用户名: 密码: 验证码:
三叶鬼针草(Bidens pilosa L.)对重金属Cd、Pb胁迫的响应与修复潜能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会工业化和城镇化进程的广泛而深刻推进,物质文明达到空前繁荣,实现了当代人前所未有的便利和富足;同时也给生态环境造成了沉重负担,如重金属、永久性有机物污染和石漠化、荒漠化等。因为具有隐蔽性强、半衰期长、毒性大、难清除和易生物放大进入食物链危害人类健康等特点,重金属污染成为全球生态环境最大的威胁之一。重金属污染环境的修复方法很多,主要有物理修复、化学修复和生物修复,其中生物修复中的植物修复因具有成本低、环境友好、修复过程持久,尤其是能与当前重金属污染面J广一的特点相适合而被认为是最有发展前途的方法。植物修复的核心是超富集植物。本文以三叶鬼针草(B. pilosa L.)为研究对象,综合考察其在Cd、Pb胁迫下的光合生理、质膜氧化、有机酸及重金属形态、渗透调节物质、抗氧化酶、根际有机酸和营养素等响应,评估其对Cd、Pb污染土壤的修复潜能.最后以三叶鬼针草叶片诱导出毛状根,初步探索了其对Cd、Pb污染水体的修复潜能。通过实验本文主要得出如下结论:
     1.光合生理对Cd、Pb (?)协迫的响应。单一胁迫时,叶绿素含量、净光合率、气孔导度和蒸腾速率随单一Cd、Pb胁迫浓度增加先升后降,胞间CO2浓度微弱增加。Cd-Pb复合胁迫,表现出浓度加和效应,低浓度复合胁迫促进光合作用,高浓度复合胁迫抑制光合作用。Cd、Pb胁迫通过对光抑制(Fv/Fm)、非辐射能量、光合电子传递效率和PS Ⅱ开放等的抑制或促进,使光合机构完整性与运作状况受损害的同时也激活了光合机构的自我修复。Cd、Pb胁迫促进或抑制光合作用的主要原因是促进或抑制叶绿素合成。
     2.质膜氧化对Cd、Pb胁迫的响应。Cd、Pb胁迫导致三叶鬼针草植株内超氧阴离子的积累。随单—Cd、Pb胁迫浓度增加,体内超氧阴离子先增后减。低、中浓度Pb促进Cd-Pb复合胁迫植株超氧阴离子的积累,高浓度Pb抑制积累。Cd对Cd-Pb复合胁迫植株超氧阴离子积累无影响。植株体内丙二醛含量变化与超氧阴离子变化基本一致;脂氧合酶活性随重金属胁迫增加而增加,有组织器官差异。随Cd、Pb胁迫浓度增加,三叶鬼针草不饱和脂肪酸和长链饱和脂肪酸含量增加,并在高胁迫浓度维持高含量水平。同时构成膜脂肪酸不饱和系数(DBI)和不饱和脂肪酸含量(UFA%)在高胁迫浓度下均维持高水平。上述结果表明,在Cd、Pb胁迫下三叶鬼针草可以通过提高膜脂肪酸不饱和程度提高质膜的流动性,通过增加长链饱和脂肪酸来维持细胞膜结构的稳定性,从而提高对重金属胁迫导致氧伤害的忍耐能力。
     3.渗透调节物质与抗氧化酶对Cd、Pb胁迫的响应。Cd、Pb(?)办迫均能导致三叶鬼针草叶片中可溶性糖和脯氨酸积累。积累程度与金属种类和胁迫浓度有关。随Cd胁迫浓度增加,叶片中可溶糖先增后减;随Pb肋迫浓度增加,则叶片中可溶糖持续增加。可溶性蛋白含量随Cd、Pb单一胁迫浓度增加而先增后降;相对于单一Cd胁迫,Cd-Pb复合胁迫能使可溶性蛋白和可溶性糖含量降低积累。随Cd、Pb及Cd-Pb胁迫浓度增加,叶片内SOD、CAT和POD变化没有一致性。随Cd、Pb胁迫浓度增加,SOD活性逐渐增大;Cd-Pb复合胁迫协同促进SOD活性提高。CAT活性随单一Cd胁迫浓度增加先升后降;随Pb胁迫浓度增加,CAT活性持续增加;高浓度Cd与Pb复合胁迫促进CAT活性提高。POD活性随单一Cd胁迫浓度增加先升后降,随单一Pb胁迫浓度增加持续缓慢升高。Cd-Pb复合胁迫在一定程度上提高了POD活性且与Pb浓度有关。Cd、Pb胁迫下,三叶鬼针草主要通过调节植物叶片脯氨酸、可溶性糖和可溶性蛋白含量维持Cd、Pb胁迫下的体内渗透平衡,调节抗氧化酶SOD、CAT和POD活性,提高对重金属诱导的氧伤害忍耐能力,从而提高对Cd、Pb胁迫的忍耐能力。
     4.体内有机酸、重金属形态及分布对Cd、Pb胁迫的响应。Cd、Pb胁迫促进草酸在体内累积。同时还能调节植株根系和叶片中苹果酸、柠檬酸、醋酸和琥珀酸合成使进入植株体内重金属被螯合而毒性降低。三叶鬼针草体内Cd主要以与蛋白质和果胶结合形态(Fr3)存在,低肋迫浓度有利于Cd从根系向上转运,高浓度抑制Cd向叶片转运;Pb主要以草酸盐形态(Fr5)存在,高肋迫浓度下有利于Pb在叶片的积累。复合胁迫下Pb促进Cd的Fr3形态向Fr4和Fr5转变,把活性较高的形态向相对活性较低形态转变,表现的效应是缓解Cd毒害的效应:而Cd促进活性较低的Fr5的Pb向相对活性较高Fr3、Fr4、Fr2和Frl等形态转变,表现的效应是协同加和毒性效应。Cd、Pb在亚细胞分布以细胞壁(F1)与可溶部分(F4)为主,叶绿体或质体(F2)和其他细胞器(F3)含量很低。Cd-Pb复合肋迫,Pb能促进低浓度Cd肋迫植株的细胞壁和可溶部分含量与百分比的增加:Cd能促进叶绿体或质体内Pb的百分比和含量增加而细胞壁和可溶部分的Pb减小。表明,三叶鬼针草通过增加体内草酸、苹果酸和柠檬酸的含量提高对重金属的螯合能力、以活性较低的果胶和蛋白质结合态与草酸盐形态存贮和亚细胞分布等策略降低进入植物体内Cd、Pb毒性而提高植物对重金属忍耐能力。
     5.根际土壤对Cd、Pb肋迫的响应。Cd、Pb胁迫下,根际均能积累大量草酸。随Cd胁迫浓度增加,草酸的含量先增后降,随Pb胁迫浓度增加持续升高。在低浓度Cd与Pb复合胁迫时,根际草酸含量随Pb浓度增加而上升;在高浓度Cd与Pb复合胁迫时,随Pb浓度增加先降后升。根际Cd以残渣态为主,并随Cd胁迫浓度增加而增加;Pb主要是以碳酸盐结合态,其次是Fe-Mn氧化结合态存在。Cd-Pb复合胁迫时Pb促进可交换态和碳酸盐结合态Cd的比例增加,且浓度为1000mg/kg时,促进效应最明显;Cd促进残渣态Pb增加而使碳酸盐结合态Pb减少。Pb是促进Cd从活性较低形态(残渣态)向活性较高形态(可交换态和碳酸盐结合态)转换;Cd则是促进Pb从活性较高形态(碳酸盐结合态)向较低形态(残渣态)转换。Cd、Pb肋迫对三叶鬼针草根际营养元素影响不明显,仅对K影响和Cd-Pb复合肋迫N、P、K的含量降低。三叶鬼针草可以通过分泌提高根际草酸含量与重金属结合形成不利于迁徙的草酸盐形态影响重金属根际生物活性,从而调节重金属活性系数与移动系数,控制重金属进入植物体的量与时间,提高植物对重金属的忍耐能力。
     6.植株对Cd、Pb污染土壤的修复潜能。在一个生命周期内,植物地上部和根系重金属含量随生命进程的发展逐渐增加,这与生物量积累一致。在胁迫90d,植物处于旺盛生长时期,植物体内重金属含量和生物量达到最大,随着生命周期从营养生长向生殖生长发展,植物体内重金属含量维持较高水平并略下降。在单一胁迫时,植株体内重金属含量随浓度增加而增加。Cd-Pb复合胁迫,一般低、中浓度Pb有促进植物对低Cd吸收与转运,而高浓度Pb则严重抑制植株对Cd的吸收;高浓度Pb与高浓度Cd复合胁迫,Pb是抑制Cd向地上部转运。Cd对于植物吸收和转运Pb的效应影响不显著,当植株体内Cd含量高的实验组Pb含量相对比较低;Cd含量较低的组,Pb含量相对较高,基本维持重金属总量保持不变。在整个生命周期内,三叶鬼针草对Cd、Pb的富集能力与转运能力基本是随生命进程的发展呈现先升后降趋势。三叶鬼针草生命周期一般为180d,利用三叶鬼针草修复重金属污染土壤,最佳采收时期应在植物从营养生长向生殖生长过渡时期,即90-120d内。
     7.三叶鬼针草毛状根对Cd、Pb污染水体的修复。低浓度Cd、Pb促进毛状根生物量积累,高浓度则抑制积累。Cd-Pb复合胁迫,低、中浓度Pb促进三叶鬼针草毛状根生物量积累;高浓度Pb与低浓度Cd、低中高浓度Pb与高浓度Cd复合胁迫均抑制生物量积累。胁迫浓度与胁迫时间协同作用促进毛状根对Cd、Pb的生物富集。毛状根在不同的胁迫浓度下均有不同的最大吸收范围。短期胁迫,高胁迫浓度有利于毛状根对重金属的富集,当达到最大吸收值后,随胁迫时间延长,富集能力逐渐减弱;低、中胁迫浓度下,随胁迫时间延长,逐渐达到吸收最大范围并维持到胁迫期末。Cd-Pb复合胁迫,低、中Pb促进毛状根对Cd富集,高浓度Pb则抑制Cd的富集;低浓度Cd仅对低浓度Pb有微弱促进积累效应,其余均抑制Pb富集。单一Cd、Pb胁迫,三叶鬼针草毛状根体内最大Cd含量2532mg/kg,最大Pb含量2011mg/kg; Cd-Pb复合胁迫,Cd的最大含量为2223mg/kg, Pb最大含量为1960mg/kg。Cd-Pb复合,Pb对Cd有促进效应,Cd对Pb为抑制效应。细胞壁固定作用和液泡区室化是三叶鬼针草毛状根忍耐重金属Cd、Pb胁迫的机制之一。
With the expansion and further enhancement of industrialization and urbanlization of human society, material civilization has reached its highest peak, thus it can provide human beings with more convenience and affluence that has never seen before. Meanwhile, more and more emergent situations were produced in the ecological environment, such as heavy metal pollution, persistent organic pollutants and desertification. With its ecological toxicology characteristic of strong concealment, long half-life, immense toxicity, it's hard to be eliminated and easy to be biological signifying and inyade the food chain, heavy metal pollution has become one of the biggest threat to ecological environment in the world. There are many ways to removal heavy metals from the contaminated environment, which mainly based on three kinds of remediation technologies including physical, chemical and bioremediation. Currently, phytoremediation is regarded as the most promising method because of its low cost, environmental friendly, enduring restoration process and its suitability for the large scale of heavy metal pollution in current situation. The key of phytoremediation is hyperaccumulator plants. Taking B. pilosa L. as research object, we studied the responding mechanisms of photosynthetic physiology, plasma membrane peroxidation, organic acid and chemical forms, osmotic regulation substances and antioxidant enzymes, organic acids and nutrient elements in the rhizosphere soil to B. pilosa under the stresses caused by cadmium(Cd)and lead(Pb)in order to estimate the phytoremediation's potential abilities to restore Cd, Pb pollution. We still explore its restoration to Cd and Pb in polluted water by using the induced hairy roots from leaves of B. pilosa. The followings are the main conclusions of this paper.
