用户名: 密码: 验证码:
高压下A~(2+)Nb_2O_6(A~(2+)=Ca、Zn、Mg)的结构转变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压研究可以发现物质在常压和室温下不能表现出来的一些现象,进而揭示新规律、新性质,乃至发现新物质。随着静高压原位技术的迅猛发展,金刚石对顶砧(DAC)已被广泛应用于各种物质的高压物性研究。压力诱导相变,化学反应及新结构的形成越来越引起国内外科研人员的关注。作为热力学的一个基本参数,压力与被压缩物质的总能量相关,通过改变压力可以控制相组成及反应路径,这是由于压力能非常有效地缩短物质内部的原子(分子)间距离、增加相邻电子轨道重叠,进而改变电子结构和原子(分子)间的相互作用,使之达到一个新的强制高压平衡态。如果在这个压力下,强制高压平衡态中有原子重排和对称性改变,这个强制高压平衡态就是一个新的高压相,这种晶体结构转变称为压力诱导的相变。拉曼光谱,同步辐射光谱与高压技术相结合使人们可以方便的研究在压力作用下的物质内部结构变化,其中高压原位拉曼光谱是目前最常用的高压实验技术之一,为研究物质在高压下的相变和化学反应提供了一个非常灵敏和有效的探测手段。
     近年来,对钶铁矿结构的高压动力学和相转化的研究引起了越来越多的兴趣。目前,高压下钶铁矿结构的相变研究己有一些报导。
     具有A~(2+)Nb_2O_6(A=Ca, Mg, Zn, Fe, Ni, Cd, Co,Mn)化学式的二元铌酸盐,都具有钶铁矿结构。A~(2+)Nb_2O_6铌酸盐系列材料,在其结构中同时具有NbO_6和AO_6两种八面体基团,特殊的结构使其具有优良的压电、铁电性能、荧光和微波介电性能,此外还具有非线性光学效应、电光效应及光折射效应。因此在压电和热释电器件、激光倍频、电光调制、光记忆、光计算、荧光和微波介电材料等方面具有潜在的应用前景。
     几个钶铁矿结构,如NaNbO_3和(Fe, Mn)(Nb, Ta)_2O_6,在高压下的结构研究有过文献报道。高压下研究物质的结构相变是有重要意义的。本文首次利用金刚石对顶砧技术分别对CaNb_2O_6在20GPa以下压力范围、ZnNb_2O_6和MgNb_2O_6在30GPa以下压力范围的结构变化进行了研究。此外,我们利用Linkam变温实验系统与原位拉曼光谱结合,研究了CaNb_2O_6晶体拉曼光谱对温度的响应程度。
     1. CaNb_2O_6晶体高压相变研究:
     本文通过原位高压拉曼和同步辐射对CaNb_2O_6晶体粉末在20GPa以下的结构转变进行了研究。拉曼光谱显示多数拉曼峰强度减弱,且随着压力增加向高波数方向移动。压力频移曲线分别在9和15GPa处形成了拐点。ADXRD谱显示在9.4GPa以上有旧峰消失和新峰出现。结果分析表明,CaNb_2O_6钶铁矿结构在压缩过程中发生了一个压致相变,此相变在8GPa左右开始,在15GPa左右完成。结构转变主要表现在沿a轴(CaNbNbCaNbNb层堆积方向)压缩,而沿b轴方向膨胀。为了解析高压新相的详细结构信息,对15.1GPa以上的的原位同步辐射X射线衍射谱进行了精修,得到新相属于单斜结构(P21/c),晶格参数为a=8.2857A、b=5.92358A、c=4.69152A、β=104.41°。此高压相在23GPa压力以下是稳定的,且压致相变是可逆的。在压力作用下NbO_6和CaO_6八面体变形、NbO_6和CaO_6八面体链的变形是相变的重要原因。
     对CaNb_2O_6晶体粉末在-190到530℃范围内进行了变温拉曼研究。结果显示没有新峰的产生,绝大多数的拉曼振动模式呈现阶段的线性变化且变化率不相同,说明不同的化学键振动对温度的响应程度是不相同的。
     2. ZnNb_2O_6晶体高压相变研究:
     本文通过原位拉曼和原位同步辐射对ZnNb_2O_6晶体在29GPa以下的结构转变进行了研究。拉曼光谱显示在20GPa以下谱线压缩率分段连续,在10GPa和16GPa附近出现拐点,而在20GPa以上基本观察不到明显的拉曼峰。高压原位X射线衍射图谱显示,在压力达到10GPa以上,衍射谱中有峰出现和峰消失现象。分析结果表明,ZnNb_2O_6钶铁矿结构在压缩过程中发生了一个压致相变,此相变在10GPa左右开始,在16GPa左右完成,形成一个高压相;继续增加压力到20GPa以上形成无序态。卸压以后,拉曼光谱恢复至常压状态,表明压致相变和压致无序态都是可逆的。
     3. MgNb_2O_6晶体高压相变研究:
     本文通过原位拉曼和原位同步辐射对MgNb_2O_6晶体在高压下的结构进行了研究。多数拉曼峰的强度随着压力的增高而呈现出变弱并且移向高波数方向的趋势,在三个阶段均有不同的斜率变化,在8GPa和15GPa附近分别形成拐点。继续加压至22GPa时,拉曼谱发生很大变化,很多峰消失不见。X射线散射图谱显示在9GPa以上时有峰的消失和产生现象。分析结果表明,MgNb_2O_6钶铁矿结构在压缩过程中发生了一个压致相变,此相变在8GPa左右开始,在16GPa左右完成,形成一个高压相;新相是单斜对称,属于空间群P2/C,晶格参数为a=3.56453、 b=14.8218、 c=4.91144,单胞体积是255.1383。继续增加压力到20GPa以上形成无序态。卸压以后,拉曼峰恢复至常压状态,表明了压致相变和压致无序态都是可逆的。
     此外,对掺杂1%Eu的MgNb_2O_6晶体在高压下的结构进行了研究。分析结果表明,样品在压缩过程中也发生了一个完整的压致相变,此相变在8GPa左右开始,在15GPa左右完成,相变点略低于未掺杂的MgNb_2O_6晶体。这可以解释为Mg~(2+)的电荷比Eu~(3+)的电荷要低,根据电子补偿原理,格点位置Eu~(3+)代替了Mg~(2+),导致晶格中有Mg~(2+)四面体空位形成。加压过程中MgO_6八面体也由于Eu~(3+)替代空位的存在而使体积改变更容易发生,因此表现为相变点稍微降低。
     上述研究结果对深入了解A~(2+)Nb_2O_6的钶铁矿结构在不同压力下的相变过程及高压下的微结构有重要意义,对常压下拉曼峰的归属和指认都有重要的参考价值,为钶铁矿结构材料在微波介电领域的应用提供了实验依据,也为寻找新功能材料提供了方向。
High-pressure and low-temperature research can discover some newphenomenon which substances cannot exhibit at normal pressure androom temperature, disclose new rules and properties, and even find newsubstances. It provides new approaches for investigating substances’properties at high pressure and low temperature and explaining physicalphenomenon at normal pressure and room temperature. With rapiddeveloping of static high pressure measuring technology, diamond anvilcells (DAC) has been widely applied to the high-pressure study of manymaterials. It is well-known that the application of pressure on crystalsresults in decrease of interatomic distance and increase of the overlappingof the adjacent electron orbit,which will change the electronic structureand the forces of the adjacent atoms. Consequently a forced equilibriumstate under pressure is formed. If there are the rearrangement of atomsand the change of symmetry in it, the forced equilibrium state is a newcrystal structure phase, and the phase transition is named as thepressure-induced phase transition. Raman spectroscopy and x-raydiffraction combined with the high-pressure technology can make us convenient to investigate the structural changes of materials underpressure, so the high-pressure in-situ Raman spectroscopy is one of themost useful high-pressure experimental technologies, and supplies asensitive and effective probing method for investigating phase transitionand chemical reaction of the substance in DAC.
