of the September 20,1999 Chi-Chi, Taiwan, earthquake estimated from Rayleigh-wave phase velocity[J]. Earth Planets Space,53(12):1171-1176.
    Ide S, Baltay A and Beroza G C.2011. Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake[J]. Science,332,1426-1429.
    Ishii M, Shearer P M, Houston H, et al.2007. Teleseismic P wave imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra earthquake ruptures using the Hi-net array[J]. J Geophys Res,112(B11):B11307.
    Ishii M, Shearer P M, Houston H, et al.2005. Extant, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array[J]. Nature,435(7044):933-936.
    Ito Y, Sekiguchi S, Okada T, et al.2006. Performance of regional distance centroid moment tensor inversion applied to the 2004 mid-Niigata prefecture earthquake, Japan[J]. Geophys J Int, 167(3):1317-1331.
    Ji C, Helmberger D V and Wald D J.2004. A teleseismic study of the 2002 Denali fault, Alaska, earthquake and implications for rapid strong-motion estimation[J]. Earthquake Spectra,20(3): 617-637.
    Ji C, Wald D J and Helmberger D V.2002a. Source description of the 1999 Hector Mine, California, earthquake, part Ⅱ:Complexity of slip history[J]. Bull Seism Soc Am,92(4): 1208-1226.
    Ji C,Wald D J and Helmberger D V.2002b. Source description of the 1999 Hector Mine, California, earthquake, part I:Wavelet domain inversion theory and resolution analysis[J]. Bull Seism Soc Am,92(4):1192-1207.
    Ji C, Helmberger DV, Wald DJ, et al.2003. Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake[J]. J Geophys Res,108(B9):2412.
    Kanamori H and Given J W.1981. Use of long-period surface waves for rapid determination of earthquake-source parameters[J]. Phys Earth Planet Interiors,27(1):8-31.
    Kao H and Shan S.2007. Rapid identification of earthquake rupture plane using Source-Scanning Algorithm[J]. Geophys J Int,168(3):1011-1020.
    Kawakatsu H.1998. On the realtime monitoring of the long-period seismic wavefield[J]. Bull Earthquake Res Inst,73(3-4):267-274.
    Kelly K R, Ward R, Treitel S, et al.1976.Synthetic seismograms:a finite difference approach[J]. Geophysics,41(1):2-27.
    Kennett B L N.1974. Reflections, rays, and reverberations[J]. Bull Seism Soc Am,64:1685-1696.
    Kennett B L N and Engdahl E R.1991. Travel times for global earthquake location and phase identification[J]. Geophys J Int,105:429-465.
    Kikuchi M and Kanamori H.1982. Inversion of complex body waves Ⅰ[J].Bull Seism Soc Am, 72(2):491-506.
    Kikuchi M and Kanamori H.1986. Inversion of complex body waves Ⅱ[J]. Phys Earth Planet Interiors,43(3):205-222.
    Kikuchi M and Kanamori H.1991.Inversion of complex body waves Ⅲ[J]. Bull Seism Soc Am, 81(6):2335-2350.
    Kilb D and Hardebeck J L.2006. Fault parameter constraints using relocated earthquakes:A validation of first-motion focal-mechanism data[J]. Bull Seism Soc Am,96(3):1140-1158.
    Kisslinger C.1980. Evaluation of S to P amplitude ratios for determining focal mechanisms from regional network observations[J]. Bull Seism Soc Am,70(4),999-1014.
    Kisslinger C, Bowman J and Koch K.1982. Determination of focal mechanism from SV/P amplitude ratios at small distances[J]. Physics of the Earth and Planetary Interiors,30:172-176.
    Komatitsch D and Vilotte J P.1998. The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures[J].Bull Seism Soc Am,88(2):368-392.
    Komatitsch D, Liu Q, Tromp J, et al.2004. Simulations of ground motion in the Los Angeles basin based upon spectral-element method[J]. Bull seism Soc Am,94(1):187-206.
    Kriiger F and Ohrnberger M.2005. Tracking the rupture of the MW=9.3 Sumatra earthquake over 1150 km at teleseismic distance[J]. Nature,435(7044):937-939.