     1. The response of photosynthesis by Cd and Pb. Content of chlorophyll, net photosynthesis, stomatal conductance and water vapor rate of B. pilosa has the trend of increase at the beginning and then decreas with the increase of the density of the stress of Cd or Pb, and the intercellular CO2concentration keeps weak increase. The compound stress of Cd-Pb shows addictive effect, in other words, low compound density of stress of Cd and Pb promotes photosynthesis, and high compound density restrains photosynthesis. Cd, Pb and Cd-Pb stresses destroy the compintegrality of photosynthetic apparatus and activate the self-restoration of photosynthetic apparatus by restraining the light and restraining or promoting the non-radicative energy, the transimiting rate of photosynthetic electricity and the opening of PS Ⅱ. Cd and Pb stress can promote or restrain photosynthesis mainly because of their promoting or restraining the composition of chlorophyll, thus result in the increase or decline of the content of chlorophyll.
     2. Cd, Pb and Cd-Pb stresses all can lead to the accumulation of superoxide radicals in B. pilosa. By increase the density of single Cd or Pb stress, the content of superoxide radicals increases at the beginning and then decreases; low and middle concentration of Pb stress promotes the accumulation of superoxide radicals in Cd-Pb stressed plants and high concentration of Pb restrains the acuumulation. Cd stress has no influence on the accumulation of superoxide radicals in Cd-Pb stressed plants. The variation of the amounts of malondialdehyde in plants primarily is the same as that of superoxide radicals. The activity of lipoxygenase increases with the increase of heavy metal stress but different among organs of the plants. With the increase of Cd or Pb, unsaturated fatty acids and long chain saturated fatty acids increase and keep in high level with high metal stress. Both Double band index(DBI)and Unsaturated fatty acids to percentage(UFA%)keep in high level with high density stress too. That means in the station of Cd or Pb stress, B. pilosa can enhance the fluidity of membrane by increase the unsaturated degree of fatty acids and maintain the stableness of the membrane structure by increase the content of the long chain saturated fatty acids. So as to improve their ability of endure the oxygen destruction caused by heavy metal stress.
     3. Cd, Pb and Cd-Pb stresses can lead to the accumulation of soluble sugar and proline in the leaves of the B. pilosa. The degree of the accumulation differs from one to another due to different kinds of heavy metal stress and the plant's senstineness to the concentration. With the increase of Cd concentration stress, soluble sugar in leave of B. pilosa first increases and then decreases. The amount increase continuingly with the increase of Pb. Soluble proteins in B. pilosa increase at the beginning and then decrease with the increase of Cd or Pb stress. The Cd-Pb compound stress can promote the contents decreased of soluble protein and soluble protein in B. pilosa. With the increase of Cd. Pb or Cd-Pb stress, the activity of main antioxidant enzyme SOD. CAT and POD do not show any uniformity. With the increase of Cd. Pb or Cd-Pb compound stress, the activity of SOD in leaves of B. pilosa gradually increases. With the increase of Cd stress, the activity of CAT in B. pilosa increases first and then decreases. With the increase of Pb stress, the activity of CAT in B. pilosa continuingly increases. Under the condition of Cd-Pb compound stress, high concentration of stress promotes the increase of the activity of CAT in B. pilosa. With the increase of Cd stress, the activity of POD in B. pilosa increases at first and then decreases. And the activity of POD increases gradually in leaves of the paint with increase of Pb stress. Cd-Pb compound stress can slightly promote the activity of POD in leaves of plant and it relies on the concentration of Pb. Under the stress of Cd, Pb or Cd-Pb, B. pilosa can maintain the osmosis balance mainly by adjusting the content of proline, soluble sugar and soluble protein in the leaves and adjust the activity of SOD. CAT and POD to improve their ability in order to endure the antioxidant injury by heavy metal. As a result, they can enhance their ability to endure Cd and Pb stress.
     4. Cd, Pb stresses promote the accumulation of oxalate in B. pilosa. They also chelate the absorbed heavy metal by adjusting the composition of malic acid, citric acid, acetic acid and amber acid in the roots and leaves of plants to reduce the toxicity of the heavy metal. In plants' bodies. Cd mainly exists in B. pilosa with the form of Fr3, which combined with protein and pectin. In this situation, low stress is beneficial to the transmission of Cd from roots to other positions and high stress restian the transport of Cd to leaves; Pb mainly exists in form of Fr5, a kind of oxalate, and high stress promotes the accumulation of Pb in the leaves. In compound stress conditions. Pb promotes Fr3turning to Fr4or Fr5to endure the contamination. Compared with Fr3, Fr4or Fr5is inactive. But Cd promotes Fr5to turn to active forms of Fr3, Fr4, Fr2and Fr1resulting to more toxicity effects. Cd and Pb mainly distribute in the subcellulars in form of cytoderm(F1)and dissoluvable parts(F4), but the content of chloroplast or plastid(F2)and other organelles is sparse. Pb can promote the increase of the content and proportion of low density Cd stressed plants' cytoderm and dissoluvable parts in case of Cd-Pb compound stress Cd can promote the increase of the proportion and content of Pb in chloroplasts or plastids, but reduce the content and proportion of cytoderms and dissoluvable parts. The plants enhance their ability of chelating heavy metals and reduce the toxicity of absorbed Cd and Pb by strategies of increase oxalate, malic acid and citric acid. They also increase the inert chemical forms of heavy metal in the subcellular distribution in order to enhance their ability to endure Cd and Pb stress.
     5. In the case of Cd, Pb and Cd-Pb stresses, B. pilosa can accumulate large amount of axalate in rhizosphere. With the increase of Cd stress, the content of oxalate increases first and then decreases, while its content continuingly increases with increase of the density of Pb stress. Under the condition of Cd-Pb compound stress. The content of oxalate raises with the increase of Pb in low density Cd-Pb compound stress but increases first and then decreases in high density Cd-Pb compound stress. Cd exists mainly in the form of residual and its content increases with the increase of Cd stress. Pb mainly exists in the form of carbonate combination and Fe-Mn oxygenized combination take second place. Under the condition of Cd-Pb compound stress, increase of Pb can promote the Cd increase in changeable and carbonate combination form. The promotion is most obvious when adding Pb is1000mg/kg. Cd can promote residual Pb increase and M3of Pb decrease. Pb promote Cd transforming from less active form(M5)to active form(M3)but Cd promote Pb transforming from active form(M2)to less active form(M5). Cd or Pb has no obvious influence on the rhizosphere nutrition elements but K in the plant. But Cd-Pb compound stress decrease the accumulation of N, P and K. B. pilosa can enhance secreting oxalic acid to combinate heavy metal in order to affect the bioactivity of heavy metal in roots. As a result, they adjust the activity ratio and mobility ratio of the heavy metal and control the amount and time of the absorbed heavy metal, so that plants can enhance their ability to endure heavy metal.
     6. Within a life period of B. pilosa, content of heavy metal in upper ground parts and roots gradually increases with the growing of plants, which consistent with biomass. After90days' stressing, when growth of the plants reaches their climax, the content of heavy metal and biomass in plants achieve the largest scale. The amount of heavy metal maintains in their maximum or slightly declines with life period changes from nutritive growth to reproductive growth. Under the condition of single heavy metal stress, the content of heavy metal in plants increases with the increase of the stress. Generally, in Cd-Pb compound situation, low and moderate density of Pb can promote the absorbing and transporting of low density Cd, but high density Pb seriously restrains the absorbing of Cd. In high density Pb-Cd compound stress, Pb restrains the plants to transmit Cd to upper ground parts but Cd shows no obvious influence on the absorbing and transporting of Pb. Generally, in a test group, when the content of Cd is large, the content of Pb is relatively small and if the content of Cd is small, the content of Pb is large, but the total amount of heavy metal remains invariablenes. Within life period of the plants, they show ability to accumulate and transport heavy metal, which increase at the beginning and then decreasing with the growth of the plants. In generally, the life span of B. pilosa is180days. So the best time to collect plants is90-120days for B. pilosa to phytoextract the heavy metal in polluted soil in excellent performance.
     7. Low density of Cd or Pb promotes the accumulation of biomass in hairy roots of B. pilosa but high density restrains. In case of Cd-Pb compound stress, low and moderate density of Pb stresses promote accumulation of biomass; while other density Pb compound to high Cd stress restrain the accumulation of biomass. Under the condition of Cd or Pb stress, the hairy roots' accumulation of Cd and Pb is the additive result of the density and time of stressing. Hairy roots have different maximum absorbing amount in different density of stresses. In short period stresses, high density stress avails the hairy roots to accumulate heavy metals. Under the condition of low and high density stress, the absorbing of heavy metal gradually approaches peak and then maintains to the end of the stress. In case of Cd-Pb compound stress, low and moderate density of Pb promotes the hairy roots to accumulate Cd, while high density of Pb restrains the accumulation; low density of Pb stress has weak promotion merely to the accumulation of low density of Pb but it restrains the accumulation of Pb in the case of other varieties of density. Under the condition of Cd or Pb stress, the maximum contents of Cd or Pb in the hairy roots are2532mg/kg and2011mg/kg respectively. Under the condition of Cd-Pb compound stress, the maximum contents of Cd and Pb are2223mg/kg and1960mg/kg respectively. Pb stress has the effect of promoting the absorbing of Cd while Cd has the effect of restraining the absorbing of Pb. Compartmentalization and fixed holding of detoxification mechanisms of heavy metal by cell wall vacuole are the strategies of the hairy roots' endurance to Cd and Pb stress.
引文
[1]Angela L Perez, Kim A Anderson. D G T estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications [J]. Science of the Total Environment,2009,407: 5096-5103.
    [2]Mhatre G N, Pankhurst C E. Bioindicators to detect contamination of soils with special reference to heavy metals [M]. Biological Indicators of Soil Health and Sustainable Productivity. CAB International, New York,1997.
    [3]马建华,张丽,李亚丽.开封市城区土壤性质与污染的初步研究[J].土壤通报,1999(2):93-96.
    [4]刘梅,李发鹏,卢善龙,等.流域系统重金属污染研究进展[J].安徽农业科学,2011,39(25):15622-15626,15637.
    [5]胡蝶,陈文清.土壤重金属污染现状及植物修复研究进展[J].安徽农业科学,2011,39(5):2706-2707,2710.
    [6]黄勇,郭庆荣,任海,等.城市土壤重金属污染研究综述[J].热带地理,2005,25(1):14-18.
    [7]李波.林玉锁,张孝飞,等.沪宁高速公路两侧土壤和小麦重金属污染状况[J].农村生态环境.2005,21(3):50-53,70.
