用户名: 密码: 验证码:
窄线宽激光和窄线宽光梳的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
窄线宽稳频激光器具有高频率稳定度、低频率噪声的特性,它在原子光钟、高分辨激光光谱、低噪声微波信号产生、基本常数测量和物理理论验证等研究领域具有重要的应用,是不可缺少的关键技术。
     在原子光钟系统中,窄线宽激光器作为“本地振荡器”,用于探测冷原子或者被囚禁单离子的钟跃迁谱线。由于中性原子或者单离子钟跃迁谱线的自然线宽一般在几mHz-几Hz量级,这就要求本振激光的线宽能够达到赫兹甚至亚赫兹的量级。当本振激光被精密锁定到钟跃迁谱线后,其频率由中性原子或单离子来校准,此时它是光钟的输出信号。由此可见,窄线宽激光是原子光钟的核心部件,在此背景下本论文主要研制了分别应用于冷镱原子光钟和冷汞原子光钟的578nm窄线宽激光系统和266nm窄线宽激光系统。
     窄线宽稳频激光系统的研制采用Pound-Drever-Hall (PDH)技术,将激光的频率精密锁定在一个超稳超高精细度Fabry-Perot (F-P)光学参考腔的共振频率上,从而实现超窄线宽激光输出。在系统具有足够高的鉴频信号信噪比和高精度锁相控制的前提下,F-P腔的共振频率稳定特性决定了超窄线宽激光的频率特性。因此,F-P腔抗外界环境振动与温度变化的能力至关重要:采用振动免疫结构和振动隔离措施可大大减小振动对F-P腔腔长的影响;采用热膨胀系数极低的ULE(ultralow expansion)玻璃作为腔体和腔镜材料,并辅以高精度温度控制,可大大降低环境温度变化对腔长的影响。为了减小空气气压变化引起的激光频率变化,将F-P腔置于高真空腔室内,真空同时又降低了热传导,减小了环境温度对腔的影响。
     针对镱原子光钟的应用,研制了两套用于探测镱原子光钟钟跃迁谱线的578nm窄线宽激光系统和光频扫描控制系统。通过1319nm Nd:YAG固体激光器与1030nm光纤激光器和频产生578nm的光,采用快、慢速同时伺服反馈控制1319nm激光器的压电陶瓷和声光调制器(AOM)对578nm光频进行锁定控制。利用研制的窄线宽光梳分别测定了两套578nm窄线宽激光的线宽分别为8.73Hz和1.18Hz,频率稳定度分别为3.68×10-15和1.24×10-15(平均时间为1s),绝对频率分别为518295680512.7(1.8)kHz和518295563923.9(1.9)kHz。实验上利用578nm窄线宽激光扫描获得了冷镱原子171Yb的钟跃迁谱线。
     针对汞原子光钟的应用,构建了一套基于PDH技术和高精细度F-P腔的1062nm窄线宽半导体激光系统,用另一台1062nm光纤激光器经光学四倍频产生266nm的紫光,通过两套1062nm激光器的精密锁相,将腔稳半导体激光器的稳频及窄线宽特性传递到光纤激光器,进而实现266nm紫外窄线宽稳频激光输出,并扫描获得了199Hg的钟跃迁谱线。
     鉴于对578nm窄线宽激光频率特性进行测试、光频精密测量及相干传递、光学频率合成器等研究的需求,将一台基于钛宝石锁模激光器的飞秒光梳受控于1064nm超窄线宽稳频激光器,实现了窄线宽飞秒光梳。通过窄线宽光梳与第二台独立的1064nm亚赫兹线宽激光器及其倍频光、578nm窄线宽激光器分别拍频,验证了窄线宽光梳从红外到可见区域内的梳齿绝对线宽为0.6-1.2Hz,且平均时间1s时梳齿的频率稳定度为1.3×10-15。
     作为窄线宽光梳的应用,将一套578nm激光系统精密锁定到飞秒光梳578nm波段的梳齿,而另一套578nm激光系统基于PDH技术锁定到高精细度超稳F-P腔。对两台578nm窄线宽激光系统进行拍频测试,结果显示受控于窄线宽光梳的578nm激光线宽为1.13Hz,平均时间1s时的频率稳定度为1.39×10-15。该工作模式即为“光学频率合成器”的工作原理,为研制光学频率合成器奠定了基础。
Ultra-narrow-linewidth lasers have merits of high frequency stability, low frequency noise. They have already been widely used in optical atomic clock, high resolution spectroscopy, low noise microwave generation, measurements on fundamental constants and tests of physics.