    Langston C A and Helmberger D V.1975. A procedure for modeling shallow dislocation sources[J]. Geophysical Journal of the Royal Astronomical Society,42(1):117-130.
    Langston C A.1981. Source Inversion of seismic waveforms:The Koyna, India, earthquakes of 13/09/1967[J]. Bull Seism Soc Am,71(1),1-24.
    Langston C A, Barker J, Pavlin G 1982. Point-source inversion techniques[J]. Physics of the Earth and Planetary Interiors,30(2):228-241.
    Larmat C, Montagner J P, Fink M, et al.2006. Time-reversal imaging of seismic sources and application to the great Sumatra earthquake[J]. Geophys Res Lett,33(19):L19312.
    Larry W, Tom C and Jon O.2009. Programming Perl[M]何伟平译.第3版.北京:中国电子出版社,597-607.
    Laura S, Elisa T, and Alberto M.2009. Real-Time Determination of Seismic Moment Tensor for the Italian Region[J]. Bull Seism Soc Am,99:2223-2242.
    Li H Y, Zhu L P, Yang H F.2007. High-resolution structures of the Landers faults zone inferred from aftershock waveform data[J]. Geophys J Int,171(3):1295-1307.
    Lund B and Slunga R.1999. Stress tensor inversion using detailed mi-croearthquake information and stability constraints:application to Olfus in southwest lceland[J]. J geophys Res,104,14 947-14964.
    Lund B and Townend J.2007. Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor[J]. Geophys J Int,170:1328-1335.
    Maruyama T.1964. Statical elastic dislocations in a infinite and semi-infinite medium[J]. Bull Earthq Res Inst,42:289-368.
    McCloskey J, Nalbant S S, Steacy S, et al.2003. Structural constraints on the spatial distribution of aftershocks[J]. Geophys Res Lett,30(12):1610.
    Mendoza C and Hartzel S.1988. Inversion for slip distribution using teleseismic P waveform: North Palm Spring, Boirth Peak, and Michoacan earthquake[J]. Bull Seism Soc Am,78: 1092-1111.
    Michael A J.1984. Determination of stress from slip data:faults and folds[J]. J Geophys Res, 89(B13):11517-11526.
    Michael A J.1987. Use of focal mechanisms to determine stress:a control study[J]. J Geophys Res,92:357-368.
    Nakamura M.2002. Determination of focal mechanism solution using initial motion polarity of P and S waves[J]. Physics of the Earth and Planetary Interiors,130(1-2):17-29.
    Ni S D, Kanamori H and Helmberger D V.2005. Energy radiation from the Sumatra earthquake[J]. Nature,434(7033):582.
    Olsen K B.1994. Simulation of three-dimensional wave propagation in the Salt Lake Basin[D]:[phD]. USA:University of Utah.
    Ozawa S, Nishimura T, Suito H, et al.2011. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature,475:373-376.
    Parsons T.2005. Significance of stress transfer in time-dependent earthquake probability calculations[J]. J Geophys Res,110(B5), B05S02.
    Ran R and Wu F.1998. Active tectonics of Taiwan orogeny from focal mechanisms of small-to-moderate-sized earthquakes[J]. Atmosphere and Oceanic Science,9:755-778.
    Ruff L and Kanamori H.1983. The rupture process and asperity distribution of three great earthquakes from long-period diffracted P-wave[J]. Phys Earth Planet Inter,31(3):202-230.
    Sato R.1971. Crustal deformation due to dislocation in a multi-layered medium[J]. J Phys Earth, 19:32-46.
    Seeber, L, Armbruster J G.2000. Earthquakes as beacons of stress change[J]. Nature,407,69-72.
    Shearer P M.1998. Evidence from a cluster of small earthquakes for a fault at 18 km depth beneath Oak Ridge, southern California[J]. Bull Seism Soc Am,88(6):1327-1336.
    Shudofsky G N.1985. Source mechanisms and focal depths of East African earthquakes using Rayleigh-wave inversion and body-wave modeling[J]. Geophys J R Astron Soc,83(3):563-614.