    [8]王崇臣,李曙光,黄忠臣,等.公路两侧土壤中铅和镉污染以及存在形态分布的分析[J].环境污染与防治,2009.31(5):80-82.
    [9]智颖飙,王再岚,马中,等.鄂尔多斯地区公路沿线土壤重金属形态与生物有效性[J].生态学报,2007,27(5):2031-2039.
    [10]管东生.陈玉娟,阮国标.广州城市及近郊土壤重金属含量特征及人类活动的影响[J].中山大学学报(自然科学版),2001,40(4):93-98.
    [11]Liu W, Yang Y S, Li P J, et al. Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices [J]. Journal of Hazadous Materials,2009, 161:878-883.
    [12]Lux A, Martinka M, Vaculik M, et al. Root responses to cadmium in the rhizosphere:a review [J]. Journal of Experimental Botany,2001,62:21-37.
    [13]李东坡,武志杰,梁成华.土壤环境污染与农产品质量[J].水土保持通报.2008,28(4):174-177.
    [14]李宗会,宋晓霞,罗根根,等.秦岭成矿带Pb、Zn化探异常与铅锌矿常无对应关系的原因[J].地质通报,2012,31(5):794-798.
    [15]Pallavi Sharma, Rama Shanker Dubey. Lead toxicity in plants [J]. Bra. J. Plant Physi. 2005,17(1):35-52.
    [16]Hemberg S. Lead poisoning in a historical perspective [J].American Journal Industrial Meddicine,2000,38(3):244-254.
    [17]孟金萍,孙淑华.王艳蓉,等.铅的生物学毒性效应[J].中国比较医学杂志.2007.17(1):58-61,54.
    [18]王春梅,欧阳华,王金达.等.沈阳市环境铅污染对儿童健康的影响[J].环境科学,2003,24(5):17-21.
    [19]P. C. Nagajyoti·K. D. Lee·T. V. M. Sreekanth. Heavy metals, occurrence and toxicity for plants:a review [J]. Environ Chem Lett,2010,8:199-216.
    [20]Maria P. Benavides, Susana M. Gallego, Maria L. Tomaro. Cadmiu toxicity in plants [J]. Braz. J. Plant Physiol.,2005,17(1):21-34.
    [21]Schutzendubel A, Polle A. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization [J]. Journal of Experimental Botany,2002,53: 1351-1365.
    [22]Chamseddine M, Wided B A, Guy H, et al. Cadmium and copper induction of oxidative stress and antioxidative response in tomato(Solanum lycopersicon)leaves [J]. Plant Growth Regulators,2009,57:89-99.
    [23]李荣春.Cd, Pb及其复合污染对烤烟叶片生理生化及其亚显微结构的影响[J].植物生态学报,2000,24:235-242.
    [24]葛才林,络剑峰,刘冲,等.重金属对水稻呼吸速率及相关同工酶影响的研究[J].农业环境科学学报,2005,24(2):222-226.
    [25]Kosobrukhov A, Knyazeva I, Mudfik V. Plantago major plants responses to increase content of lead in soil:Growth and photosynthesis [J]. Plant Growth Regulation,2004, 42(2):145-151.
    [26]Sarvari E, Gaspar L, Fodor F, et al. Comparison of the effects of Pb treatment on thylakoid development in poplar and cucumber plants [J]. Acta Biol.Szeged.2002(46):163-165.
    [27]赵秀兰,刘晓.不同品种烟草生长和镉及营养元素吸收对镉胁迫响应的差异[J].水土保持学报,2009,23(1):117-131.
    [28]孙建云,沈振国.镉胁迫对不同甘蓝基因型光合特性和养分吸收的影响[J].应用生态学报,2007,15(1):2605-2610.
    [29]Wang M, Zou J H, Duan X C, et al. Cadmium accumulation and its effect on metal uptake in maize(Zea mays L.)[J]. Bioresource Technology,2007,98(26):82-88.
    [30]王娟,张乐乐,康宜宁,等.Pb在水花生愈伤组织中的超微定位及对矿质元素的影响[J].水生生物学报,2012,36(2):307-315.
    [31]林琦,陈英旭,陈怀满,等.小麦根际铅、镉的生态效应[J].生态学报,2000,20(4):635-638.
    [32]刘东华,蒋悟生,李海峰,等.镉对大蒜根生长和根尖细胞超微结构的影响[J].华北农学报,2000,15(3):66-71.
    [33]何俊瑜,任艳芳,何玉萍,等.镉胁迫对水稻幼苗生长和根尖细胞分裂的影响[J].壤学报,2010,47(1):138-144.
    [34]周锦文,韩善华,冯珊,等.镉对蚕豆根尖细胞染色体畸变的影响[J].四川大学学报(自然科学版),2009,3:799-802.
    [35]张司南,高培尧,谢庆恩,等.镉诱导拟南芥根尖过氧化氢积累导致植物根生长抑制[J].中国生态农业学报,2010,18(1):136-140.
    [36]Breckle S W, Kahle H. Effects of toxic heavy metals(Cd, Pb)on growth and mineral nutrition of beech(Fagus sylvatica L.)[J]. Vegetatio,1992,101:43-53.
    [37]Goldbold D J, Hutterman A. The uptake and toxicity of mercury and lead to spruce(Picea abies)seedlings kapst [J]. Water, Air and Soil Pollution,1986,31:509-515.
    [38]Gulsnan Kumar, Rana P. Singh, Sushila. Nitrate assimilation and biomass production in Seasamum indicum(L.)seedlings in lead enriched environment [J]. Water, Air and Soil Pollution, 1993,66:163-171.
    [39]王焕校.污染生态学[M].北京:高等教育出版社,1999.44-68.
    [40]荆红梅,郑海雷.植物对福胁迫响应的研究进展[J].生态学报,2001, 21(12):2125-2130.
    [41]孟玲,王焕校,谭得勇.重金属铅、镉、锌对小麦DNA构象的影响[J].云南环境科学,1998,17(4):9-10.
    [42]葛才林,杨小勇,孙锦荷,等.重金属胁迫引起的水稻和小麦幼苗DNA损伤[J].植物生理与分子生物学学报,2002,28(6):419-424.
    [43]Jean-Benoit Morel, Philippe Mourrain, Christophe Beclin, et al. DNA methylation and chromatin structure affect transcriptional and post-transcriptional silencing in Arabidopsis [J].Current Biology,2000,10(24):1591-1594.
    [44]Wan Liu, P J Li, X M Qi, et al. DNA changes in barley(Hordeum vulgare)seedlings induced by cadmium pollution using RAPD analysis [J]. Chemosphere,2005,61:158-167.
    [45]杨丹慧.重金属离子对高等植物光合膜结构与功能影响[J].植物学通报,1991.8(3):26-29.
    [46]施国新,杜开和.解凯彬,等.汞、隔对黑藻叶细胞伤害的超微结构研究[J].植物学报,2000,42(4):373-378.
    [47]林植芳,刘楠.活性氧调控植物生长发育的研究进展[J].植物学报,2012,47(1):74-86.
    [48]Dat J, Vandenabeele S, Vranova E, et al. Review:Dual action of the active oxygen species during plant stress responses [J]. Cellular and Molecular Life Science,2000,57(5):779-795.
    [49]Hernandez J A, Olmos E. Corpas F J, et al. Salt-induced oxidative stress in chloroplasts of pea plants [J]. Plant Science,1995,105:151-167.
    [50]Christian Triantaphylides, Michel Havaux. Singlet oxygen in plants:production, detoxification and signaling [J]. Trends in Plant Science,2009.14(4):219-228.
    [51]Kavita Shah, Ritambhara G Kumar. Shalini Verma, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings [J]. Plant Science,2001,161 (6):1135-1144.
    [52]Astolfi S, Zuchi S, Passera C. Effect of cadmium on H+ ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize(Zea mays L.)plants [J]. Plant Science,2005,169(2):361-368.
    [53]Erik Smolders. Cadmium uptake by plants [J]. International Journal of Occupational Medicine and Environmental Health,2001,14(2):177-183.
    [54]Siedlecka A, Krupa Z. Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris[J]. Plant Physiology Biochemistry 1996,34(6):833-841.
    [55]Feibo Wu, Guoping Zhang. Peter Dominy. Four barley genotypes respond differently to cadmium:lipid peroxidation and activities of antioxidant capacity [J]. Environmental and Experimental Botany,2003,50(l):67-78.
    [56]Ana Paula Honrado Pinto, M.A. Serafim, M.J. Bebiannob, et al. Induction of cadmium-binding peptides in sorghum [J]. Toxicological and Environmental Chemistry,2004. 86(1):55-62.
    [57]Das S, Samantaray, G R Rout. Studies on cadmium toxicity in plants:a review [J]. Environmental Pollution,1997,98(l):29-36.
    [58]李德明,贺立红,朱祝军.几种重金属离子对小白菜种子萌发及生理活性的影响[J].种子,2005,24(6):27-29.
    [59]唐为萍,陈树思,郑泽云.重金属镉对含羞草种子萌发和幼苗生长的影响[J].广东 农业科学,2009,11:45-46,57.
    [60]王玉凤.铅对玉米种子萌发的影响[J].安徽农业科学,2005,33(11):2110-2111.
    [61]张春荣,夏立江,杜相革,等.镉对紫花苜蓿种子萌发的影响[J].中国农学通报,2004,20(5):253-255.
    [62]任艳芳,何俊瑜,罗辛灵,等.镉胁迫对莴苣种子萌发及抗氧化酶系统的影响[J].华北农学报,2009,24(2):144-148.
    [63]张颖,高景慧.镉胁迫对红三叶种子萌发及幼苗生理特性的影响[J].西北农业学报,2007,16(3):57-59
    [64]闫华晓,赵辉,高登征,等.镉离子对玉米种子萌发和生长影响的初步研究[J].作物杂志,2007,5:25-28.
    [65]马文丽,金小弟,王转花.镉处理对乌麦种子萌发幼苗生长及抗氧化酶的影响[J].农业环境科学学报,2004,23(1):55-59.
    [66]白瑞琴,晁公平,孙华,等.重金属镉胁迫对蜀葵、二月蓝种子萌发和幼苗生长的毒害效应研究[J].华北农学报,2009,24(2):134-138.
    [67]张远兵,刘爱荣,孟祥辉,等.铅胁迫对19个品种草坪草种子萌发和幼苗生长的影响[J].核农学报,2009,23(3):506-512.
    [68]Peralta J R, Gardea-Torresdey J L, Tiemann K J, et al. Uptake and effects of five heavy metals on seed germination an d plant growth in alfalfa(Medicago sativa L.)[J]. Bull Environ Contam Toxicol,2001,66:727-734.
    [69]范庆,吕秀军,杨柳,等.镉胁迫对矮牵牛种子萌发、幼苗生长及抗氧化酶活性的影响[J].植物研究,2010,30(6):685-691.
    [70]张芬琴,金自学.两种豆科作物的种子萌发对Cd2+处理的响应[J].农业环境科学学报,2003,22(6):660-663.
    [71]王丽燕,郑世英.镉、铅及其复合污染对小麦种子萌发的影响[J].麦类作物学报,2009,29(1):146-149.
    [72]曾祥玲,曹成有,高菲菲,等.镉、铅对沙打旺种子萌发及早期生长发育的毒性效应[J].草业学报,2008,17(4):71-77.
    [73]Verma S, Dubey R.S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants [J]. Plant Science,2003,164(4):645-655.