     In one of its important applications, optical atomic clocks, a narrow linewidth laser with high frequency stability, called local oscillator (LO), probes the clock transition of cold atoms in optical lattice sites or a trapped single ion, and it is also the output signal of the optical atomic clock. Since the natural linewidth of the clock transition of the neutral atoms or the single ion is generally a few mHz to a few Hz, it requires the linewidth of the LO reaches to the hertz level or below. When phase-locking to the clock transition line, the frequency of the LO is calibrated by the neutral atoms or single ion. Therefore, narrow linewidth lasers are the core of optical atomic clocks. Here we constructed two ultra-narrow-linewidth lasers at578nm for probing the clock transition of ytterbium (Yb) optical clock and an ultra-narrow-linewidth laser at266nm for probing the clock transition of mercury (Hg) optical clock.
     To reduce the laser frequency noise, a laser is often frequency-stabilized to the resonance of an ultra-stable optical Fabry-Perot (FP) cavity using the Pound-Drever-Hall (PDH) technique. In the limit of high signal to noise ratio (SNR) and tight lock, the performance of the frequency-stabilized laser is determined by the length stability of the reference cavity. Therefore, it is critical to make the cavity length insensitive to environmental vibrations and thermal fluctuation. Besides vibration isolation, the reference cavity is often specially designed to be insensitive to vibrations. To improve the laser frequency stability, reference cavities are usually made of ULE with ultralow coefficient of thermal expansion (CTE), and they are precisely temperature-controlled at their zero expansion temperature. Moreover, the reference cavities are kept within vacuum chambers for less pressure fluctuation and less thermal conduction through air.
     To meet the application to Yb optical clock, we constructed578nm narrow linewidth lasers for probing the clock transition of Yb clock. The578nm laser light is the summing of a1319nm Nd:YAG laser and a1030nm fiber laser. With both slow servo signal feedback to a PZT attached on the cavity inside the1319nm laser and a fast servo feedback to an AOM located at the output of the summing device, we realized a servo bandwidth as high as150kHz. The linewidth and frequency stability of each578nm ultra-stable laser are measured by beating against a narrow-linewidth optical frequency comb. The linewidths of two578nm lasers are8.73Hz and1.18Hz, respectively. The frequency stabilities are3.68×10-15and1.24×10-15at the average time of1s, respectively. In the experiment, we measured the absolute frequencies of two578lasers to be518295680512.7(1.8) kHz and518295563923.9(1.9) kHz with an fs optical frequency comb referenced to an Rb clock. Finally, we observed the clock transition of the171Yb with one of the578nm narrow-linewidth lasers.
     To meet the application to Hg optical clocks, we constructed a1062nm narrow linewidth diode laser frequency stabilized to a high-finesses F-P cavity with the PDH technique. The quadruple output (266nm) from another fiber laser at1062nm probed the clock transition of Hg atoms. The1062nm fiber laser inherits the phase coherence and frequency stability of the frequency-stabilized diode laser with the precise phase locking technique. In the experiment, we observed the clock transition of199Hg in MOT with the narrow-linewidth266nm laser.
     To meet the applications of measurements on above narrow-linewidth lasers at578nm, precision control and coherence transfer and optical frequency synthesizer, we constructed a narrow-linewidth optical frequency comb based on a Ti:sapphire mode-locked laser phase-locked to a1064nm subhertz-linewidth laser. Every single tooth of the optical frequency comb inherits the frequency stability of the1064nm subhertz-linewidth laser. By beating against a second independent1064nm subhertz-linewidth laser both at1064nm and at532nm and a third independent narrow-linewidth laser at578nm,, we measured the absolute linewidth of the comb teeth to be0.6~1.2Hz over an octave spectrum.