     Recently, high pressure study on AB2O_6of columbite structure waswidely applied in the production for industrial chemicals and polymers.Raman spectroscopy and x-ray diffraction combined with thehigh-pressure technology can make us convenient to investigate thestructural changes of materials under pressure. At present, high pressurestudy on niobate had been reported, but so far no has accurate transitionpoint or the structural characterization of their high-pressure phase.
     Binary niobate ceramies, with the formula A~(2+)Nb_2O_6where A=Ca, Mg,Zn, Fe, Ni, Cd, Co,Mn, have the orthorhombic columbite structure.There is a growing interest in the columbites as microwave dielectricceramics, due to their lower processing temperatures, less complicatedprocessing, the lower cost of niobium compared with tantalum andlow-temperature cofired ceramics (LTCC) with Cu2+.
     Up to now, there are few researches on the crystal structural evolutionof columbites under high pressure. Yosuke Shiratori et al. reported onpressure-induced phase transitions in NaNbO_3by high-pressure Ramanspectroscopy, and found different successive transitions below16GPa. Pistorino et al. and Serena et al. reported on crystal structure of (Fe,Mn)(Nb, Ta)2O_6under high pressure by single-crystal X-ray diffraction,and did not observed phase transition below7GPa. On the crystalstructural evolution of A~(2+)Nb_2O_6under high pressure, there have been noreports. The in-situ high pressure Raman spectroscopy is a very powerfultechnology for dynamically investigating the pressure-induced phasetransition of materials, and the in-situ XRD spectrum is intuitive tocharacterize the crystal structure. In the present work, we have performedin-situ high pressure Raman spectroscopy and in-situ XRD measurementswith a DAC to investigate the pressure-induced phase transition inCaNb_2O_6up to23GPa, ZnNb_2O_6and MgNb_2O_6up to30GPa respectively.Besides, the comparison of crystalline phases obtained by high pressureand by low-temperature crystallization is an important direction of highpressure research. We also studied the Raman peaks of these three niobateat low temperature by in-situ Raman spectroscopy associated withLinkam variable-temperature experimental system, in comparison withtheir pressure-induced phase transition.
     The main contents and conclusions as follows:
     1. Pressure-induced phase transition in CaNb_2O_6.
     We have performed the in-situ high pressure studies of CaNb_2O_6using Raman spectroscopy and Synchrotron X-ray diffraction in aDAC up to23GPa. Both Raman and X-ray diffraction data provide evidence of a reversible phase transition from Pbcn to P21/c,beginning from about8GPa and completing at15GPa. Thecompression is mainly on the a direction of stacking ofCaNbNbCaNbNb layers, and the structure expands along the bdirection. The phase transition involves the deformation andrearrangement of the NbO_6and CaO_6octahedra, as well as thedistortion of the NbO_6and CaO_6octahedral chains. Thehigh-pressure phase keeps stable below22.9GPa. All of thesubsequent XRD patterns above15.1GPa are well described withmonoclinic symmetry, and the indexed lattice parameters area=8.2857, b=5.92358, c=4.69152, β=104.41°by the Pawleyrefinements of the X-ray diffraction data.
     Temperature dependence Raman spectra of all the crystals showthat there is no phase transition in the whole temperature range(-190-560℃).The temperature-dependent shift of Raman phononsis also discussed in the context.
     2. Pressure-induced phase transition in ZnNb_2O_6.
     We have performed the in-situ high pressure studies of ZnNb_2O_6using Raman spectroscopy in a DAC up to30GPa. Raman spectraprovide evidence of a reversible phase transition, beginning fromabout10GPa and completing at16GPa. The high-pressure phase keeps stable below20GPa. With the pressure over20GPa, adisordered state formed.
     3. Pressure-induced phase transition in MgNb_2O_6.
     In situ x-ray diffraction and Raman spectroscopy were used toexplore the pressure-induced phase transformation of MgNb_2O_6single crystal powder with orthorhombic columbite structure29.4GPa and35.0GPa, respectively. Results indicate that MgNb_2O_6initially transforms to the monoclinic structure at about8GPa, andsuch a phase is completed at about15GPa. Also we identified thephase transition as a space group change from Pbcnto P2/C. Thehigh-pressure phase remained stable up to about22.3GPa. With thepressure over22GPa, a disordered state formed.Besides, we carefully studied the crystal structure of1%molEu3+doped MgNb_2O_6under high pressure. A complete phasetransition initially occurred at about8GPa and ultimatelycompleted at around15GPa was observed, which was slightly lessthan pristine MgNb_2O_6. This is reasonably ascribed to higherelectrons deriving from the substitution of Mg2+by Eu3+. Aftersubstitution, the Mg2+tetrahedron vacancy is formed based uponelectronic compensation principle. Furthermore, the volume ofMgO_6octahedraon was also varied by Eu3+substitution and theexistence of vacancy made the phase transition easily happened. As
     mentioned above, a slightly decrease of phase transition wasinvestigated in our study.
     In summary, our results not only provide an experimental meansfor deeply understanding the phase transition of A~(2+)Nb_2O_6andmicrostructure under different pressure with columbite structurebut also are great significance for its Raman peaks identificationunder normal pressure. Using these experimental methods, it couldbe greatly helpful for the application of columbite structurematerials and novel functional species.
引文
[1] JAMIESON J C, LAWSON A W, NACHTRIEB N D. New Device for ObtainingX-Ray Diffraction Patterns from Substances Exposed to High Pressure [J]. Rev.Sci. Instrum.,1959,30:1016.
    [2]张广强,许大鹏,王德涌,张琳,宋更新,薛燕峰,孙静姝,刘晓梅,苏文辉.纳米SiO2在高压高温下的结构转化.吉林大学学报(理学版),2008,46(2):311-313.(核心).
    [3] WONG, K W, WANG Y M, LEE S T, et al. Diamond Relat [J]. Mater.1999,8:1885.
    [4]苏文辉,许大鹏,刘宏建.凝聚态物理学中若干前沿问题的高压研究[J].吉林大学自然科学学报特刊,1992,170.
    [5] H. E. Lorenzana, I. F. Silvera and K. A. Goettel, Phys, Rev. Lett.63(1998)2080.