    Singh S J.1970. Static deformation of a multilayered half-space by internal sources[J]. J Geophys Res,75:3257-3263.
    Sipkin S.1982. Estimation of earthquake source parameters by the inversion of waveform data: synthetic waveforms[J]. Physics of the Earth and Planetary Interiors,30:242-259.
    Sitter R V.1992. Bootstrap method s for survey data. Can J Statist,20:135-154.
    Slancova A, SpiCak A, HanuS V, et al.2000. How the state of stress varies in the Wadati-Benioff zone:indications from focal mechanisms in the Wadati-Benioff zone beneath Sumatra and Java[J]. Geophys J Int,143(3):909-930.
    Smith W D.1974. A nonreflecting plane boundary for wave propagation problems[J]. J Comp Phys,15:492-503.
    Smith W D.1975. The application of finite element analysis to body wave propagation problems[J]. Geophys J Int,42(2):747-768.
    Steacy S, Nalbant S S, McCloskey J, et al.2005. Onto what planes should Coulomb stress perturbations be resolved?[J]. J Geophys Res,110(B5):BO5S15.
    Steketee J A.1958. Volterra's dislocations in a semi-infinite elastic medium[J]. Can J Phys,36: 192-205.
    Tajima F, Megnin C, Dreger D S, et al.2002. Feasibility of real-time broadband waveform inversions for simultaneous moment tensor and centroid location determination[J]. Bull Seism Soc Am,92(2):739-750.
    Takeuchi H and Saito M.1972. Seismic surface waves:Methods in Computational Physics[M]. New York:Academic Press,11:217-295.
    Tan Y and Helmberger D V.2007. A new method for determining small earthquake source parameters using short-period P waves[J]. Bull Seism Soc Am,97(4):1176-1195.
    Tan Y and Helmberger D V.2010. Rupture directivity characteristics of the 2003 Big Bear sequence[J]. Bull Seism Soc Am,100(3):1089-1106.
    Tan Y, Zhu L and Helmberger D V.2006. Locating and modeling regional earthquakes with two stationsfJ]. J Geophys Res,111 (B01):306-314.
    Thio H K and Kanamori H.1995. Moment-tensor inversions for local earthquakes using surface waves recorded at TERRAscope[J]. Bull Seism Soc Am,85:1021-1038.
    Thomson W T.1950. Transmission of elastic waves through a stratified solid medium[J]. J Appl Phys,21:89-93.
    Tsuruoka H, Kawakatsu H and Urabe T.2009. GRiD MT (Grid-based Realtime Determination of Moment Tensors) monitoring the long-period seismic wavefield[J]. Phys Earth Planet Int, 175(1-2):8-16.
    Velasco A A, Lay T and Zheng J.1993. Long period surface wave inversion for source parameters of the 18 October 1989 Loma Prieta earthquake [J]. Phys Earth Planet Interior,76:43-66.
    Wald D J, Helmberger D V and Heaton T H.1991. Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong-motion and broadband teleseismic data[J]. Bull Seism SocAm,81(5):1540-1572.
    Walker K T, Ishii M and Shearer P M.2005. Rupture details of the 28 March 2005 Sumatra Mw 8.6 earthquake imaged with teleseismic P waves[J]. Geophys Res Lett,32(24):L24303.
    Wallace TC. Velasco A, Zang J, et al.1991. A broadband seismological investigation of the 1989 Loma Prieta. California earthquake evidence for deep slow slip?[J]. Bull Seism Soc Am.81: 1622-1646.
    Wang C Y and Herrmann R B.1980. A numerical study of P, SV, and SH-wave generation in a plane layered medium[J]. Bull Seism Soc Am,70:1015-1036.
    Yao Z X and Harkrider D G.1983. A generalized reflection transmission coefficient matrix and discrete wavenumber method for synthetic seismograms[J]. Bull Seism Soc Am,73:1685-1 699.