     As a demonstration, one of the578nm (named as '5781#') laser systems is precisely phase-locked to the narrow-linewidth optical frequency comb, and the other (named as '5782#')is frequency-stabilized to a high-finesse F-P cavity. Measurements of the beating note between these two578nm lasers show the linewidth of5781#is1.13Hz and its frequency stability is1.39×10-15at the average time of1s. These results indicate that this narrow linewidth comb can transfer the coherence and frequency stability of the subhertz-linewidth laser from1064nm to578nm. The above experiment is a demonstration of optical frequency synthesizers.
引文
[1]I.I. Rabi et al. The Molecular Beam Resonance Method for Measuring Nuclear Magnetic Moments [J]. Phys. Rev.,53 (495),318 (1938).
    [2]N. F. Ramsey.Frequency Control, Proceedings of the 44th Annual Symposium on [M],1990.
    [3]L. Essen et al. An atomic standard of frequency and time interval:a caesium resonator [J]. Nature,176,280-282 (1955).
    [4]J. Levine. Introduction to time and frequency metrology [J]. Review of scientific instruments,70 (6),2567-2596 (1999).
    [5]T. Udem et al. Absolute Frequency Measurements of the Hg+ and Ca Optical Clock Transitions with a Femtosecond Laser [J]. Phys. Rev. Lett.,86 (22), 4996-4999 (2001).
    [6]G K. Campbell et al. The absolute frequency of the 87Sr optical clock transition [J]. Metrologia,45 (5),539 (2008).
    [7]T. Rosenband et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place [J]. Science,319 (5871),1808 (2008).
    [8]M. Fujieda et al. All-optical link for direct comparison of distant optical clocks [J]. Opt. Express,19 (17),16498-16507 (2011).
    [9]A. D. Ludlow et al. Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with a Ca clock [J].Science,319 (5871),1805-1808 (2008).
    [10]L. S.Ma et al. Delivering the same optical frequency at two places:accurate cancellation of phase noise introduced by an optical fiber or other time-varying path [J].Opt. Lett,19 (21),1777-1779 (1994).
    [11]P J. Ungar et al. Optical molasses and multilevel atoms:theory [J].J. Opt. Soc. Am. B,6 (11),2058-2071 (1989).
    [12]D. S. Weiss et al. Optical molasses and multilevel atoms:experiment [J]. J. Opt. Soc. Am. B,6 (11),2072-2083 (1989).
    [13]W. D. Phillips. Laser cooling and trapping of neutral atoms [J]. Rev. of Mod. Phys.,70 (3),721-742 (1998).
    [14]S. Chu. The manipulation of neutral particles [J]. Rev. of Mod. Phys.,70 (3), 685-706(1998).
    [15]C. Cohen-Tannoudji. Manipulating atoms with photons [J]. Physica Scripta, 1998 (T76),33 (1998).
    [16]B. C. Young et al. Visible lasers with subhertz linewidths [J]. Phys. Rev. Lett., 82 (19),3799-3802 (1999).
    [17]J.L. Hall, "DEFINING AND MEASURING OPTICAL FREQUENCIES:THE OPTICAL CLOCK OPPORTUNITY-AND MORE", in Nobel Prize Award Ceremony (Stockholm, Sweden,2005), Vol.8, pp.7.
    [18]T.W. Hansch. Nobel lecture:passion for precision [J]. Rev. Mod. Phys.,78 (4), 1297-1309 (2006).
    [19]C. W. Chou et al. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks [J]. Phys. Rev. Lett.,104 (7),70802 (2010).
    [20]N. D. Lemke et al Spin1/2 optical lattice clock [J]. Phys. Rev. Lett.,103 (6), 63001 (2009).
    [21]S. G Turyshev. Experimental tests of general relativity:recent progress and future directions [J]. Phys.-Usp,52 (1),1 (2009).
    [22]J. D. Prestage et al. Atomic Clocks and Variations of the Fine Structure Constant [J]. Phys. Rev. Lett,74 (18),3511-3514 (1995).
    [23]S. Bize et al. Testing the Stability of Fundamental Constants with the 199Hg+ Single-Ion Optical Clock [J]. Phys. Rev. Lett.,90 (15),150802 (2003).
    [24]T. M. Fortier et al. Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance [J]. Phys. Rev. Lett.,98 (7),70801 (2007).