    [6] A. W. Lawson, and T. Y. Tang, Rev. Sci. Instrum.21(1950)815.[14] C. E. Weir,E.R. Lippincott, A. Van Valkenburg and E. N.Bunting, J.Re.Natl.Bur. Stand., Sec. A63(1959)55.
    [7] YUSA H. Laser-heated diamond anvil cell system for photochemical reactionmeasurements [J]. Review of Scientific Instruments,2001,72(2):1309-1312.
    [8] HUBERT H, GARVIE L, DEVOUARD B, et al. High-Pressure,High-Temperature Synthesis and Characterization of Boron Suboxide (B6O)[J].Chem. Mater.,1998,10:1530.
    [9] MING L AND BASSETT W A. Laser heating in the diamond anvil press up to2000℃sustained and3000℃pulsed at pressures up to260kilobars [J]. Reviewof Scientific Instruments,1974,45(9):1115.
    [10]王华馥、吴自勤.固体物理实验方法.高等教育出版社,北京,1997.
    [11] Machler R, Uggowizter P J and Solenthaler C.Structure, mechanical propertiesandstress corrosion behavior of high strength spray deposited7000seriesaluminum alloy. Mat.Sci.and Tech,1991,7(5):447-451.
    [12] Roberto B and Lorenzo U, J.Chem.Phys.112,8522(2000).
    [13] Yuichi Akahama and Haruki Kawamura, Phys.Rev.B.61,8801(1999).
    [14]周建十.高压科学与技术[M].吉林:吉林大学出版社,1986.
    [15]刘铁成,四氯化碳和苯分子的高压原位拉曼光谱和费米共振研究,吉林大学博士学位论文,2009,11.
    [16] H Shimizu and N Saitoh, Phys.Rev.B.57,230(1998).
    [17] R J Meier and M P VanAlbada, Phys.Rev.Lett.52,1045(1984).
    [18]王克基.高压科学与技术[M].吉林:吉林大学出版社,1985.
    [19] Guangqiang Zhang, Yue Xu, Dapeng Xu*, Deyong Wang, Yanfeng Xue,andWenhui Su. Pressure-induced crystallization of amorphous SiO2withsilicon-hydroxy group and the quick synthesis of coesite under lowertemperature. High pressure research,2008,28(4):641-650.(SCI)
    [20] SU W, WU D, LI X, et al. Investigation using high-pressure synthesis of doublerare-earth oxides of ABO3composition [J]. Physica B,1986,658:139-140.
    [21]徐筱杰,《超分子建筑——从分子到材料》,科学技术文献出版社。
    [22] E. H. Abramson, J. M. Brown, and L. J. Slutsky, Applications Of ImpulsiveStimulated Scattering In The Earth And Planetary Sciences, Annual Review ofPhysical Chemistry (1999)50,279.
    [23] R. J. Hemley, Effects Of High Pressure On Molecules, Annual Review ofPhysical Chemistry (2000)51,763.
    [24] V. Schettino, R. Bini, M. Ceppatelli, L. Ciabini, and M. Citroni, ChemicalReactions at Very High Pressure, John Wiley&Sons, Inc.,2005.
    [25] H. G. Drickamer, Pressure and Electronic Structure, Science (1963)142,1429.
    [26] H. T. Hall, L. Merrill, and J. D. Barnett, High Pressure Polymorphism in Cesium,Science (1964)146,1297.
    [27] H. G. Drickamer, Pi Electron Systems at High Pressure, Science (1967)156,1183.
    [28]姜峰,杜建国,王万春等.高温高压模拟实验研究[J].沉积学报,1998,15(4):145.
    [29]张振宁,高压处理对LY12铝合金组织及性能的影响,工学硕士学位论文,燕山大学,2009年5月
    [30]李良福,利用高压结晶法获得超高强度铝合金的研究.鞍钢技术,1997(4):45-48。
    [31] R.J.Hemley, N.W.Ashcroft. The revealing role of pressure in the condensedmatter sciences.Physics Today,1998,51(8):26
    [32] E. G. Maksimov, et al.[J]. Solid State Commun.,2001,119:569.
    [33] L.J. Zhang, et al.[J]. Solid State Commun.,2007,141:610.
    [34] C. Narayana, et al.[J]. Nature,1998,393:46.
    [35] N. W. Ashcroft.[J]. Phys. Rev. Lett.,2004,92:187002.
    [36] X. J. Chen, et al.[J]. Proc. Natl. Acad. Sci.,2008,105:20.
    [37] M. I. Eremets, et al.[J]. Science,2008,319:1506.
    [38] B. Olinger and W. Shaner.[J]. Science,1983,219:1071.
    [39] N. E. Christensen, M. Hanfland, K. Syassen and D. L. Novikov.[J]. Nature,2000,408:174.
    [40] I. Loa, M. Hanfland and K. Syassen.[J].Phys. Rev. B,2002,65:184109.
    [41] K. Syassen.40th European High-Pressure Research Group Meeting, Page56,2002.
    [42] H. Olijnyk and W. B. Holzapfel.[J]. Phys. Lett. A,1982,99:381.
    [43] V. Vijayakumar, M. Winzenick and W. B. Holzapfel.[J]. Phys. Lett. B,1994,50:12381.
    [44] L. G. Liu.[J]. J. Phys. Chem. Solids,1986,47:1067.
    [45]张泽明,游振东.大别山地区柯石英榴辉岩变质作用的PTt轨迹及其地球动力学意义。[J]地球科学,1992,17(2):141-149.
    [46] LIU J B·YE K.Transformation of garnet epidote am phibolite to eclogite,western Dabie mountains,China [J].J Metamorphic Geol,2004,22:383-394.
    [47] HAN Y.SUN Z.PTt path and tectonic evolution of Mulanshanblueschist belt Ec3.Beijing:China Abstracts of the15th IM A,1990:851-852.
    [48]张泽明,许志琴,刘福来,等.中国大陆科学钻探工程主孔(100~2000m)榴辉岩岩石化学研究[J].岩石学报,2004,20(1):27.42.
    [49] KA I Y,B0LIN C,DANIAN Y, The possible subduction of continentalmaterial to depth greater than200km [J].Nature,2000,407,12:734736.
    [50]刘良,章军峰,HARRY W,et a1.变质沉积物中斯石英存在的显微结构证据:陆壳深俯冲抬升>300km [C]吴福元,等主编.2005年全国岩石学与地球动力学研讨会论文摘要,2005,202.
    [51] ZHENG Y F,FI B,GONG B,et a1.Extreme’0O depletion in eclogite fromthe Sulu terrane in East China [J].European Journal of M ineralogy,1996,8:317—323.
    [52]张泽明,沈昆,赵旭东,等.超高压变质作用过程中的流体岩石相互作用:来自苏鲁超高压变质岩石学,氧同位素和流体包裹研究的限定[J].岩石学报,2006,22(7):1985.1998.108.
    [53] H. Olijnyk and W. B. Holzapfel.[J]. Phys. Rev. B,1985,31:4682.
    [54]唐旭东.有机分子晶体及钕掺杂的钒酸钇晶体的高压研究[D].合肥:中国科技大学,2009
    [55] Coldea R., et al. Quantum Criticality in an Ising Chain: Experimental Evidencefor Emergent E8Symmetry [J].Science,2010.327(5962):177-180.