    [74]吴泽民,高健,黄成林,等.黄山松年轮硫及重金属元素含量动态特征[J].应用生态学报,2005,16(5):820-824.
    [75]Kosobrukhov A, Knyazeva I, Mudrik V. Plantago major plants responses to increase content of lead in soil:Growth and photosynthesis [J]. Plant Growth Regulation,2004, 42(2):145-151.
    [76]Wierzbicka M. Lead in the apoplast of Allium cepa L. root tips-ultrastructural studies[J]. Plant Science,1998,133(1):105-119.
    [77]L Sanita di Toppi, R Gabbrielli. Response to cadmium in higher plants [J]. Environmental and Experimental Botany,1999,41:105-130.
    [78]周小勇,仇荣亮,应蓉蓉,等.锌对长柔毛委陵菜体内镉的亚细胞分布和化学形态的影响[J].农业环境科学学报,2008,27(3):1066-1071.
    [79]田阳阳,陈江华,张艳玲,等.不同Cd积累基因型烟草中Cd的亚细胞分布及化学形态[J].烟草科技,2012,2:67-70.
    [80]Eun S O, Youn H S, Lee Y. Lead disturbs microtubule organization in the root meristem of Zea mays [J]. Physiologia Plantarum,2000,110(3):357-365.
    [81]叶春和.紫花苜蓿对铅污染土壤修复能力及其机理的研究[J].土壤与环境,2002,11(4):331-334.
    [82]王红旗,陆泗进,陈延君.污染土壤植物修复中鳌合诱导和转基因技术的应用现状与前景[J].地学前缘,2005,12:36-43.
    [83]Peng Li, Jin-Liang Qi, Li Wang, et al. Functional expression of MxIRTl, from Mdlus xiaojinensis, complements an iron uptake deficient yeast mutant for plasma membrane targeting via membrane vesicles trafficking process [J]. Plant Science,2006,171(1):52-59.
    [84]David J Eide. Zinc transporters and the cellular trafficking of zinc [J].Biochimica et Biophysica Acta,2006,1763(7):711-722.
    [85]徐劫,于明革,陈英旭,等.铅在茶树体内的分布及化学形态特征[J].应用生态学报,2011,22(4):891-896.
    [86]江行玉.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.
    [87]Christopher S. Cobbett. Phytochelatins and Their roles in heavymetal detoxification [J]. Plant Physiologe,2000,123(5):825-832.
    [88]Shanti S Sharmal, Karl-Josef Dietz. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress [J]. Journal of Exprimental Botany,2006,57(4):711-726.
    [89]Sangman Lee, Jae S. Moon. Tae-Seok Ko. et al. Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress [J]. Plant Physiology,2003,131(2):656-663.
    [90]Meinhart H. Zenk. Heavy metal detoxification in higher plants-a review [J].Gene,1996. 179:21-30.
    [91]Christopher Cobbett, Peter Goldsbrough. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis [J]. Plant Physiology,2002,53:159-182.
    [92]Curtis D Klaassen. Jie Liu, Bhalchandra A. Diwan. Review metallothionein protection of cadmium toxicity [J]. Toxicology and Applied Pharcology,2009,238:215-220.
    [93]金枫,王翠,林海建,等.植物重金属转运蛋白研究进展[J].应用生态学报,2010,21(7):1875-1882.
    [94]Yang X, Feng Y, He Z, et al. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation [J]. Journal of Trace Elements in Medicine and Biology,2005,18:339-353.
    [95]张莉,刘吉平,热激蛋白研究进展[J].广东蚕业,2006,40(2):39-42.
    [96]张建国,何彩云,段爱国,等.植物热激蛋白研究进展[J].福建林学院学报,2005,25(2):187-192.
    [97]Fernanda Fidalgo. Rita Freitas. Rute Ferreira, et al. Solanum nigrum L. antioxidant defence system isozymes are regulated transcriptionally and posttranslationally in Cd-induced stress [J]. Environmental and Experimental Botany,2011,37:212-319.
    [98]Rong-Liang Qiu. Xuan Zhao, Ye-Tao Tang, et al. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F [J]. Chemosphere,2008,74:6-12.
    [99]Reddy A M, Kumar S G, Jyothsnakumari G, et al. Lead induced changes in antioxidant metabolism of horsegram(Macrotyloma uniflorum L.)and bengalgram(Cicer arietinum L.)[J]. Chemosphere,2005,60(1):97-104.
    [100]Verma S and Dubey R S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants [J]. Plant Science,2003,164(4):645-655.
    [101]Shigeru Shigeoka, Takahiro Ishiawa, Masahiro Tamoi, et al. Regulation and function of ascorbate peroxidase isoenzymes[J]. Journal of Experimental Botany,2002,53(273):1305-1319.
    [102]于方明,汤叶涛,周小勇,等.镉在圆锥南芥(Arabis paniculata Franch.)亚细胞分布及其化学形态[J].中山大学学报(自然科学版),2007,46(6):88-92.
    [103]秦建桥,夏北成,赵鹏,等.镉在五节芒(Miscanthus floridulus)不同种群细胞中的分布及化学形态[J].生态环境学报,2009,18(3):817-823
    [104]于辉,杨中艺,杨知建,等.不同类型镉积累水稻细胞镉化学形态及亚细胞和分子分布[J].应用生态学报,2008,19(10):2221-2226.
    [105]Li Ting-qiang, Yang Xiao-e, Yang Jin-yan, et al. Zn accumulation and subcellular distribution in the Zn hyperaccumulator Sedum alfredii Hance. [J]. Pedosphere,2006,16:616-623.
    [106]Ni Tian-hua,Wei You-zhang. Subcellular distribution of cadmium in mining ecotype Sedum alfredii [J].Acta Botanica Sinica,2003,45(8):925-928.
    [107]周守标,徐礼生,吴龙华,等.镉和锌在皖景天细胞内的分布及化学形态[J].应用生态学报,2008,19(11):2215-2220.
    [108]杨卫东,陈益泰,屈明华.镉在旱柳中亚细胞分布及存在的化学形态[J].西北植物学报,2009,29(7):1394-1399.
    [109]侯晓龙,陈加松,刘爱琴,等.Pb胁迫对金丝草体内Pb化学形态及细胞分布的影响[J].生态与农村环境学报,2012,28(3):271-276.
    [110]张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学报,2000,20(3):514-523.
    [111]范拴喜.土壤重金属污染与控制[M].中国环境科学出版社,北京,2011.
    [112]Authur B, Crews H, Morgan C. Optimizing plant genetic strategies for minizing environmental contamination in the food chain[J]. Internal Phytoremediation,2000,2(1):1-21.
    [113]李军辉,卢瑛,尹伟.佛山市某工业区周边蔬菜重金属富集特征的研究[J].华南农业大学学报,2008,29(4):17-20.
    [114]李铭红,李侠,宋瑞生.农田中农作物对重金属镐的富集特征研究[J].生态农业学报,2008,16(3):675-679.
    [115]Darinka Gjorgieva·Tatjana Kadifkova-Panovska·Katerina Baceva ·Trajce Stafilov. Assessment of Heavy Metal Pollution in Republic of Macedonia Using a Plant Assay[J]. Arch Environ Contam Toxicol,2011,60:233-240.
    [116]陈英旭.土壤重金属的植物污染化学[M].北京:科学出版社,2008.
    [117]刘梅,李发鹏,卢善龙,等.流域系统重金属污染研究进展[J].安徽农业科学,2011,39(25):15622-15626,15637.
    [118]Assuncao A, Bookum W, Nelissen H, et al. Differential metal specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types [J]. New Phytologist 2003,159(2):411-419.
    [119]陈同斌,韦朝阳,黄泽春,等.砷超富集植物娱蛤草及其对砷的富集特性[J].科学通报,2002,47(11):902-905.
    [120]薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物商陆[J].生态学报,2003,23(5):935-937.
    [121]V. Bert, P. Meerts, P. Saumitou-Laprade, et al. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri[J]. Plant and Soil,2003,249:9-18.
    [122]Saraswat S, J P N Rai. Phytoextraction potential of six plant species grown in multimetal contaminated soil [J].Chemistry and Ecology,2009,25(1):1-11.
    [123]H Kubota, C Takenaka. Arabis gemmifera is a hyperaccumulator of Cd and Zn [J]. International Journal of Phytoremediation,2003,5(3):197-201.
    [124]汤叶涛,仇荣亮,曾晓雯,等.一种新的多金属超富集植物—圆锥南芥(Arabis paniculata L.)[J]中山大学学报(自然科学版),2005,44(4):135-136.
    [125]李玉双,孙丽娜,孙铁珩,等.超富集植物叶用红恭菜及其对Cd的富集特征[J].农业环境科学学报,2007,26(4):1386-1389.
    [126]Sun Yuebing, Zhou Qixing, Wang Lin, et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator[J]. Journal of Hazardous Materials,2009,161:808-814.
    [127]Selvam A, Wong J W. Phytochelatin systhesis and cadmium uptake of Brassica napus[J]. Environ. Technol.,2008,29:765-773.
    [128]Dahmani-Muller H, van Oort F, Gelie B, et al. Strategies of heavy metal uptake by three plant species growing near a metal smelter [J]. Environ Pollut,2000,19:231-238.
    [129]王友保,燕傲蕾,张旭情,等.吊兰生长对土壤镉形态分布与含量的影响[J].水土保持学报,2010,24(6):163-172.
    [130]周启星,刘家女.一种利用紫茉莉花卉植物修复重金属污染土壤的方法[P].发明专利,200610046244.9
    [131]TV Dan. S KrishnaRaj, PK Saxena. Cadmium and nickel uptake and accumulation in scented geranium(Pelargonium sp. frensham)[J]. Water, Air, and Soil Pollution,2002,137: 355-364.
    [132]Peng-Jie Hu, Rong-Liang Qiu, Palaninaicker Senthilkumar, et al. Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii [J]. Environmental and Experimental Botany,2009,66:317-325.
    [133]聂发辉.镉超富集植物商陆及其富集效应[J].生态环境,2006.15(2):303-306.
    [134]汤叶涛.关丽捷,仇荣亮,等.镉对超富集植物滇苦菜抗氧化酶系统的影响[J].生态学报.2010,30(2):324-332.
    [135]Ruilian Sun, Caixia Jin, Qixing Zhou.Characteristics of cadmium accumulation and tolerance in Rorippa globosa(Turcz.)Thell., a species with some characteristics of cadmium hyperaccumulation[J]. Plant Growth Regul,2010,61:67-74.
    [136]Wei S H, Zhou Q X, Wang X, et al. A newlyfound Cd-hyperaccumulator Solanum nigrum L.[J]. Chin. Bull. Sci.2004,49,2568-2573.
    [137]李硕,刘云国,李永丽,等.水葱修复土壤镉污染潜力的研究[J].环境污染与防治,2006,28(2):84-86.
    [138]Xiong Y H, Yang Z Q, Ye Z Q, et al. Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance[J]. Journal of Environmental Science and Health. Part A:Toxic/Hazardous Substances and Environmental Engineering,2004, 39,(11-12):2925-2940.
    [139]Yang X E, Long X X, Ye H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species(Sedum alfredii Hance)[J]. Plant and Soil,2004,259:181-189.
    [140]S Wei. Q Zhou, S Mathews. A newly found cadmium accumulator Taraxacum mong olicum[J]. Journal of Hazardous Materials,2008,159:544-547.