    Yagi Y and Fukahata Y.2011. Rupture process of the 2011 Tohoku-oki earthquake and absolute elastic strain release[J]. Geophys Res Lett,38:L19307.
    Yin Z M.1996. An improved method for the determination of the tectonic stress field from focal mechanism data[J]. Geophys J Int,125(3):841-849.
    Zhao D P, Tian Y, Lei J S, et al.2009. Seismic image and origin of the Changbai intraplate volcano in East Asia:role of big mantle wedge above the stagnant Pacific slab[J]. Physics of the Earth and Planetary Interiors,173:197-206.
    Zhao L, Jordan T H and Chapman C H.2000. Three-dimensional Frechet differential kernels for seismic delay times[J]. Geophys J Int,141:558-576.
    Zhao L, Jordan T H, Olsen K B, et al.2005. Frechet kernels for imaging regional earth structure based on three-dimensional reference models[J]. Bull Seism Soc Am,95:2066-2080.
    Zhao L, Chen P and Jordan T H.2006. Strain Green's tensors, reciprocity and their applications to seismic source and structure studies[J]. Bull Seism Soc Am,96(5):1753-1763.
    Zhao L S and Helmberger D V.1994. Source Estimation from Broad-Band Regional Seismograms[J].Bull Seism Soc Am,84(1):91-104.
    Zhou S Y, Irikura K and Chen X F.2004. Analysis of the reliability and resolution of the earthquake source history inferred from waveforms, taking the Chi-Chi earthquake as an example[J]. Geophys J Int,157:1217-1232.
    Zhu L P and Helmberger D V.1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seism Soc Am,86(5):1634-1641.
    Zhu L P and Rivera L A.2002. A note on the dynamic and static displacements from a point source in multi-layered media[J]. Geophys J Int,148(3):619-627.
    Zhu L P,Tan Y, Helmberger D V, et al.2006. Calibration of the Tibetan Plateau using regional seismic waveforms[J]. Pageoph,163:1193-1213.
    Zoback M D, Barton, C A, Brudy M, et al.2003. Determination of stress orientation and magnitude in deep wells[J]. Int J Rock Min Sci,40:1049-1076.
    常祖峰.1995.黄河小浪底水库诱发地震可能性初探[J].河南地质,13(4):314-318.
    程万正,阮祥,张永久.2006.川滇次级地块震源机制解类型与一致性参数[J].地震学报,28(6),561-573.
    程万正,张致伟,阮祥.2010.紫坪铺水库区不同蓄水阶段的地震活动及成因分析[J].地球物理学进展,25(3):759-767.
    陈翰林,赵翠萍,修济刚等.2009.龙滩水库地震精定位及活动特征研究[J].地球物理学报,52(8):2035-2043.
    陈砚歆.2010.台湾海峡震源机制及其应力状态[M]:[硕十].台湾大学理学院海洋研究所,1-113.
    陈颙.1978.震源机制一致性作为描述地震活动性的新参数[J].地球物理学报,21(2):140-159.
    丁原章.1989,水库诱发地震[M].北京:地震出版社,1-82.
    董来启,刘建周,岳克泰等.2009.小浪底水利枢纽对断层活动性的影响分析[J],中州煤炭,(8):6-8.
    杜兴信,邵辉成.1999.由震源机制解反演中国大陆现代构造应力场[J].地震学报,21(4):354-360.
    高立新.2011.中国东北地区地震活动的动力背景及其时空特征分析[J].地震,31(1):41-51.
    韩立波,郑勇,倪四道.2007.理论地震图的F-K算法的并行实现[J].中国科学技术大学学报,37(8):911-915.
    河北省地震局邯郸中心台,小浪底工程咨询有限公司枢纽安全监测中心.2010.小浪底水利枢纽工程地震安全监测年报(2009年度)[R].1-107
    贺为民,刘明军,李智毅等.2001.小浪底水库断裂构造分析及诱发地震预测[J].华南地震, (1):63-68.
    黄建平,倪四道,傅容珊等.2009.综合近震及远震波形反演2006文安地震(M5.1)的震源机制解[J].地球物理学报,52(1):120-130.