    [56] KAN AKINORI, et al. Crystal structural refinement of corundum-structuredA4M2O9(A=Co and Mg, M=Nb and Ta) microwave dielectric ceramics byhigh-temperature X-ray powder diffraction [J]. Journal Of The European CeramicSociety,2007.27(8–9):2977-2981.
    [57] SRIVASTAVA A. M., J. F. ACKERMAN, AND W. W. BEERS. On theLuminescence of Ba5M4O15(M=Ta5+, Nb5+)[J]. Journal Of Solid State Chemistry,1997.134(1):187-191.
    [58] FANG TE HUA, et al. Luminescent and structural properties of MgNb2O6nanocrystals [J].Current Opinion in Solid State and Materials Science,2008.12(3-4):51-54.
    [59] PULLAR R. C.. The Synthesis, Properties, and Applications of ColumbiteNiobates (M2+Nb2O6): A Critical Review [J].Journal of the American CeramicSociety,2009.92(3):563-577.
    [1] BENEDETTI L, NGUYEN J, CALDWELL W, et al. Dissociation of CH4at HighPressuresand Temperatures: Diamond Formation in Giant Planet Interiors [J].Science,1999,286:100-102.
    [2]梁桁楠,垫片加温高温高压实验装置的研究,吉林大学硕士学位论文,2009年6月.
    [3] W Denner, W Dieterich, H Schulz, R Keller and W B Holzapfel, Rev. Sci.Instrum.49775,(1978).
    [4] L. Nikiel, R.Wrzalik, A. Brodka. Molecular physics,1989,67,399-406.
    [5] H K Mao and P M Bell, in Carnegie Institution of Washington Year Book77,904,(1978).
    [6] Guozhen Wang, Jiehan Hu, Guobao Cheng. Spectroscopy and Spectral Analysis.1995,15,39-40.
    [7] L. Michaille, H. Ring, G. Sitja, and J.Pique, Phys. Rev. Lett,1997,78,3848-3851.
    [8] A. Jayaraman, Diamond anvil cell and high-pressure physical investigations,Reviews of Modern Physics (1983)55,65.
    [9] D. J. Dunstan, and I. L. Spain, Technology of diamond anvil high-pressure cells: I.Principles, design and construction, Journal of Physics E (1989)22,913.
    [10] K. Shimizu, K. Suhara, M. Ikumo, M. I. Eremets, and K. Amaya,Superconductivity in oxygen, Nature (1998)393,767.
    [11] A. L. Ruoff, H. Xia, and Q. Xia, The effect of a tapered aperture on x-raydiffraction from a sample with a pressure gradient: Studies on three samples with amaximum pressure of560GPa, Review of Scientific Instruments (1992)63,4342.
    [12] J. E. Field, The properties of diamond, Academic Press,1979.
    [13] J. Wilks, E. Wilks, and O. Heinemann, Properties and Applications of Diamond,Butterworth-Heinemann,1992.
    [14] P. R. Briddon, and R. Jones, Theory of impurities in diamond, Physica B (1993)185,179.
    [15] A. T. Collins, Intrinsic and extrinsic absorption and luminescence in diamond,Physica B (1993)185,284.
    [16]于华民,静高压下TiO2结构转变的拉曼研究,吉林大学硕士学位论文,2007.6.
    [17] Bokhimi X., Morales A., Aguilar M., Toledo-Antonio J.A., Pedraza F,International Journal of Hydrogen Energy,2001,26,1279-1287.
    [18] A. Van Valkenburg, Conference Internationale Sur-les-Hautes Pressions,LeCreusot, Saone-et-Loire, France (1965).
    [19] G. Zou, Y. Ma, H. Mao, R. J. Hemley, and S. A. Gramsch, A diamond gasket forthe laser-heated diamond anvil cell, Review of Scientific Instruments (2001)72,1298.
    [20] H. K. Mao, High-Pressure Physics: Sustained Static Generation of1.36to1.72Megabars, Science (1978)200,1145.
    [21] R. Boehler, M. Ross, and D. B. Boercker, Melting of LiF and NaCl to1Mbar:Systematics of Ionic Solids at Extreme Conditions, Physical Review Letters (1997)78,4589.
    [22] Xiaoling Gao, Lan S. Butler, Richard Cremer. Acta Laser Biology Sinica,1998,7,22-26.
    [23] G. Piermarini, R. Forman, and S. Block, Viscosity measurements in the diamondanvil pressure cell, Review of Scientific Instruments (1978)49,1061.
    [24] J. Besson, and J. Pinceaux, Uniform stress conditions in the diamond anvil cell at200kilobars, Review of Scientific Instruments (1979)50,541
    [25] Yong Chen, Yaoqi Zhou, Pei Ni. Rock and Mineral Analysis,2006,25,211-214.
    [26] H. K. Mao, A. Mao and P. M. Bell, Abstract of the8th AIRAPT Conference,Uppsala, edited by C. M. Beckman, T. Johannisson and L. Tegner (ISBN,Swedan),Vol. II, p.453.
    [27] H. K. Mao and P. M. Bell, Science191(1976)851.
    [28] Christian S, Martin A Z. In-Situ Raman Spectroscopy of Quartz: A Pr essureSensor for H ydrothermal Diamond-Anvil Cell Experiments at ElevatedTemperatures [J]. American Mineralogist,2000,85p:1725-1734.
    [29] Haar L, Gallag her J S, Kell G S. NBS/NRC Steam Tables: Thermo dynamic andTranspor t Pr operties and Computer Programs for Vapor and Liquid States ofWater, in SI Units [M]. Washington, DC: Hemisphere Publishing Comp,1984.320.
    [30] Belonoshko A, Saxena S K. A Molecular Dynamics Study of the Pressure-Volume-Temperature Properties of Super-Cr it-ical Fluids:1. H2O [J].Geochim Cosmochim, Acta,1991,55:381-387.
    [31] Holland T, Powell R. A Compensated-Redisch (CORK) Equation for Volumesand Fugacities of CO2and the Range1bar to50kbar and100~600e [J]. ContribMineral Petrol,1991,109:265-273.
    [32] Duan Z, Moller N, Weare J H. An Equation of State for the CH4-CO2-H2OSystem:. Pure Systems from0to1000e and0to8000bar [J].Geo chimCosmo chim Acta,1992,56:2605-2617.
    [33] Spy cher N F. Fugacity Coefficients of H2, CO2, CH4and H2O and ofH2O-CO2-CH4Mixtures: A Virial Equation Treat-ment for Moderate Pressures andTemperature Applicable to Calculations of Hydrothermal Boiling [J]. GeochimCosmochim Acta,1988,52:739-749.
    [34]姜峰,杜建国,王万春等.高温高压模拟实验研究[J].沉积学报,1998,15(4):145.
    [35]张振宁,高压处理对LY12铝合金组织及性能的影响,工学硕士学位论文,燕山大学,2009年5月.
    [36] Mao H K, Bell P M, Shaner J W, et al. Specific Volume Measurements of Cu, Mo,Pd and Ag and Calibration of the Ruby Fluor escence Pressure Gauge from0106to1Mbar [J]. J Appl Phys,1978,49:3276-3283.