    [141]Eleni Manousakia, Jana Kadukovab, Nikolaos Papadantonakis et al. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smymensis growing on contaminated non-saline and saline soils[J]. Environmental Research,2008,106:326-332.
    [142]Perronnet K, Schwartz C, More J L. Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil [J]. Plant and Soil,2003, 249:19-25.
    [143]S.P. McGrath, E. Lombi, C.W. Gray, et al. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri[J]. Environmental Pollution,2006,141:115-125.
    [144]Wenzel W W, Jockwer F. Accumulator of heavy metals in plants grown on mineralised soils of the Austrian Alps [J]. Envrion Pollut 1999,104:145-155.
    [145]Vogel-Mikus K, Pongrac P, Kump P, et al. Localisation andquantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecoxbymicro-PIXE [J]. Environ Pollut,2007, 147:50-59.
    [146]刘威,束文圣,兰崇钰.宝山堇菜(Viola baoshanensis)-一种新的镉超富集植物[J].科学通报,2003,48(19):2046-2049.
    [147]顾超,李蕾,何池全.喜旱莲子草及鸭趾草对重金属的富集实验研究[J].上海大学学报(自然科学版),2004,10(6):626-629.
    [148]罗于洋,赵磊,王树森.铅超富集植物密毛白莲蒿对铅的富集特性研究[J].西北林学院学报,2010,25(5):37-40.
    [149]刘秀梅,聂俊华,王庆仁.6种植物对Pb的吸收与耐性研究[J].植物生态学报,2001,26(5):533-537.
    [150]Solange Romeiro, Ana Maria Magalhaes Andrade Lagoa, Pedro Roberto Furlani,et al. Lead uptake and potential for fitoremediation of Canavalia ensiformes L [J]. Bragantia, Campinas, 2007,66(2):327-334.
    [151]顾超,李蕾,何池全.喜旱莲子草及鸭趾草对重金属的富集实验研究[J].上海大学学报(自然科学版),2004,10(6):626-629.
    [152]Benjaporn Boonyapookana, Preeda Parkpian, Sombun Techapinyawat, et al. Phyto-accumulation of lead by sunflower(Helianthus annuus), tobacco(Nicotiana tabacum)and vetiver(Vetiveria zizanioides)[J].Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering,2005,40(1):117-137.
    [153]Chandra Sekhar, K C T Kamala, N S Chary, et al. Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils[J]. Chemosphere,2005,58:507-514.
    [154]李法云,曲向荣,吴龙华,等.污染土壤生物修复理论基础与技术[M].化学工业出版社环境科学与工程出版中心,北京,2005.
    [155]Odjegba V J, Fasidi I O. Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation [J]. Ecotoxicology,2004,13,637-646.
    [156]Solange Romeiro, Ana M M A Lag6a, Pedro R Furlani, et al. Lead uptake and tolerance of Ricinus communis L.[J]. Brazilian Journal of Plant Physiology,2006,18(4):483-486.
    [157]肖青青,王宏镔,王海娟,等.滇白前(Silene viscidula)对铅、锌、镉的共超富集特征[J].生态环境学报,2009,18(4):1299-1306.
    [158]Nilesh C. Sharma,Jorge L. Gardea-Torresdey, Jason Parsons, et al. Chemical speciation and cellular deposition of lead in Sesbania drummondii[J].Environmental Toxicology and Chemistry,2004,23(9):2068-2073.
    [159]Q Sun, ZH Ye, XR Wang, et al. Increase of glutathione in mine population of Sedum alfredii:a Zn hyperaccumulator and Pb accumulator [J]. Phytochemistry,2005,66:2549-2556.
    [160]李永丽,李欣,李硕,等.东方香蒲(Typha orientalis Presl)对铅的富集特征及其EDTA效应分析[J].生态环境,2005,14(4):555-558.
    [161]Banasova V, O Horak. Heavy metal content in Thlaspi caerulescens J. et C. Presl growing on metalliferous and non-metalliferous soils in Central Slovakia[J]. International Journal of Environment and Pollution,2008,32:133-145.
    [162]施和平,梁朋,权宏.商陆毛状根的诱导、培养及其皂甙的产生[J].生物工程学报,2003,19(1):46-49.
    [163]Nadia N. Ono, Li Tian. The multiplicity of hairy root cultures:Prolific possibilities [J]. Plant Science,2011,180(3):439-446.
    [164]F Alikaridis, D Papadakis, K Pantelia, et al. Flavonolignan production from Silybum marianum transformed and untransformed root cultures [J]. Fitoterapia,2000,71(4):379-384.
    [165]Mackova M, Macek T, Kucerova P, et al. Degradation of polychlorinated biphenyls by hairy root culture of Solanum nigrum[J].Biotechnol Lett,1997a,19:787-790.
    [166]Mackova M, Macek T, Ocenaskova J, et al. Biodegradation of polychlorinated biphenyls by plant cells[J]. Int Biodeterior Biodegrad,1997,39:317-325
    [167]Muhammad Ahkam Subroto, Santoso Priambodo, Nastiti Siswi Indrasti. Accumulation of Zinc by Hairy Root Cultures of Solanum nigrum [J]. Biotechnology,2007,6(3):344-348.
    [168]Nedelkoska TV, Doran PM. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens [J]. Biotechncl Bioeng,2000,67:607-615.
    [169]Rengasamy Boominathan. Pauline M. Doran. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator. Thlaspi caerulescens[J]. Biotechnology and Bioengineering,2003.83(2):158-167.
    [170]Nedelkoska TV, Doran PM. Hyperaccumulation of nickel by hairy roots of Alyssum species:Comparison with whole regenerated plants [J]. Biotechnol Prog,2001,17:752-759.
    [171]Bhadra R, Wayment DG, Williams RK, et al. Studies on plant-mediated fate of the explosives RDX and HMX [J]. Chemosphere,2001.44:1259-1264.
    [172]de Araujo BS, Charlwood VB. Pletsch M. Tolerance and metabolism of phenol and chloroderivatives by hairy root cultures of Daucus carota L[J]. Environ Pollut,2002,117:329-335.
    [173]Boominathan R, Doran P M. Ni-induced oxidative stress in roots of the Ni hyper-accumulator, Alyssum bertolonii[J]. New Phytol,2002,156:205-215.
    [174]Bernejee S, Shang TQ, Wilson AM, et al. Expression of functional mammalian P450 2E1 in hairy root cultures [J]. Biotechnol Bioeng,2002,77:462-466
    [175]Agostini E, Coniglio MS, Milrad SR. Phytoremediation of 2,4-dichlorophenol by Brassica napus hairy root cultures[J]. Biotechnol Appl Biochem,2003,37:139-144.
    [176]Eapen S, Suseelan KN, Tivarekar S, et al. Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolorn [J]. Environ Res,2003,91: 127-133.
    [177]Suresh B, Sherkhane PD, Kale S, et al. Uptake and degradation of DDT by hairy root cultures of Cichorium intybus and Brassica juncea[J].Chemosphere,2005,61:1288-1292
    [178]Ninad P Gujarathi. James C Linden. Oxytetracycline inactivation by putative reactive oxygen species released to nutrient medium of Helianthus annuus hairy root cultures [J]. Biotechnology and Bioengineering,2005,92(4):393-402.
    [179]Ana L. Wevar Oiler, Elizabeth Agostini, Melina A. Talano.et al. Overexpression of a basic peroxidase in transgenic tomato(Lycopersicon esculentum Mill. cv. Pera)hairy roots increases phytoremediation of phenol[J]. Plant Science,2005.169(6):1102-1111.
    [180]de Araujo BS, de Oliveira JO, Machado SS, PletschM Comparative studies of peroxidases from hairy roots of Daucus carota, Ipomea batatas andSolanum aviculare[J]. Plant Sci, 2004,167:1151-1157.
    [181]de Araujo BS, Dec J, Bollag JM, et al. Uptake and transformation of phenol and chlorophenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare [J]. Chemosphere,2006,63:642-651.
    [182]Singh S, Melo JS, Eapen S, et al. Phenol removal using Brassica juncea hairy roots:Role of inherent peroxidase and H2O2[J]. J Biotechnol,2006,123:43-49.
    [183]Coniglio MS, Busto VD, Gonzalez PS, et al. Application of Brassica napus hairy root cultures for phenol removal from aqueous solutions[J]. Chemosphere,2008,72:1035-1042
    [184]Vinterhalter B, Savic J, Platisa J, et al. Nickel tolerance and hyperaccumulation in shoot cultures regenerated from hairy root cultures of Alyssum murale Waldst et Kit[J]. Plant Cell Tis Organ Cult,2008,94:299-303.
    [185]Pratibha Patil, Neetin Desai, Sanjay Govindwar, et al. Degradation analysis of Reactive Red 198 by hairy roots of Tagetes patula L.(Marigold)[J]. Planta,2009,230(4):725-735.
    [186]Melina A Talano, Silvina Frontera, Paola Gonzalez, et al. Removal of 2,4-diclorophenol from aqueous solutions using tobacco hairy root cultures[J]. Journal of Hazardous Materials,2010, 176:784-791.
    [187]T.V. Nedelkoska, P.M. Doran. Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining[J]. Minerals Engineering,2000,13(5):549-561.
    [188]Shuangxiu Wu, Yuangang Zu, Madeline Wu. Cadmium response of the hairy root culture of the endangered species Adenophora lobophylla [J]. Plant Science,2001,160(3):551-562.
    [189]Rengasamy Boominathan, Pauline M. Doran. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species[J]. Journal of Biotechnology,2003,101:131-146.
    [190]Paul, R., Campanella, B.,2000. Use of Alfalfa(Medicago sativa)to stimulate biodegradation of anthracene in dredging sludges. Inter-COST workshop on Bioremediation, COST Action 831, Sorrentoz, Italy.
    [191]Walter Suza, Rodney Shea Harris, Argelia Lorence. Hairy Roots:From High-Value Metabolite Production to Phytoremediation [J]. Electronic Journal of Integrative Biosciences,2008, 3(1):57-65.
    [192]C D Jadia, M H Fulekar. Phytoremediation of heavy metals:recent techniques[J]. African Journal of Biotechnology,2009,8(6):921-928.
    [193]Meagher R B, Rugh C L, Kandasamy M K,et al..Engineered Phytoremediation of Mercury Pollution in Soil and WaterUsing Bacterial Genes. In:Terry N, Banuelos G(eds)Phytoremediation of Contaminated Soil and Water. Lewis Publishers,Boca Raton, FL.,2000,201-219.
    [194]Yan X M, He J Z.The research progress and mechanic on microbe restore heavy metal pollution[J].Journal of Anhui Agricultural Sciences,2002,30(6):877-879.
    [195]Fischer F, Bipp H P. Removal of heavy metals from soil components and soils by natural chelating agents.Ⅱ.soil extraction by sugar acid [J].Water, Air, and soil Pollution,2002, 138:271-288.
    [196]Fischer K. Removal of heavy metals from soil components and soil by natural chelating [J]. Water, Air, and Soil Pollution,2002,137:267-286.
    [197]Jones D L. Organic acids in the rhizosphere-a critical review[J]. Plant and Soil 1998, 205:25-44.
    [198]Huma Vaseema, Banerjeea T K. Phytoremediation of the Toxic Effluent Generated During Recovery of Precious Metals from Polymetallic Sea Nodules [J]. International Journal of Phytoremediation,2012,14(5):457-466.