    [25]G. R. Hanes et al. Stability, reproducibility, and absolute wavelength of a 633-nm He-Ne laser stabilized to an iodine hyperfine component [J]. Appl. Opt.,12 (7),1600-1605 (1973).
    [26]J. L. Hall et al. Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser [J]. Instrumentation and Measurement, IEEE Transactions on, 48 (2),583-586 (1999).
    [27]郑文强 et al.I2频率调制光谱在微型Nd:YV04激光稳频中的应用[J].中国激光,29(2),161-163(2002).
    [28]R. W. P. Drever et al. Laser phase and frequency stabilization using an optical resonator [J]. Appl. Phys. B:Lasers and Optics,31 (2),97-105 (1983).
    [29]E. D. Black. An introduction to Pound-Drever-Hall laser frequency stabilization [J]. Am. J. Phys.,69 (1),79 (2001).
    [30]J. Alnis et al. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities [J]. Phys. Rev. A,77(5),053809 (2008).
    [31]Y. Y. Jiang et al. Nd:YAG lasers at 1064 nm with 1-Hz linewidth [J]. Appl. Phys. B:Lasers and Optics,98 (1),61-67 (2010).
    [32]Y. Y. Jiang et al. Making optical atomic clocks more stable with 10-16 -level laser stabilization [J]. Nature Photon.,5 (3),158-161 (2011).
    [33]S.A. Diddams et al. An optical clock based on a single trapped 199Hg+ ion [J]. Science,293 (5531),825 (2001).
    [34]S. J. Waldman. Status of LIGO at the start of the fifth science run [J]. Class. Quantum Grav.,23 (19), S653 (2006).
    [35]M. Notcutt et al. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity [J]. Opt. Lett.,30 (14), 1815-1817(2005).
    [36]H. Stoehr et al. Diode laser with 1 Hz linewidth [J]. Opt. Lett.,31 (6),736-738 (2006).
    [37]S. A. Webster et al. Vibration insensitive optical cavity [J]. Phys. Rev. A,75 (1), 011801 (2007).
    [38]D.J. Jones et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J]. Science,288 (5466),635-639 (2000).
    [39]L. S. Ma et al. The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration [J]. Instrumentation and Measurement, IEEE Transactions on,52 (2),232-235 (2003).
    [40]J. Reichert et al. Measuring the frequency of light with mode-locked lasers [J]. Opt. Comnun., Ⅲ (1-6),59-68 (1999).
    [41]S. A. Diddams et al. Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb [J]. Opt. Express,25 (3),186-188 (2000).
    [42]J. Ye et al., Delivery of high-stability optical and microwave frequency standards over an optical fiber network [J]. J. Opt. Soc. Am. B 20 (7),1459 (2003).
    [43]L. S. Ma et al. Optical frequency synthesis and comparison with uncertainty at the 10"19 level [J]. Science,303 (5665),1843-1845 (2004).
    [44]C. H. Salomon et al. Laser stabilization at the millihertz level [J]. J. Opt. Soc. Am. B,5 (8),1576-1587 (1988).
    [45]R. J. Rafac et al. Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+ [J]. Phys. Rev. Lett,85 (12),2462-2465 (2000).
    [46]J. Millo et al., Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock [J]. Appl. Phys. Lett. 94(14),141105(2009)
    [47]T. M. Fortier et al. Generation of ultrastable microwaves via optical frequency division [J]. Nature Photon.,5 (7),425-429 (2011).
    [48]T. L. Nicholson et al. Comparison of Two Independent Sr Optical Clocks with 1×10-17 Stability at 103 s [J]. Phys. Rev. Lett.,109 (23),230801 (2012).
    [49]S. A. Diddams. The evolving optical frequency comb [Invited] [J]. J. Opt. Soc. Am. B,27(11), B51-B62 (2010).
    [50]N. R. Newbury. Searching for applications with a fine-tooth comb [J]. Nature Photon.,5 (4),186-188 (2011).
    [51]I. Coddington et al. Rapid and precise absolute distance measurements at long range [J]. Nature Photon.,3 (6),351-356 (2009).
    [52]H. Q. Chen et al. Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 [J]. (submitted) (2013).
    [53]蒋燕义,超窄线宽激光及其在光钟中的应用[D].华东师范大学,2012.