    [37] J. H. Eggert, K. A. Goettel, and I. F. Silvera, Ruby at high pressure. I. Opticalline shifts to156GPa, Physical Review B (1989)40,5724.
    [38] J. Chervin, B. Canny, and M. Mancinelli, Ruby-spheres as pressure gauge foroptically transparent high pressure cells, High Pressure Research (2001)21,305.
    [39] W. Bassett, Diamond anvil cell,50th birthday, International Journal of HighPressure Research (2009)29,163.
    [40]李芳菲.含氢分子体系的高温高压物性研究[D].长春:吉林大学,2008.
    [41]张光寅,蓝国祥,王玉芳.晶格振动光谱学[M].北京:高等教育出版社,2001.
    [42] D. M. Adams, S. J. Payne and K. M. Martin.[J]. Appl. Spectrosc.,1973,27:377.
    [43]徐培苍,李如璧。地学中的拉曼光谱。太原:山西科学技术出版社,1996.
    [44]李自莹,顾仁敖,陆天虹。拉曼光谱在化学中的应用。沈阳:东北大学出版社,1998.
    [45]程光熙,拉曼布里渊散射—原理及应用.北京:科学出版社,2001.
    [46]许以明,拉曼光谱及其在结构生物学中的应用。北京:化学工业出版社。2005.
    [47]Herman A. Szymanski, Raman Spectroscopy: Theory and Practice. New York:Plenum Press,1967,70.
    [48] George Turrell, Jacques Corset. Raman Microscopy: Developments andApplications, London:Harcourt Brace, San Diego,1996.
    [49] Laserna J J. Modern Techniques in Raman Spectroscopy. Chichester, New York:Wiley,1996.
    [50] Weber W H, Roberto Merlin. Raman Scattering in Materials Science, Berlin:Springer, B,2000.
    [51] McCreery R L. Raman Spectroscopy for Chemical Analysis. New York: JohnWiley&Sons,2000.
    [52] Richard Allen Nyquist. Interpreting Infrared, Raman, and Nuclear MagneticResonance Spectra. San Diego: Academic Press,2001.
    [53] Carry P R. Biochemical Applications of Raman and Resonance RamanSpectroscoppies. New York: Academic Press,1982.
    [54] Spiro T G. Biochemical Applications of Raman and Resonance RamanSpectroscoppies. New York: Wiley&Sons,1987.
    [55] Smith G D, Clark R J H. J. Archaeological Sci.2004,31:1137.
    [56] Vepiek S, Iqbal Z, Oswald H R, Web A P J. Phys, C: Solid State Phys.1981,14:295.
    [57] Tominaga Y. Proceedings of the Ixth International Conference on RamanSpectroscopy, Tokyo Japan,1984, August27-Sreptember1:38.
    [58] Shao J, Lu J, Huang W, Gao Y, Zhang L, Zhang S L. J. Raman Spectrosc,2006,37:951.
    [59]张树霖.光散射学报,1995,7:7.
    [60]余国涛,光散射学报,1995,8:113;余国涛,光散射学报,1995,8:174.
    [61] Peticolas W L, Strommen D P, Lakshminarayanan V. J. Chem. Phys.1980,73,951.
    [62]张树霖,孟为,周其凤,周兴隆.高分子学报,1991,3;370.
    [63] Li B B, Huang F,Zhang S L, Gao Y, Zhang L. Semicond. Sci. Technol.1998,13:634.
    [64] Schopf J W, Kudryavtesv A B, Agresti D G, Wdowiak T J, Czaja A D. Nature,2002,416:73.
    [65] Y. Akahama, and H. Kawamura, High-pressure Raman spectroscopy of diamondanvils to250GPa: Method for pressure determination in the multimegabarpressure range, Journal of Applied Physics (2004)96,3748.
    [66] F. Decremps, J. Pellicer-Porres, A. M. Saitta, J. C. Chervin, and A. Polian,High-pressure Raman spectroscopy study of wurtzite ZnO, Physical Review B(2002)65,092101.
    [67] T. Kume, H. Fukuoka, T. Koda, S. Sasaki, H. Shimizu, and S. Yamanaka,High-pressure Raman study of Ba doped silicon clathrate, Physical Review Letters(2003)90,155503.
    [68] K. K. Zhuravlev, K. Traikov, Z. H. Dong, S. T. Xie, Y. Song, and Z. X. Liu,Raman andinfrared spectroscopy of pyridine under high pressure, Physical ReviewB (2010)82.
    [69] D. M. Sena, P. T. C. Freire, J. Mendes, and F. E. A. Melo, Raman spectroscopy oftopiramate under high pressure conditions, Journal of Raman Spectroscopy (2010)41,356.
    [70] N. P. Funnell, A. Dawson, D. Francis, A. R. Lennie, W. G. Marshall, S. A.Moggach, J. E. Warren, and S. Parsons, The effect of pressure on the crystalstructure of L-alanine, Crystengcomm (2010)12,2573.
    [71]程国锋,黄月鸿,杨传铮。同步辐射X射线应用技术基础。上海:科学技术出版社。2009。
    [72]马礼敦杨福家。同步辐射应用概论。上海:复旦大学出版社。2005.
    [73] Z. Liu, J. Hu, H. Yang, H. Mao, and R. Hemley, High-pressure synchrotron X-raydiffraction and infrared microspectroscopy: applications to dense hydrous phases,Journal of Physics: Condensed Matter (2002)14,10641.
    [74] C. Czeslik, R. Malessa, R. Winter, and G. Rapp, High pressure synchrotron X-raydiffraction studies of biological molecules using the diamond anvil technique,Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment (1996)368,847.
    [75] T. Varga, A. P. Wilkinson, C. Lind, W. A. Bassett, and C. S. Zha, High pressuresynchrotron x-ray powder diffraction study of Sc2Mo3O12and Al2W3O12, Journalof Physics: Condensed Matter (2005)17,4271.
    [76] J. Jiang, L. Gerward, and J. S. Olsen, Pressure induced phase transformation innanocrystal SnO2, Scripta materialia (2001)44,1983.
    [77] R. Nelmes, and M. McMahon, High-pressure powder diffraction on synchrotronsources, Journal of Synchrotron Radiation (1994)1,69.
    [78] Q. Wang et al., Pressure-induced emission enhancement of a series ofdicyanovinyl-substituted aromatics: Pressure tuning of the molecular populationwith different conformations, Chemphyschem (2008)9,1146.
    [79] F. B. Gong et al., Exploring Intertrimer Cu...Cu Interactions and FurtherPhosphorescent Properties of Aryl Trimer Copper(l) Pyrazolates via SubstituentChanging and External Pressure, Inorganic Chemistry (2010)49,1658.
    [80] S. Y. Li, Q. Wang, Y. Qian, S. Q. Wang, Y. Li, and G. Q. Yang, Understanding thepressure-induced emission enhancement for triple fluorescent compound withexcited-state intramolecular proton transfer, Journal of Physical Chemistry A (2007)111,11793.