    [199]桑爱云,张黎明,曹启民,等.土壤重金属污染的植物修复研究现状与发展前景[J].热带农业科学,2006,26(1):75-79.
    [200]韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J].地球科学进展,2002,17(6):833-839.
    [201]Pulford I D, Watson C. Phytoremediation of heavy metal-contaminated land by trees-a review[J]. Environmental International,2003,29(4):529-540.
    [202]孙约兵,周启星,郭观林.植物修复重金属污染土壤的强化措施[J].环境工程学报,2007,1(3):104-110.
    [203]Vandenhove H, van Hees M, van Winkel S,et al. Feasibility of phytoextraction to clean up low-level uranium-contaminated soil[J]. International Journal of Phytoremediation,2001,3(3): 301-320.
    [204]Ma L Q, Komar K M, Tu C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001,409:579-579.
    [205]Chhotu D J, Fulekar M H. Review:Phytoremediation of heavy metals:Recent techniques [J]. African Journal of Biotechnology,2009,8(6):921-928.
    [206]旷远文,温达志,周国逸.有机物及重金属植物修复研究进展[J].生态学杂志,2004,23(1):90-96.
    [207]Karkhanis M, Jadia C D, Fulekar M H. Rhizofilteration of metals from coal ash leachate [J]. Asian J. Water, Environ. Pollut,2005,3(1):91-94.
    [208]徐卫红,黄河,王爱华.根系分泌物对土壤重金属活化及其机理研究进展[J].生态环境,2006,25(1):184-189.
    [209]Jones D L, Darrah P R, Dochian L V. Critieal evaluation of organicacid mediated iron dissolution in the thizosphere and its potential role in root iron uptake[J].Plant Soil,1996,180:57-66.
    [210]黄苏珍,原海燕,孙延东,等.有机酸对黄菖蒲镉、铜积累及生理特性的影响[J].生态学杂志,2008,27(7):1181-1186.
    [211]陈英旭,林琦,何云峰.有机酸对铅、镉植株危害的解毒作用研究[J].环境科学学报,2000,20(4):467-472.
    [212]郝建华,刘倩倩,强胜.菊科入侵植物三叶鬼针草的繁殖特征及其与入侵性的关系[J].植物学报,2009,44(6):656-665.
    [213]徐正浩,王一平.外来入侵植物成灾的机制及防除对策[J].生态学杂志,2004,23(3):124-127.
    [1]Kastori R, Petrovic M, Petrovic N. Effect of excess lead, cadmium, copper and zinc on water relations in sunflower [J]. Plant Nutr,1992,15(11):2424-2439.
    [2]鲁艳,李新荣,何明珠,等.重金属对盐生草光合生理生长特性的影响[J].西北植物学报,2011,31(2):0370-037.
    [3]俞慧娜,刘鹏,徐根娣.大豆生长及叶绿素荧光特性对铝胁迫的反应[J].中国油料作物学报,2007,29(3):257-265.
    [4]俞慧娜,刘鹏,徐根娣,等.大豆根系和叶片叶绿素荧光特性对铝响应的比较[J].上海交通大学学报(农业科学版),2007,25(2):138-146,155.
    [5]鲁艳,李新荣,何明珠,等.不同浓度Ni、Cu处理对骆驼蓬光合作用和叶绿素荧光特性的影响[J].应用生态学报,2011,,22(4):936-942.
    [6]胡筑兵,陈亚华,王桂萍,等.铜胁迫对玉米幼苗生长、叶绿素荧光参数和抗氧化酶活性的影响[J].植物学通报,2006,23(2):129-137.
    [7]李红,冯永忠,杨改河,等.铜胁迫对芥菜光合特性及叶绿素荧光参数的影响[J].农业环境科学学报,2009,28(8):1630-1635.
    [8]梁文斌.薛生国,沈吉红,等.锰胁迫下垂序商陆光合特性及叶绿素荧光参数的影响[J].生态学报,2010.30(3):0619-0625.
    [9]汪贵斌,曹福亮.土壤盐分与水分含量对落羽杉光合特性的研究[J].南京林业大学.2004,28(3):14-18.
    [10]Munns R. Physiological proeesses limiting plant growth in saline soil:some dogmas and hypothese [J].Plant cell and environment,1993,1615-1624.
    [11]李新国,孟庆伟,赵世杰,等.强光胁迫下银杏叶片的光抑制及其防御机制[J].林业科学,2004,40(3):56-59.
    [12]周忆堂,马红群,梁丽娇,等.不同光照条件下长春花的光合作用和叶绿素荧光动力学特征[J].中国农业科学.2008,41(11):3589-3595.
    [13]丛雪,齐华.孟凡超,等.干旱胁迫对玉米叶绿素荧光参数及质膜透性的影响[J].华北农学报.2010.25(5):141-144.
    [14]张木清,陈如凯,吕建林,等.甘蔗叶绿体荧光参数、MDA含量及膜透性与耐旱性的影响[J].福建农业大学学报,1999,28(1):1-7.
    [15]汪月霞,孙国荣,王建波.等.NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系[J].生态学报,2006,26(1):122-129.
    [16]Krause G H, Wei E. Chlorophyll fluorescence and photosysthesis:The basis[J].Ann Rev Plant Physiol Plant Mol Biol,1991,42:313-349.
    [17]林世青,许春辉,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,1992,9(1):1-16.
    [18]喻方圆,徐锡增.植物逆境生理研究进展[J].世界林业研究,2003,16(5):6-11.
    [19]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [20]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55.
    [21 ]泽泉国际集团(香港)有限公司.便携式调制叶绿素荧光仪-PAM-2100操作手册,2006年9月版.
    [22]徐红霞,翁晓燕,毛伟华,等.镉胁迫对水稻光合、叶绿素荧光特性和能量分配的影 响[J].中国水稻科学,2005,19(4):338-342.
    [23]秦天才,吴玉树.镉铅单一和复合污染对小白菜抗坏血酸含量的影响[J].生态学杂志,1997,16(3):31-34.
    [24]陈国祥,施国新,何兵,等.Hg、Cd对莼菜越冬芽光合膜光化学活性及多肽组分的影响[J].环境科学学报,1999,19(5):521-525.
    [25]柯世省.铜对苋菜幼苗光合参数和活性氧代谢的影响[J].中国农业科学,2008,41(5):1317-1325.
    [26]Farquhar G D. Stomatal conductance and photosynthesis [J]. Annual Review of Plant Physiology,1982,33:317-345.
    [27]孙光闻,陈日远,刘厚诚,等.锡对植物光合作用及氮代谢影响研究进展[J].中国农学通报,2005,21(9):234-236.
    [28]韩红江,田琴,李维平.铅对小麦幼苗光合特性及抗氧化酶活性的影响[J].石河子大学学报(自然科学版),2012,30(1):18-22.
    [29]冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4):14-18,30.
    [30]徐红霞,翁晓燕,毛伟华,等.镉胁迫对水稻光合、叶绿素荧光特性和能量分配的影响[J].中国水稻科学,2005,19(4):338-342.
    [31]朱建玲,徐志防,曹洪麟,等.镉对南美蟛蜞菊光合特性的影响[J].生态环境,2008,17(2):657-660.
    [32]李亚藏,梁彦兰,王庆成.镉对茶条槭和五角槭光合作用和叶绿素荧光特性的影响[J].西北植物学报,2009,29(9):1881-1886.
    [33]李亚藏,梁彦兰,王庆成.铅污染对茶条槭和五角械光合作用和叶绿素荧光特性的影响[J].湖南农业大学学报(自然科学版),2012,38(2):168-172.
    [1]Nouairi I, Ghnaya T, Ben Youssef N,et al.Changes in content and fatty acid profiles of total lipids of two halophytes:Sesuvium portulacastrum and Mesembryanthemum crystallinum under cadmium stress[J].Journal of Plant Physiology,2006,163:1198-1202.
    [2]Ammar W B, Nouairi I, Zarrouk M,et al.The effect of cadmium on lipid and fatty acid biosynthesis in tomato leaves[J].Biologia,2008,63:86-93.
    [3]Nouairi I, Ben Ammar W, Ben Y,et al.Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves[J].Plant Science.2006,170:511-519.
    [4]Pal M, Lesko K,Janda T, et al.Cadmium-induced changes in the membrane lipid composition of maize plants[J].Cereal Research Communication,2007,35:1631-1642.
    [5]Shah K, Kumar R G, Verma S, et al. Effect of cadmium on lipid peroxidation,superoxide anion generation and activities of antioxidant enzymes in growing rice seedings[J].Plant Science, 2001,161:1135-1144.
    [6]黄玉山,罗广华.镉诱导植物的自由基过氧化损伤[J].植物学报,1997,39(6):522-526.
    [7]王文霞,李曙光,白雪芳.等.不饱和脂肪酸及其衍生物在植物抗逆反应中的作用[J].植物生理学通讯,2004,6:741-748.
    [8]王爱国,邵从本,罗广华.丙二醛作为植物脂质过氧化指标的探讨[J].植物生理学通讯、1986,2:55-57.
    [9]李彩霞,李鹏.苏永发,.水杨酸对镉胁迫下玉米幼苗质膜透性和保护酶活性的影响植物生理学通讯.2006,42(5):882-884.
    [10]储玲.刘登义,王友保,.铜污染对三叶草幼苗生长及活性氧代谢影响的研究[J].应用生态学报.2004.15(1):119-122.
    [11]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报.2002,22(4):503-507.
    [12]张志良,翟伟箐,李小方.植物生理学实验指导(第4版)[M].高等教育出版社,2009.
    [13]李忠光,龚明.植物中超氧阴离子自由基测定方法的改进[J].云南植物研究,2005,27(2):211-216.
    [14]赵世杰,许长成,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207-210.
    [15]陈贵.胡文玉.谢甫绨,等.提取植物体内MDA的溶剂及MDA作为抗衰老指标的探讨[J].植物生理学通讯,1991,27(1):44-46.
    [16]Axelrod B. Cheesbrough TM, Leakso S. Lopioxygenase from soybeans [J]. Methods in Enzymolog,1981,7:443-451.
    [17]Grossman S, Zakut R. Determination of the activity of Lopioxygenase [J]. Methods Biochem. Anal.,1979,300-329.
    [18]许长成,邹琦.干旱对大豆叶片脂氧合酶活性及乙烯、乙烷释放的影响[J].植物学报,1993,35(增刊):31-37.
    [19]Vassilev A, Lidon F, Scottip P, et al. Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants[J].Biologia Plantarum,2004,48:153-156.
    [20]Hall J L. Cellular mechanisms for heavy metal detoxification and tolerance [J]. Journal of Experimental Botany,2002,53(366):1-11.
    [21]Quartacci M F, Cosi E. Nacari-Izzo F. Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess [J]. Journal of Experimental Botany,2001,52:77-84.
    [22]尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报,2007,23(1):105-]10.
    [23]刘家忠,龚明.植物抗氧化系统研究进展[J].《云南师范大学学报:自然科学版》,1999,6:1-11.
    [24]Liavonchanka A, Feussner I. Lipoxygenases:Occerrence, functions and catalysis[J]. Journal of Plant Physiology,2006,163:348-357.
    [25]黄建昌,肖艳.模拟酸雨对番木瓜叶片细胞膜透性和膜脂脂肪酸组分的影响[J].园艺学报,2004,31(5):644-646.