    [54]J. L. Hall. Frequency stabilized lasers:from the beginning toward the future [J]. Laser Phys,4,306-318 (1994).
    [55]M. J. Thorpe et al. Frequency stabilization to 6×10-16 via spectral-hole burning [J].Nature Photon.,5 (11),688-693 (2011).
    [56]陈玉华,利用Fabry-Perot腔抑制电光相位调制中的剩余幅度调制[D].华东师范大学,2007.
    [57]A. D. Ludlow, The strontium optical lattice clock:optical spectroscopy with sub-hertz accuracy [D]. JILA,2008.
    [58]T. Kessler et al. Thermal noise in optical cavities revisited [J]. J. Opt. Soc. Am. B,29(1),178-184(2012).
    [59]K. J. Numata et al. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities [J]. Phys. Rev. Lett.,93 (25),250602 (2004).
    [60]J. A. Barnes et al. Characterization of frequency stability [J]. IEEE Trans. Instrum.& Meas,1001 (2),105-120 (1971).
    [61]J. E. Gray et al.Proc 8th Ann. Symp. on Frequency Control [M],1974.
    [62]徐永存,光纤相位噪声对传输窄线宽激光的影响及抑制技术的研究[D].华东师范大学,2009.
    [63]Y. Pang et al. Frequency noise induced by fiber perturbations in a fiber-linked stabilized laser [J]. Appl. Opt,31 (36),7532-7534 (1992).
    [64]J. Poirson et al. Analytical and experimental study of ringing effects in a Fabry-Perot cavity. Application to the measurement of high finesses [J]. J. Opt. Soc. Am. B,14 (11),2811-2817 (1997).
    [65]R. Santra et al., Properties of metastable alkaline-earth-metal atoms calculated using an accurate effective core potential [J]. Phys. Rev. A 69 (4),042510 (2004).
    [66]Z. W. Barber et al. Direct Excitation of the Forbidden Clock Transition in Neutral 174Yb Atoms Confined to an Optical Lattice [J]. Phys. Rev. Lett.,96 (8),83002 (2006).
    [67]C. W. Hoyt et al. Observation and Absolute Frequency Measurements of the 1S0- 3P0 Optical Clock Transition in Neutral Ytterbium [J]. Phys. Rev. Lett.,95 (8),83003 (2005).
    [68]J. Javanainen et al. Laser cooling of trapped particles III:The Lamb-Dicke limit [J]. Appl. Phys. A,24 (2),151-162 (1981).
    [69]J. L. Hall et al. Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser [J]. Instrumentation and Measurement, IEEE Transactions on, 48 (2),583-586 (1999).
    [70]J. Von Zanthier et al. Absolute Frequency Measurement of the In+ Clock Transition with a Mode-Locked Femtosecond Laser [J]. Laser physics,11 (10), 1117-1119(2001).
    [71]T. Udem et al. Optical frequency metrology [J]. Nature,416 (6877),233-237 (2002).
    [72]L. S. Ma et al.A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements [J]. Selected Topics in Quantum Electronics, IEEE Journal of,9 (4),1066-1071 (2003).
    [73]S. G.Porsev et al. Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks [J].Physical Review A,74 (2),020502 (2006).
    [74]F. E. Poindexter. Mercury vapor pressure at low temperatures [J]. Phys. Rev., 26 (6),859 (1925).
    [75]Paul J, et al. Doppler-free spectroscopy of mercury at 253.7 nm using a high-power, frequency-quadrupled, optically pumped external-cavity semiconductor laser[J]. Opt. Lett.,36(1),61 (2011).
    [76]A. Bartels et al. Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references [J]. Opt. Lett,30 (6),667-669 (2005).
    [77]U. Morgner et al. Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime [J]. Phys.Rev. Lett.86 (24),5462-5465 (2001).
    [78]S. Fang. Optical frequency comb with an absolute linewidth of 0.6 Hz-1.2 Hz over an octave spectrum [J]. (submitted) (2013).
    [79]D. J. Jones et al. Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies [J]. Opt. Lett,25 (5),308-310 (2000).
    [80]Y. Y. Jiang et al. A collinear self-referencing set-up for control of the carrier-envelope offset frequency in Ti:sapphire femtosecond laser frequency combs [J]. Metrologia.,42,304 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700