    [81] H. Li, L. M. He, B. Zhong, Y. Li, S. K. Wu, J. Liu, and G. Q. Yang, High pressureeffects on the emission properties and crystal structure of coumarin120,Chemphyschem (2004)5,124.
    [82] H. Shimizu, and S. Sasaki, High-pressure Brillouin studies and elastic propertiesof single-crystal H2S grown in a diamond cell, Science (1992)257,514.
    [83] J. Nicholas, S. Sinogeikin, J. Kieffer, and J. Bass, A high pressure Brillouinscattering study of vitreous boron oxide up to57GPa, Journal of non-crystallinesolids (2004)349,30.
    [84] F. Li, Q. Cui, Z. He, T. Cui, J. Zhang, Q. Zhou, G. Zou, and S. Sasaki, Highpressure-temperature Brillouin study of liquid water: Evidence of the structuraltransition from low-density water to high-density water, The Journal of ChemicalPhysics (2005)123,174511.
    [85] R. Jia et al., Brillouin scattering studies of liquid argon at high temperatures andhigh pressures, The Journal of Chemical Physics (2008)129,154503
    [1] KOOHPAYEH, S.M., D. FORT, J.S. ABELL. Some observations on the growth ofrutile single crystals using the optical floating zone method [J].Journal of CrystalGrowth,2005.282(1-2):190-198.
    [2] KOOHPAYEH, S.M., J.S. ABELL, K.K. BAMZAI, A.I. BEVAN, et al. Theinfluence of growth rate on the microstructural and magnetic properties offloat-zone grown ErFeO3crystals [J]. Journal of Magnetism and MagneticMaterials,2007.309(1):119-125.
    [3] HIGUCHI, M., K. KODAIRA, Y. URATA, S. WADA, et al. Float zone growthand spectroscopic characterization of Tm: GdVO4single crystals [J].Journal OfCrystal Growth,2004.265(3-4):487-493.
    [4] YU, P., A. WU, L. SU, X. GUO, et al. Crystal growth and spectroscopic propertiesof MoO3and WO3doped Bi4Ge3O12by optical floating zone method [J].JournalOf Alloys and Compounds,2010.503(2):380-383.
    [5] LUCAS, P., W.T. PETUSKEY. Phase Equilibria in the Lead–Magnesium–Niobium–Oxygen System at1000°C [J].Journal Of The American CeramicSociety,2001.84(9):2150-2152.
    [6] HAGHIGHIRAD, A.A., F. RITTER, W. ASSMUS. Crystal Growth of A2V2O7(A=Y, Er, and Dy) Pyrochlores using High Pressure [J].Crystal Growth&Design,2008.8(6):1961-1965.
    [7] CHANG, F., S. YUAN, Y. WANG, S. ZHAN, et al. Growth and surfacemorphology of ErFeO3single crystal [J].Journal Of Crystal Growth. In Press,Corrected Proof.
    [8] FU, D., M. ITOH, and S.-Y. KOSHIHARA. Crystal growth and piezoelectricity ofBaTiO3--CaTiO3solid solution [J].Applied Physics Letters,2008.93(1):012904-3.
    [9] OGAWA, T., et al. Efficient laser performance of N: dGdVO4crystals grown bythe floating zone method [J].Opt. Lett.,2003.28(23):2333-2335.
    [10] YOON, S.G., et al. Pore-Free12CaO7Al2O3Single-Crystal Growth by MeltState Control using the Floating Zone Method [J].Crystal Growth&Design,2008.8(4):1271-1275.
    [11] E. HUSSON, Y. REPELIN, N.Q. DAO, et al. Etude par spectrophotométriesd'absorption infrarouge et de diffusion Raman des niobates de structurecolumbite [J].Spectrochim. Acta A1977:995.
    [12] E. HUSSON, N.Q. DAO, C. R. ACAD. Sci. Paris Sér [J].C1974,279:141.
    [13] E. HUSSON, Y. REPELIN, N.Q. DAO, et al. Normal coordinate analysis forCaNb2O6of columbite structure [J].J. Chem. Phys.1977,66(11):5173.
    [14] KOOHPAYEH, S.M., D. FORT, A.I. BEVAN, A.J. WILLIAMS, et al. Study offerromagnetism in Co-doped rutile powders and float-zone grown single crystals[J].Journal of Magnetism and Magnetic Materials,2008.320(6):887-894.
    [15]李名復.半导体物理学[M].1991,北京:科学出版社.
    [16] EL-KORASHY A and ABU EL-FADL. Temperature dependence of the opticalband gap of nearly perfect K2ZnCl4single crystals in the ferroelectric phase[J].A Physica B: Condens. Matter.271,205.1999.
    [17] IN-SUN CHO, DONG WOOK KIM, CHIN MOO CHO, et al. Synthesis,characterization and photocatalytic properties of CaNb2O6with ellipsoid-likeplate morphology [J].Solid State Sciences2010,12:982–988.
    [18] F.J. Emmenegger, Crystal Growth2(1968)109.
    [19] J.P. Cummings, S.H. Simonsen, Am. Min.55(1970)90-97.
    [20] S.C. Tarantino, M. Zema, T.B. Ballaran, Phys Chem Minerals37(2010)769–778.
    [21] M. Pistorino, F. Nestola, T.B. Ballaran, M.C. Domeneghetti, Phys ChemMinerals33(2006)593–600.
    [22] Y. Shiratori, A. Magrez, M. Kato, K. Kasezawa, C. Pithan, R. Waser, J. Phys.Chem. C112(2008)9610–9616.
    [23] A. Masafumi, Y. Mitsuru, N. Shinichiro, Langmuir8(1992)2240-2246.
    [24] S. Hiroyasu, M. Kazuyuki, J. Phys. Chem.88(1984)2934-2936.
    [25] K.E. Lipinska-Kalita, M.G. Pravica, M. Nicol, J. Phys. Chem. B109(2005)19223-19227.
    [26] G. Kavitha, C. Narayana, J. Phys. Chem. B110(2006)8777-8781.
    [27] Y. Fan, J. Zhou, S. Li, F.Y. Guan, D.P. Xu, Chin. Phys. Lett.28(2011)110702-110702.
    [28] T.C. Liu, M. Zhou, S.Q. Gao, Z.W. Li, Z.L. Li, P. Zhang, L. Li, T.Q. Lv, D.P.Xu, Chin. Phys. Lett.26(2009)070-701.
    [29] C.L. Huang and K.H. Chiang,431(2007)326–330.
    [30] C. E. Weir, C. J.Piermarini and S. Block, J. Chem. Phys.50(1969)2089-2093.
    [31] L. Li, G.L. Feng, D.J. Wang, H. Yang, Z.M. Gao, B.X. Li, D.P. Xu, Z.H. Ding,X.Y. Liu J. Alloys Compd.509(2011)263–266.
    [32] R.L. Moreira, N.G. Teixeira, M.R.B. Andreeta, A.C. Hernandes, A. Dias CrystalGrowth Design10(2010)1569–1573.
    [33] E. Husson, Y. Repelin, N.Q. Dao, H. Brusset, J. Chem. Phys.66(1977)5173.
    [34] C. In-Sun, T.B. Shin, K.Y. Dong, W.K. Dong, S.H. Kug, J. Am. Ceram. Soc.92(2009)506–510.