    [26]沈漫,王明庥,敏仁.植物抗寒机理研究进展[J].植物学通讯,1997,14(2):1-8.
    [27]乔勇进,冯双庆,李丽萍,等.热处理、多胺处理对黄瓜膜脂肪酸变化的影响[J].食品科学,2006,27(5):246-249.
    [28]Chaffai R, Seybou T N, Marzoukand B, et al. Effects of cadmium on polar lipid composition and unsaturation in maize(Zea mays)in hydroponic culture[J] Journal of Integrative Plant Biology,2007,49:1693-1702.
    [29]由淑贞,杨洪强,张龙,等.镉胁迫对平邑甜茶脂肪酸构成及脂质过氧化的影响[J].应用生态学报,2009,20(8):2032-2037.
    [30]Maksymiec W, Russa R, Urbanic-Sypniewska T,et al.Changes in acyl lipid and fatty acid composition in thylakoids of copper on non-tolerant spinach exposed to excess copper[J]. Journal of Plant Physiology,1992,140:52-55.
    [31]苏德荫.高温对小麦生理障碍及上海机理(综述)[J].山西农业科学,1995,5:35-38.
    [32]E. Gaiewska, P. Bernat, J. Dlugonski, et al. Effect of Nickel on Membrane Integrity, Lipid Peroxidation and Fatty Acid Composition in Wheat Seedlings[J]. Journal of Agronomy and Crop Science,2012,198(4):286-294.
    [1]王晶懋,张楚涵,闫庆伟,植物抗旱的生理渗透调节及保护酶活性研究进展[J].黑龙江生态工程职业学院学报,2012,25(2):31-33
    [2]李玲.植物抗非生物逆境分子机理研究[J].湖南科技学院学报,2012,33(9):173-175.
    [3]费小红,安保光,赵宝华,等.类胡萝卜素参与水稻抗氧化胁迫的研究进展[J].现代农业科学,2009,1:22-23.
    [4]李玉全,张海艳,沈法富.作物耐盐性的分子生物学研究进展[J].山东科学,2002,1(2):8-15.
    [5]王秀娟,杨会青.盐碱胁迫下西伯利亚白刺的渗透调节物质的变化[J].热带农业科学,2010,30(2):34-36.
    [6]周希琴,莫灿坤.植物重金属胁迫及其抗氧化系统[J].新疆教育学院学报,2003,6(2):103-108.
    [7]Zhang J X, Kirkham M B. Drought-stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species[J]. Plant Cell Physiol,1994,35(5):785-791.
    [8]张志良,瞿伟箐,李小方.植物生理学实验指导(第4版)[M].高等教育出版社,2009.
    [9]燕傲蕾,吴亭亭,王友保,等.三种观赏植物对重金属镉的耐性与积累特性[J].生态学报,2010,30(9):2491-2498.
    [10]刘惠芬,高玉葆,张强,等.不同种群羊草幼苗对土壤干旱胁迫的生理生态响应[J].南开大学学报(自然科学版),2004,4(12):105-110.
    [11]高占武.紫花苜稽对复合盐碱胁迫的适应性响应[D].长春,东北师范大学,2006.
    [12]钱永生,王慧中.渗透调节物质在作物干旱逆境中的作用[J].杭州师范学院学报(自然科学版),2006,5(6):476-481.
    [13]郁万文,曹福亮.高温胁迫下银杏叶片部分渗透调节物质的动态变化[J].福建林业科技,2008,35(2):126-128.
    [14]郑世英,王丽燕,商学芳,等.铅胁迫对玉米种子萌发及叶片渗透调节物质含量的影响[J].安徽农业科学,2006,34(21):5471-5472.
    [15]Chris B, Marc V H, Dirk 1. Superoxide dismutase and stress tolerance[J]. Annu Rev Plant Pysiol Plant Mol Biol,1992,43:83-116.
    [16]徐勤松,施国新,计汪栋,等.Zn对荇菜叶片保护酶活性、渗透调节物质含量和Ca2-定位分布的影响[J].水生生物学报,2009,33(4):614-619.
    [17]吴桂容,严重玲.镉对桐花树幼苗生长及渗透调节的影响[J].生态环境,2006,15(5):1003-1008.
    [18]胡田田,康绍忠.植物抗旱性中的补偿效应及其在农业节水中的应用[J].生态学报,2005,25(4):885-891.
    [19]Hose E, Clarkson D T, Steudle E, et al. Review Article The exodermis:a variable apoplastic barrier. Journal of Experimental Botany 2001,52(365):2245-2264.
    [20]张玉秀,徐进,王校,等.植物抗旱和耐重金属基因工程研究进展[J].应用生态学报,2007,18(7):1631-1639.
    [21]宫海军,陈坤明,高永生,等.不同生境两种生态型芦苇的抗氧化系统[J].西北植物学报,2004,24(2):193-198.
    [22]任艳芳,何俊瑜,刘畅,等.镉胁迫对莴苣幼苗生长及抗氧化酶系统的影响[J].生态环境学报,2009,18(2):494-497.
    [23]张新兰.不同品种苜蓿叶片离体干旱胁迫过程中抗氧化酶活性动态[J].草业科学,2008,25(2):77-83.
    [24]汪洪,赵士诚,夏文建,等.不同浓度镉胁迫对玉米幼苗光合作用、脂质过氧化和抗氧化酶活性的影响[J].植物营养与肥料学报,2008,14(1):36-42.
    [25]Jin X F, Yang X E, Islam E, et al. Effect of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance [J]. Journal of Hazardous Materials,2008,156:387-397.
    [26]Sun R L, Zhou Q X, Sun F H, et al. Antioxidative defense and proline/phytochelatin accumulation in a new-discovered Cd-hyperaccumulator, Solanum nigrum L.[J]. Environmental and Experimental Botany,2007,60:468-476.
    [27]Wajcik M, Skorzynska-Polit E, Tukiendorf A. Organic acids accumulation and antioxidant enzyme acticities in Thlaspi caerulescens under Zn and Cd stress[J]. Plant Growth Regulation,2006,48:145-165.
    [28]汤叶涛,关丽捷,仇荣亮,等.镉对超富集植物滇苦菜抗氧化系统的影响[J].生态学报,生态学报,2010,30(2):0324-0332.
    [29]龚双姣,马陶武,姜业芳,等.镉胁迫下3种藓类植物抗氧化酶活性变化的比较研究[J].西北植物学报,2008,28(9):1765-1771.
    [30]黄辉,李升,郭娇丽.镉胁迫对玉米幼苗抗氧化系统及光合作用的影响[J].农业环境科学学报,2010,29(2):211-215.
    [31]杜连彩.铅胁迫对小白菜幼苗叶绿素含量和抗氧化酶系统的影响[J].中国蔬菜,2008,5:17-19.
    [32]李铮铮,伍钧,唐亚,等.铅、锌及其交互作用对鱼腥草Houttuynia cordata)叶绿素含量及抗氧化酶系统的影响[J].生态学报,2007,12:5441-5443.
    [33]林杰,柯金炼,魏道军.铅胁迫对香根草叶片膜系统及抗氧化系统的影响[J].福建农业学报,2009,24(3):254-257.
    [34]谢传俊,杨集辉,周守标,等.铅递进胁迫对假俭草和结缕草生理特性的影响[J].草业学报,2008,17(4):65-70.
    [35]M(?)ller I M. Plant mitochondria and oxidative stress:electron transport, NADPH turnover, and metabolism of reactive oxygen species [J]. Annual Review of Plant Physiology and Molecular Biology,2001,52:561-591.
    [1]H Kupper, F J Zhao, S P McGrath. Cellular compartmentation of Zinc in leaves of the hyperaccumulator Thlaspi caerulescens [J]. Plant Physiol,1999,119:305-311.
    [2]L Marques, M Cossegal, S Bodin, et al. Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulescens L. [J]. New Phytologist, 2004,164:289-295.
    [3]W Ke, Z Xiong, M Xie, et al. Accumulation, subcellular localization and ecophysiological responses to copper stress in two Daucus carota L. populations[J]. Plant Soil,2007,292:291-304.
    [4]D A Cataldo, K M McFadden, T R Garland et al. Organic constituents and complexation of nickel(Ⅱ), iron(Ⅲ), cadmium(Ⅱ), and plutonium(Ⅳ)in soybean xylem exudates[J]. Plant Physiol., 1988,86:734-739.
    [5]许庆方,玉柱,韩建国,等.高效液相色谱法测定紫花苜蓿青贮中的有机酸[J].草原与草坪,2007,2:63-65,67.
    [6]许嘉琳,宋文昌,居荣,等.农作物体内铅、镉、铜的化学形态研究[J].应用生态学报,1991.2(3):244-248.
    [7]杨居荣.贺建群,张国祥,等.农作物对Cd毒害的耐性机理探讨[J].应用生态学报,1995,6(1):87-91.
    [8]Wu F, Dong J, Qiian Q, et al. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes[J]. Chemosphere,2005,60:1437-1446.
    [9]周卫,汪洪.林葆.镉胁迫下钙对镉在玉米细胞中分布及对叶绿体结构与酶活性的影响[J].植物营养与肥料学报.1999.5(4):335-340。
    [10]董力诚,夏春镗,沈昕妍,等.芹菜叶对铅的吸收及其迁移规律初探[J].同济大学学报:医学版.2005.5(4):78-81.
    [11]Cosio C. Martinoia E, Keller C. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level[J]. Plant Physiology,2004, 134:716-725.
    [12]Bidwell S D, Crawford S A, Woodrow I E, et al. Subcellular localization of Ni in the hyperaccumulator Hybanthus floribundus(Lomdley)F. Muell [J]. Plant, Cell and Environment,2004, 27:705-716.
    [13]杨刚,伍钧,唐亚.铅胁迫下植物抗性机制的研究进展[J].生态学杂志,2005.24(12):1507-1512.
    [14]Ute Kramer. Cadmium for all meals-plants with an unusual appetite [J]. New Phytologist. 2000,45(1):1-5.
    [15]Yang J X, Ma Z L, Ye Z H, et al. Heavy metal(Pb, Zn)uptake and chemical changes in rhizosphere soils of foure wetland plants with different radial oxygen loss[J]. Journal of Environmental Sciences,2010,22(5):596-702.
    [16]Fritio F F A. Grege R M. Uptake and distribution of Zn. Cu, Cd and Pb in an aquatic plant Potamogeton natans [J]. Chemosphere,2006,63(2):220-227.
    [17]孙琴.倪吾钟.超积累植物体内的小分子螯合物质及其生理作用[J].广东微量元素科学,2001,5:1-8.
    [18]蒋先军,骆永明,赵其国.土壤重金属污染的植物提取修复技术及其应用前景[J].农业环境保护,2000,19(3):179-183.
    [19]李朝苏,刘鹏,徐根娣,等.外源有机酸对荞麦幼苗铝毒害的缓解效应[J].作物学报,2006,4:532-539.
    [20]李玉红,宗良纲黄耀.螯合剂在污染土壤植物修复中的应用[J].土壤与环境,2002,11(3):303-306.
    [21]侯晓龙,陈加松,刘爱琴,等.Pb胁迫对金丝草体内P b化学形态及细胞分布的影响[J].生态与农村环境学报,2012,28(3):271-276.
    [22]康孟利,薛旭初,骆耀平,等.茶树与土壤中铅的存在形态与分布[J].浙江农业科学,2006,3:208-282.