    胡幸平,俞春泉,陶开等.2008.利用P波初动资料求解汶川地震及其强余震震源机制解[J].地球物理学报,51(6):1711-1718.
    胡新亮,刁桂苓,马瑾等.2004.利用数字地震记录的P、S波振幅比资料测定小震震源机制解的可靠性分析[J].地震地质,26(2):347-354.
    李安奕,臧绍先.1996.西北太平洋地区的一些深震震源的研究[J].地震学报,18(2):19-26.
    李钦祖,王泽皋,贾云年等.1973.由单台小地震资料所得两个区域的应力场[J].地球物理学报,16:49-61.
    李圣强,李闽峰,刘桂平等.2012.高性能集群计算系统的构建[J].地震,32(1):144-149.
    刘桂平,李闽峰,李圣强,等.2009.利用并行计算方法实现地震活动速率变化参数Z值的空间扫描处理及其计算效能评价[J].地震,29(4):131-138.
    刘宁,陈棋福,韦生吉.2011.地震震源运动学参数获取方法研究进展[J].中国地震,27(1),29-38.
    罗艳.2010.中小地震震源参数研究[D]:[博士].中国科学技术大学,地球空间学院,1-161.
    罗艳,倪四道,曾祥方等.2010.汶川地震余震区东北端一个余震序列的地震学研究[J].中国科学:地球科学,40(5):1-11.
    梁尚鸿,李幼铭,束沛镒等.1984.利用区域地震台网P、S波振幅比资料测定小震震源参数[J].地球物理学报,27(3):247-257.
    龙锋,张永久,闻学泽等.2010.2008年8月30日攀枝花—会理6.1级地震序列ML≥4.0事件的震源机制解[J].地球物理学报,53(12):2852-2860.
    刘瑞丰,陈运泰,周公威等.1999.地震矩反演在地震快速反应中的应用[J].地震学报,21(2):115-122.
    吕坚,郑勇,倪四道等.2008.2005年11月26日九江--瑞昌Ms5.7、Ms4.8地震的震源机制解与发震构造研究[J].地球物理学报,51(1):158-164.
    吕玉菀.2004.使用震源机制逆推台湾地区应力分区状况[M]:[硕士].台湾”中央”大学地球物理研究所,1-70.
    宁杰远,臧绍先.1987.日本海及中国东北地震的深度分布及其应力状态[J].地震地质,9(2):50-60.
    裴军令,杨振宇,赵越等.2009.中国东北及邻区白垩纪古地磁分析与块体旋转运动动力学背景[J].地质学报,83(5):617-627.
    秦静欣,郝天珧,徐亚等.2009.关于中国海陆莫霍面深度图编绘的思考[J].地球物理学进展,24(5):1593-1601
    孙文斌,和跃时.2004a.中国东北地区地震活动特征及其与日本海板块俯冲的关系[J].地震地质,26(1):122-132.
    孙文斌,和跃时.2004b.西太平洋Benioff带的形态及其应力状态[J].地球物理学报,47(3):433-440.
    王敏,李强,王凡,等.2011.全球定位系统测定的2011年日本宫城Mw9.0级地震远场同震位移[J].科学通报,56(20):1593-1596.
    王世昌,刘耀伟,张培华.2006.小浪底水库诱发地震的危险性分析[J].地震地磁观测与研究,(2):9-14.
    王卫民,赵连锋,李娟等.2008.四川汶川8.0级地震震源过程[J].地球物理学报,51(5):1403-1410.
    万新,倪四道.2007.下地幔可以发生地震吗?[J].中国科学技术大学学报,37(8):1043-1046.
    万永革.2011.中国现代构造应力场[J].世界地震译丛,(3):18-29.
    万永革,沈正康,刁桂苓等.2008.利用小震分布和区域应力场确定大震断层面参数方法研究及其在唐山地震序列中的应用[J].地球物理学报,51(3):793-804.
    万永革,盛书中,许雅儒等.2011.不同应力状态和摩擦系数对综合P波辐射花样影响的模拟研究[J].地球物理学报,2011,54(4):994-1001.