    [35] F.X. Zhang, J. Lian, U. Becker, R.C. Ewing, L.M. Wang, L.A. Boatner, J.Z. Hu,S.K. Saxena, Physical Review B74(1930)174116.
    [36] KOOHPAYEH, S.M., D. FORT, A.I. BEVAN, A.J. WILLIAMS, et al. study offerromagnetism in Co-doped rutile powders and float-zone grown single crystals[J].Journal of Magnetism and Magnetie Materials,2008.320(6): p.887-894.
    [37] PULLAR, R.C., J.D. BREEZE, N.M. ALFORD. Characterization andMierowave Dielectric ProPerties of M2+Nb2O6Ceramies[J]. Journal of theAmeriean Ceramic Society.2005.88(9):p.2466-2471.
    [38] KOOHPAYEH, S.M., J.S. ABELL, K.K. BAMZAI, A.I. BEVAN, et al. Theinfluence of growth rate on the mierostruetural and magnetic properties offloat-zone grown ErFeO3crystals [J]. Journal of Magnetism and MagneticMaterials,2007.309(l):p.119-125.
    [39] HIGUCHI, M., K. KODAIRA, Y. URATA, S.WADA, et al. Float zone growthand spectroscopic characterization of Tm: GdVO4single crystals [J]. Journal OfCrystal Growth,2004.265(3-4):p.487-493.
    [1] ZHU, J., ET AL. Optical absorption properties of doped lithium niobate crystals[J].Journal of physics: Condensed Matter.1992.4(11): p.2977.
    [2] PULLAR. R. C. The Synthesis, Properties, and Applications of ColumbiteNiobates (M2+Nb2O6): A Critical Review [J]. Journal Of The American CeramicSociety,2009.92(3):P.563-577.
    [3] BELOUS, A., O. OVCHAR, B. JANCAR, M. SPREITZER, et al. The Effect ofChemical Composition on the Structure and Dieleetric ProPerties of theColumbites ANb2O6[J]. Joumal of The Electrochemical Society2009.156(12): P.GZO6-G212.
    [4] LEE, H.J., K.S. HONG, S.J. KIM, I.T. KIM. Dielectric properties of MNb2O6compounds (where M=Ca, Mn, Co, Ni, or Zn)[J]. Materials Research Bulletin,1997.32(7): P.847-855.
    [5] ZHOU, Y., Z. QIU, M. L, Q. MA, et al. Photoluminescence Characteristies of Pureand Dy-DoPed ZnNb2O6Nanoparticles Prepared by a Combustion Method IJ].The Joumal of Physical Chemistry C,2007.111(28): p.10190-10193.
    [6] FANG TE HUA, et al. Luminescent and structural properties of MgNb2O6nanocrystals [J].Current Opinion in Solid State and Materials Science,2008.12(3-4):51-54.
    [7] PULLAR R. C.. The Synthesis, Properties, and Applications of ColumbiteNiobates (M2+Nb2O6): A Critical Review [J].Journal of the American CeramicSociety,2009.92(3):563-577.
    [8] SABOLSKY, E. M., GL. MESSING, S. TROLIER-MCKINSTRY, Kinetics ofTemplated Grain Growth of0.65Pb(Mgl/3Nb2/3)O3·0.35PbTiO3[J]. Journal of TheAmerica Ceramic Society,2001.84(11): p.2507-2513.
    [9] Ll, C.F., YBANDO, M. NAKAMURA, N. KIMIZUKA, et al. Precipitate withinthe spinel-type Zn2TiO4matrix studied by high-resolution analytical transmissionelectron microscopy [J]. Materials Research Bulletin,2000.35(3): p.351-358.
    [10] VIJAYAN, N., G. BHAGAVANNARAYANA,, G.C. BUDAKOTI. B. KUMAR,et al. Optical, dielectric and surface studies on solution grown benzimidazolesingle crystals [J]. Materials Letters,2008.62(8-9): P.1252-1254.
    [11] LIHUA, B., ET AL. Luminescence and optical absorption study of p-typeCdGeAs2[J]. Journal of Physics: Condensed Matter,2004.16(8): P.1279.
    [12] LEITE, D. M. G., J. H. D. D. SILVA. The optical absorption edge ofnanocrystalline Ga1-xMnxN films deposited by reactive sputtering [J]. Journal ofPhysics: Condensed Matter,2008.20(5): p.055001.
    [13] GARCES, N. Y., ET AL. Electron Paramagnetic resonance and optical absorptionstudy of V4+centres inYVO4crystals [J]. Journal of Physics: Condensed Matter.2004.16(39): P.7095.
    [14] CAVALCANTE, L. S., J. C. SCZANCOSKI, VC. ALBARICl, J. M. E. MATOS,et al. Synthesis, characterization. Struetural refinement and optical absorptionbehavior of PbWO4powders [J]. Materials Science and Engineering: B,2008.150(1): P.18-25.
    [15] Masafumi A., Mitsuru Y., Shinichiro N., Langmuir,[J],1992,8:2240-2246.
    [16] Hiroyasu S., Kazuyuki M., J. Phys. Chem.,[J],1984,88:2934-2936.
    [17] Lipinska-Kalita K. E., Pravica M. G., Nicol M., J. Phys. Chem. B,[J],2005,109:19223-19227.
    [18] Kavitha G., Narayana C., J. Phys. Chem. B,[J],2006,110:8777-8781.
    [19] Fan Y., Zhou J., Li S., et al.., Chin. Phys. Lett.[J],201128:110702-110702.
    [20] LIN Ao-Lei,WANG Kai,ZHAO Yu,et al.. Chem. J. Chinese Universities (高等学校化学学报),[J],2008,29(6):1181-1184.
    [21] LIU Li, YAO Bin, ZHAO Xu-Dong,et al.. Chem. J. Chinese Universities (高等学校化学学报),[J],2002,23(1):6-9.
    [22] YUAN Zhi-Hao,SUN Yong-Chang,WANG Yu-Hong,et al.. Chem. J. ChineseUniversities (高等学校化学学报),[J],2004,25(10):1875-1878.
    [23] BIEGALSKI, M. D., J. HHAENI, STROLIER-MCKINSTRY. D. G. SCHLOM,et al. Thermal expansion of the new perovskite substrates DyScO3and GdScO3[J].Journal Of Materials Research,2005.20(04): p.952-958.
    [24] WEMPLE, S. H., M. DIDOMENICO. Behavior of the Electronic DielectricConstant in Covalent and Ionic Materials [J]. Physical Review B,1971.3(4): P.1338.
    [25] Emmenegger F. J., Crystal Growth,[J],1968,2:109.
    [26] Cummings J. P., Simonsen S. H., Am. Min.,[J],1970,55:90-97.
    [27] Tarantino S. C., Zema M., Ballaran T. B., Phys Chem Minerals,[J],2010,37:769–778.
    [28] Pistorino M., Nestola F., Ballaran T. B., Domeneghetti M. C., Phys ChemMinerals,[J],2006,33:593–600.
    [29] Shiratori Y., Magrez A., Kato M., Kasezawa K., Pithan C., Waser R., J. Phys.Chem. C,[J],2008,112:9610–9616.