    [23]周小勇,仇荣亮,李清飞,等.锌对长柔毛委陵菜中铅的分布和化学形态的影响[J].环境科学学报,2008,28(10):2064-2071.
    [24]于方明,汤叶涛,周小勇,等.镉对圆锥南芥锌的吸收、亚细胞分布和化学形态影响[J].中山大学学报(自然科学版),2010,49(4):118-124.
    [25]江行玉,王长海,赵可夫.芦苇抗镉污染机理研究[J].生态学报,2003,23(5):856-862.
    [26]王宏镔,王焕校,文传浩,等.镉处理下不同小麦品种几种解毒机制探讨[J].环境科学学报,2002,22(4):524-528.
    [27]秦建桥,夏北成,赵鹏,等.镉在五节芒(Miscanthus floridulus)不同种群细胞中的分布及化学形态[J].生态环境学报:2009,18(3):817-823
    [28]汪良驹,刘友良.植物细胞中的液泡及其生理功能[J].植物生理学通讯,1998,34(5):394-400.
    [29]J Antonovics, A D Bradshaw, R G Turner. Heavy Metal Tolerance in Plants [J].Advances in ecological research,1971,7:1-85.
    [30]杨居荣,鲍子平,张素芹.镉、铅在植物细胞内的分布及其可溶性[J].中国环境科学学报,1993,13(4):264-268.
    [31]Brune A, Urbach W, Dietz K J.Compartmentation and transport of zinc in barley primary leaves as basic mechanism involved in zinc tolerance [J].Plant,Cell and Environment,1994, 17:153-162.
    [1]韩张雄,王龙山,郭巨权,等.土壤修复过程中重金属形态的研究综述[J].岩石矿物学杂志,2012,31(2):271-278.
    [2]朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105.
    [3]王友保,张莉,张风美,等.大型铜尾矿库区根际土壤重金属形态分布与影响因素研究[J].环境科学学报,2006,26(1):76-84.
    [4]Tessier A. Sequential extraction procedure for the speciation of particulate,trace metals[J]. A nal. Chem,1979,51(7):844-851.
    [5]李跃林,李志辉,彭少麟,等.典范相关分析在桉树人工林低土壤酶活性与营养元素关系研究中的应用[J].应用与环境生物学报,2002,8(5):544-549.
    [6]郝双龙,丁园,余小芬,等.粉煤灰和石灰对突发性污染土壤中重金属化学形态的影响[J].广东农业科学,2012,3:55-57,64.
    [7]雷鸣,廖柏寒,秦普丰.土壤金属化学形态的生物可利用性评价[J].生态环境,2007,16(5):1551-1556.
    [8]Jones D L, Darrah P R, Kochian L V. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake [J]. Plant Soil,1996, 180:57-66.
    [9]Lin Q, Chen Y X, Chen H M, et al. Study on chemical behavior of root exudates with heavy metals [J]. Plant Nutr. Fert. Sci.,2003,9(4):425-431.
    [10]曾曙才,苏志尧,陈北光,等.植物根际营养研究进展[J].南京林业大学学报(自然科学版),2003,27(6):79-83.
    [11]卢良豪,严重玲.秋茄(Kandelia candel)根系分泌低分子量有机酸及其对重金属生物有效性的影响[J].生态学报,2007,27(10):4173-4181.
    [12]Ma J F, Zheng S J, Hiradate S, et al. Detoxifying aluminum with buckwheat [J]. Nature, 1997,390:569-570.
    [13]Strom L, Olsson T, Tyler G. Difference between calcifuge and acidifuge plants in root exudation of low- molecular organic acids [J]. Plant and Soil,1994,67:239-245.
    [14]石汝杰,陆引罡,丁美丽.植物根际土壤中铅形态与土壤酶活性的关系[J].山地农业生物学报,2005,24(3):225-229.
    [15]李玉双,孙丽娜,孙铁珩,等.北方常见农作物根际土壤中铅、锌的形态转化及其植物有效性[J].生态环境,2006,15(4):743-746.
    [16]韩张雄,王龙山,郭巨权,等.土壤修复过程中重金属形态的研究综述[J].岩石矿物学杂志,2012,31(2):271-278.
    [17]王新,梁仁禄,周启星Cd-Pb复合污染在土壤-水稻系统中生态效应的研究[J].农村生态环境,2001,17(2):41-44.
    [18]周启星,高拯民.作物籽实中Cd与Zn的交互作用及其机理的研究[J].农业环境保护,1991,13(4):148-151.
    [19]丁永祯,李志安,邹碧.土壤低分子量有机酸及其生态功能[J].土壤,2005,3:243-250
    [20]孙琴,王晓蓉,丁士明.超积累植物吸收重金属的根际效应研究进展[J].生态学杂志,2005,24(1):30-36.
    [21]万敏,周卫,林葆.不同镉积累类型小麦根际土壤低分子量有机酸与镉的生物积累[J].植物营养与肥料学报,2003,9(3):331-336.
    [1]谌金吾,孙一铭,张显强,等.污泥和粉煤灰的循环利用及其对石漠化土壤质量的改善[J].中国岩溶,2012,31(3):49-55.
    [2]Shu he Wei and Qi xing Zhou. Screen of Chinese weed Species for cadmium tolerance and accumulation characteristics [J]. International Journal of Phytoremediation,2008,10(6):584-597.
    [3]Yuebin Sun, Qixing Zhou, Lin Wang, et al. Cadmium tolerance and accumulation characterics of Bidens pilosa L. as a potential Cd-hyperaccumulator [J]. Journal of Hazardous Materials,2009,161:808-814.
    [5]Takuya ABE, Motohiro FUKAMI, Masaru OGASAWARA. Cadmium accumulation in the shoots and roots of 93 weed species [J]. Soil Science & Plant Nutrition 2008,54(4):566-573.
    [6]王素娟,李正文,王彦祥.羽叶鬼针草对Cd、Pb的吸附特性研究[J].河南农业科学.2009.6:77-81.
    [7]GB/T 17141-1997,土壤质量铅、镉的测定,石墨炉原子吸收分光光度法[S].
    [8]张春华,毛亮,周培,等.超积累植物与非超积累植物吸收累积重金属的差异性研究[J].上海交通大学学报(农业科学版),2009,28(6):592-600.
    [9]刘威.束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)-一种新的镉超富集植物[J].科学通报.2003.]9:2046-2049.
    [10]陈同斌,韦朝阳.砷超富集植物是蜈蚣草及其对砷的富集特征[J].科学通报,2002,4:207-210.
    [11]吴双桃,吴晓芙,胡口利,等.铅锌冶炼厂土壤污染及重金属富集植物的研究[J].生态环境.2004,13(2):156-157,160.
    [12]孙约兵.周启星.王林.等.三叶鬼针草幼苗对镉污染的耐性及其吸收积累特征研究[J].环境科学,2009.30(10):3028-3035.
    [13]成杰民.潘根兴,郑根伟,等.太湖地区几种水稻土对重金属的缓冲能力初探[J].农业环境保护,2000,19(1):21-24.
    [14]韩志萍,王趁义.不同生态型芦竹对Cd、Hg、Pb、Cu的富集与分布[J].生态环境2007,16(4):1092-1097.
    [15]寇士伟.吴锦标,谢素.等.红薯对Pb、Cd的吸收累积特征及根际土壤Pb、Cd形态分布研究[J].农业环境科学学报,2011,30(4):677-683.
    [16]郭艳杰,李博文,杨华.印度芥菜对土壤Cd、Pb的吸收富集效应及修复潜力研究[J].水土保持学报,2009,4:130-135.
    [17]A Kabata-Pendias. Behavioural properties of trace metals in soils [J]. Applied Geochemistry,1993.8(2):3-9.
    [18]Vallee B L, Ulmer D D. Biochemical Effects of Mercury, Cadmium and Lead [J].Annual Review of Biochemistry,1972,41:91-128.
    [19]王学锋,师东阳,刘淑萍,等Cd-Pb复合污染在土壤-烟草系统中生态效应的研究[J].土壤通报,2007,4:737-740.
    [1]孙敏.药用植物毛状根培养与应用[M].西南师范大学出版社,2011.
    [2]S. Eapen, K.N. Suseelan, S. Tivarekar, et al. Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor [J]. Environ. Res.2003, 91:127-133.
    [3]Walter Suza, Rodney Shea Harris, Argelia Lorence. Hairy Roots:From High-Value Metabolite Production to Phytoremediation [J]. Electronic Journal of Integrative Biosciences,2008, 3(1):57-65.
    [4]Binbing Han, James C. Linden, Ninad P. Gujarathi, et al. Population Balance Approach to Modeling Hairy Root Growth[J]. Biotechnology Progress,2004,20(3):872-879.
    [5]B. Suresh, P.D. Sherkhane, S. Kale, S. Eapen, et al. Uptake and degradation of DDT by hairy root cultures of Cichorium intybus and Brassica juncea [J].Chemosphere,2005,61: 1288-1292.
    [6]S. Banerjee, T.Q. Shang, A.M. Wilson, et al. Expression of functional mammalian P450 2E1 in hairy root cultures [J]. Biotechnol. Bioeng.2002,77(4):462-466.
    [7]N.P. Gujarathi, J.C. Linden. Oxytetracycline inactivation by putative reactive oxygen species released to nutrient medium of Helianthus annuus hairy root cultures [J]. Biotechnology and bioengineering,2005,92(4):393-402.
    [8]Sharon Lafferty Doty. Enhancing phytoremediation through the use of transgenics and endophytes [J]. New Phytologist,2008,179(2):318-333.
    [9]Anrini Majumder, Sumita Jha. Hairy Roots:A Promising Tool for Phytoremediation [M] Microorganisms in Environmental Management:Microbes and Environment, pp 607-629,2012.
    [10]Nedelkoska T V, Doran P M. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens [J]. Biotechnol. Bioeng.,2000,67,607-615.
    [11]Boominathan R, Doran P M. Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii [J]. New Phytol.,2002,156:05-215.
    [12]Nedelkoska T V, Doran P M. Hyperaccumulation of nickel by hairy roots of Alyssum species:comparison with whole regenerated plants [J]. Biotechnol. Prog.,2001,17:752-759.
    [13]Boominathan R, Doran P M. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator [J]. Journal of Biotechnology,2003, 101:131-146.
    [14]施和平,曾宝强,王云灵,等.镉及其与钙组合对褐脉少花龙葵毛状根生长、抗氧化酶活性和吸收镉的影响[J].生物工程学报,2010,26(2):147-158.
    [15]云灵.镉对南美蟛蜞菊毛状根生长、镉吸收及细胞毒性的影响以及钙的缓解效应[D].华南师范大学硕士学位论文,2010.
    [16]Shuangxiu Wu, Yuangang Zu, Madeline Wu. Cadmium response of the hairy root culture of the endangered species Adenophora lobophylla [J]. Plant Science,2001,160:551-562.
    [17]Petra Kucerova, Martina Mackova, Ludmila Chroma, et al. Metabolism of polychlorinated biphenyls by Solanum nigrum hairy root clone SNC-9O and analysis of transformation products[J]. Plant and Soil,2000,225(1-2):109-115.
    [18]Elena Maestri, Nelson Marmiroli. Transgenic Plants for Phytoremediation [J]. International Journal of Phytoremediation,2011,13(1):264-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700