    韦生吉.2009.稀疏台网震源参数方法研究[D]:[博十].中国科学技术大学,地球空间学院,1-149.
    韦生吉,倪四道,崇加军等.2009.2003年8月16日赤峰地震:一个可能发生在下地壳的地震?[J].地球物理学报,52(1):111-119.
    吴福元,徐义刚,高山等.2008.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报,24(6):1145-1174.
    吴忠良,臧绍先.1989.千岛--鄂霍攻克海地区的地震分布、震源机制及应力状态[J].地震地质,11(2):85-94.
    谢富仁,崔效锋,赵建涛等.2004.中国大陆及邻区现代构造应力场分区[J].地球物理学报,47(4):654-662.
    谢小碧,郑天愉,姚振兴.1992.理论地震图计算方法[J].地球物理学报,35(6):790-801.
    徐果明,周蕙兰.1982.地震学原理[M].北京:科学出版社,369-407.
    许力生,陈运泰.1999.1997年中国西藏玛尼Ms7.9地震的时空破裂过程[J].地震学报,21(5):449-459.
    许力生,陈运泰.1997.用数字化宽频带波形资料反演共和地震的震源参数[J].地震学报,19(2):113-128.
    许忠淮.2001.东亚地区现今构造应力图的编制[J].地震学报,23(5):492-501.
    许忠淮.1985.用滑动方向拟合法反演唐山余震区的平均应力场[J].地震学报,7(4):349-361.
    许忠淮,阎明,赵仲和.1983.由多个小地震推断的华北地区构造应力场的方向[J].地震学报,5(3):268-279.
    闫俊岗,王静,陈容等.2010.小浪底水库区域尾波Qc值研究初探[J].大地测量与地球动力学,30(增刊Ⅰ):26-28.
    杨国宪、汪雍熙.2003.小浪底水库区天然地震本底特征分析[J].水利学报,(6):89-94.
    姚振兴,郑天愉.1994.地震波传播理论和应用研究[J].地球物理学报,37(A01):160-171.
    姚振兴,纪晨.1997.时间域内有限地震断层的反演方法[J].地球物理学报,40(5):691-701.
    叶世强.1990.黄河小浪底水库诱发地震危险性初步评价[J].人民黄河,(1):45-50.
    俞春泉,陶开,崔效锋等.2009.用格点尝试法求解P波初动震源机制解及解的质量评价[J].地球物理学报,52(5):1402-1411.
    臧绍先,吴忠良,宁杰远.1992.日本海--鄂霍攻克海下俯冲带的应力状态及其深部形变[J].地球物理学报,35(5):560-572.
    张国民,汪素云,马宏生等.2002.中国大陆地震震源深度及其构造的意义[J].科学通报,47(9):663-670.
    张立敏,唐晓明.1983.西太平洋板块俯冲运动与中国东北深震带[J].地球物理学报,26(4):331-340.
    张瑞青,李永华,姚雪绒.2006.西北太平洋俯冲带东北地区壳幔结构研究进展[J].地球物理学进展,21(4):1080-1085.
    张项.2011.用初动P波波形反演中小地震震源机制解及其在首都圈地震震源反演中的初步应用研究[M]:[硕士].中国地震局地震预测研究所,1-70.
    张勇.2008.震源破裂过程反演方法研究[D]:[博士].北京大学,地球物理系,1-158.
    张勇,冯万鹏,许力生等.2008.2008年汶川大地震的时空破裂过程[J].中国科学(D),38(10):1186-1194.
    张永久,程万正.2007.用P、S波速度振幅比求小震机制解的可行性研究[J].中国地震,23(4):366-374.
    赵明,臧绍先.1994.小笠原1982年7月4日深震震源参数的确定[J].中国地震,10(4):388-396.
    周仕勇,陈晓非,刘金朝等.2003.近震源破裂过程反演研究一Ⅰ.方法与数字试验[J].中国科学(D),33:482-495.
    朱元清,宋治平,赵志光.2005.近期国外震源研究综述[J].国际地震动态,(18):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700