    [30] Husson E., Repelin Y., Dao N. Q., Brusset H. J. Chem. Phys.,[J],1977,67:1157-1136.
    [31] Husson E., Repelin Y., Dao N. Q., Brusset H., J. Chem. Phys.,[J],1977,66:5173.
    [32] Zhang F. X., Lian J., Becker U., Ewing R. C., Wang L. M., Boatner L. A., Hu J.Z., Saxena S. K., Physical Review B,[J],1930,74:174116.
    [33] KOOHPAYEH, S. M., D. FORT.A. I. BEVAN, A. J. WILLIAMS, et al. Study offerromagnetism in Co-doped rutile powders and float-zone grown single crystals[J]. Journal of Magnetism and Magnetic Materials,2008.320(6): p.887-894.
    [34] KOOHPAYEH, S.M., D. FORT, A.I. BEVAN, A.J. WILLIAMS, et al. study offerromagnetism in Co-doped rutile powders and float-zone grown single crystals[J]. Journal of Magnetism and Magnetie Materials,2008.320(6):p.887-894.
    [35] PULLAR, R.C., J.D. BREEZE, N.M. ALFORD. Characterization andMierowave Dielectric ProPerties of M2+Nb2O6Ceramies [J]. Journal of theAmerican Ceramic Society.2005.88(9):p.2466-2471.
    [36] KOOHPAYEH, S.M., J.S. ABELL, K.K. BAMZAI, A.I. BEVAN, et al. Theinfluence of growth rate on the mierostruetural and magnetic properties offloat-zone grown ErFeO3crystals [J]. Journal of Magnetism and MagneticMaterials,2007.309(l): p.119-125.
    [37] HIGUCHI, M., K. KODAIRA, Y. URATA, S.WADA, et al. Float zone growthand spectroscopic characterization of Tm: GdVO4single crystals [J]. Journal ofCrystal Growth,2004.265(3-4): p.487-493.
    [1] ZHU, J., ET AL. Optical absorption properties of doped lithium niobate crystals[J].Journal of physics: Condensed Matter.1992.4(11): p.2977.
    [2] PULLAR. R. C. The Synthesis, Properties, and Applications of ColumbiteNiobates (M2+Nb2O6): A Critical Review [J]. Journal Of The American CeramicSociety,2009.92(3):P.563-577.
    [3] LEE, H.J., K.S. HONG, S.J. KIM, I.T. KIM. Dielectric properties of MNb2O6compounds (where M=Ca, Mn, Co, Ni, or Zn)[J]. Materials Research Bulletin,1997.32(7): P.847-855.
    [4] BELOUS, A., O. OVCHAR, B. JANCAR, M. SPREITZER, et al. The Effect ofChemical Composition on the Structure and Dieleetric ProPerties of theColumbites ANb2O6[J]. Joumal of The Electrochemical Society2009.156(12): P.GZO6-G212.
    [5] ZHOU, Y., Z. QIU, M. L, Q. MA, et al. Photoluminescence Characteristies of Pureand Dy-DoPed ZnNb2O6Nanoparticles Prepared by a Combustion Method [J].The Joumal of Physical Chemistry C,2007.111(28): p.10190-10193.
    [6] SHERLOCK, R.J., T. J. Glynn, G. Walker, G. F. Imbusch, et al. Spectroscopicinvestigations of Ni2+in MgNb2O6and ZnNb2O6[J]. Journal of Luminescence,72-74(1997): P.268-269.
    [7] HUSSON, E., YEPELIN, N.Q. DAO, H. BRUSSET. Normal coordinate analysisof the MNb2O6series of columbite structure (M=Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn,Cd)[J]. Journal of Chemical Physics,1977.67(3): P.1157-1163.
    [8] MOREIRA, R.L., N.G. TEIXEIRA, M.R.B. ANDREETA, A.C. HERNANDES, etal. Polarized Micro-Raman Scattering of CaNb2O6Single Crystal Fibers Obtainedby Laser Heated pedestal Growth [J]. Crystal Growth&Design,2010.10(4):p.1569-1573.
    [9] HSIAO. Y.J., T.H. FANG L.W. Jl. Synthesis and luminescent proPerties ofZnNb2O6nanocrystals for solar cell [J]. Materials Letters,2010.64(23):P.2563-2565.
    [10] DESNICA. D.I., M. KRANJCEC, B. CELUSTKA. Optical absorption edge andUrbach’s rule in mixed single crystals of (GaxInl-x)2Se3in the indium rich region[J]. Joumal Of Physics and Chemistry Of Solids,1991.52(8): P.915-920.
    [11] ELKORASHY. A. M. Optical Constants of Tin SulPhide Single CrystalsMeasured by the Interference Method [J]. physica status solidi (b),1990.159(2):p.903-915.
    [12] SUN. E., R. Z.WANG, Z. WANG, D. XU, et al. Optical interband transitions inrelaxor-based ferroelectric0.93Pb(Zn1/3Nb2/3)O3-0,07PbTiO3single crystal [J].Journal Of Applied Physics,2010.107(11): p.113532-3.
    [13] GAFEAR, M. A., A. ABU EL-FADL, S. BIN ANOOZ. Optical absorptionspectra and related parameters of ammonium zinc chloride crystal in theantiferroelectric and commensurate phases.[Jl Crystal Research and Technology,2003.38(9): p.798-810.
    [14] T.C. Liu, M. Zhou, S.Q. Gao, Z.W. Li, Z.L. Li, P. Zhang, L. Li, T.Q. Lv, D.P.Xu, Chin. Phys. Lett.26(2009)070-701.
    [15] K.E. Lipinska-Kalita, M.G. Pravica, M. Nicol, J. Phys. Chem. B109(2005)19223-19227.
    [16] C. E. Weir, C. J.Piermarini and S. Block, J. Chem. Phys.50(1969)2089-2093.
    [17] A. Masafumi, Y. Mitsuru, N. Shinichiro, Langmuir8(1992)2240-2246.
    [18] S. Hiroyasu, M. Kazuyuki, J. Phys. Chem.88(1984)2934-2936.
    [19] G. Kavitha, C. Narayana, J. Phys. Chem. B110(2006)8777-8781.
    [20] Y. Fan, J. Zhou, S. Li, F.Y. Guan, D.P. Xu, Chin. Phys. Lett.28(2011)110702-110702.
    [21] C.L. Huang and K.H. Chiang,431(2007)326–330.
    [22] L. Li, G.L. Feng, D.J. Wang, H. Yang, Z.M. Gao, B.X. Li, D.P. Xu, Z.H. Ding,X.Y. Liu J. Alloys Compd.509(2011)263–266.
    [23] E. Husson, Y. Repelin, N.Q. Dao, H. Brusset, J. Chem. Phys.66(1977)5173.
    [24] C. In-Sun, T.B. Shin, K.Y. Dong, W.K. Dong, S.H. Kug, J. Am. Ceram. Soc.92(2009)506–510.
    [25] BALLMAN, A. A, S. P. S. PORTO and A. YARIV. A new laser host crystal [J].Appl Phys,196334(3):3155-3156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700