用户名: 密码: 验证码:
立式多层长圆筒容器气相区化爆压力波传播及壳体动态响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立式多层长圆筒厚壁容器广泛应用于大型化工生产装置中,在生产过程中此类容器爆破事故时有发生,造成了巨大的财产损失和严重的人员伤亡。但是有些事故原因定性存在较大的争议,特别是平阴尿塔爆破事故就存在化学爆炸和物理爆炸的争议,不利于采取有效措施预防此类事故的再次发生。为了探索此类设备爆破的真实原因,作者针对立式多层长圆筒容器塔体爆破的相关问题进行了研究,主要包括下面两个问题:一是立式长圆筒容器气相区化学爆炸压力波传播过程,包括对化爆压力波传播过程影响因素的研究;二是多层包扎圆筒在压力载荷作用下的力学响应,包括完整壳体在动态载荷作用下的响应和缺陷壳体在静载下的力学性能分析。只有弄清这两个问题,才能为明确尿塔爆破原因和分析其他类似容器爆破原因提供参考,也才能为类似设备采取针对性的防爆措施提供研究依据。
     对典型立式长圆筒容器尿塔的结构和尿素生产工艺进行了分析,分析了尿塔中可燃气体化爆条件,总结了立式长圆筒容器气相空间化学爆炸的特点。研究表明,气相区内部容易聚集可燃气体和氧气,在静电火花等外界能量激励下存在发生化学爆炸的可能。尿塔类容器具有大长径比、空间密闭以及内部介质分为气相和液相等特点,使此类容器气相区化学爆炸具有空间密闭性、局部爆炸性和传播介质性质突变性等特点。
     对立式长圆筒容器中气相区化爆压力波传播进行了研究。首先探讨了可燃气体爆源物理模型与凝聚相炸药爆源物理模型的异同,对两种爆源进行了等效性分析。计算了爆炸能量,介绍了爆炸模型和运动方程,建立了立式长圆筒容器有限元模型。在此基础上,利用LS-DYNA软件对立式长圆筒容器气相区化学爆炸压力波传播过程进行了模拟,获得了内部介质分为气相区和液相区的立式长圆筒容器气相区化学爆炸压力场演变规律、不同时刻器壁爆炸压力变化规律和不同位置器壁压力时间演化规律。研究结果表明,不同时刻介质内的压力场和器壁压力变化规律以及不同位置器壁压力演化规律清晰地描述了化爆压力波传播过程。气相区介质内压力场演化主要是由气体运动形成的,具有持续性和不规律性;上封头器壁压力曲线的首峰值即为最大峰值;压力最大值出现在上封头顶部位置,接近400MPa,远高于其他位置器壁压力最大值。液相区内的压力波是气体运动激励气液界面时产生的,具有不稳定性和持续性,在传播过程中会重复发生“叠加”和“分离”;筒体壁面压力曲线首峰值在多数时间内不是最大值,而且压力最大值出现的时间不固定;压力波被下封头反射后会向上传播,并在整个液相区的筒体范围内与后续向下传播的压力波相遇,叠加后的波强度有所增加。
     对爆源位置、气相区体积变化、塔盘障碍物、爆炸能量和气相区形状等因素对立式长圆筒容器气相区化爆压力波传播过程的影响进行了研究分析。结果显示,整个筒体范围内的爆炸压力最大值出现在上封头顶部位置,是其他位置器壁压力最大值的5倍以上;液相区器壁压力最大值出现在靠近气液界面附近位置,比液相区其他位置器壁压力最大值高20MPa以上,出现的具体位置因变量不同稍有变化;液相区其他位置器壁压力最大值几乎相等。大多数情况下,上封头顶部位置压力比冲量曲线值在整个筒体范围内最大,只有爆源偏心设置时,靠近气液界面器壁压力“加强区”的比冲量曲线会超过上封头顶部位置比冲量曲线;随着与爆心距离的增加,不同位置比冲量曲线逐渐降低;设置塔盘后,塔盘上侧单元的比冲量曲线稍高于塔盘下侧相邻单元的比冲量曲线;气相区体积减小和爆炸能量增加时,不同位置比冲量曲线值增加,而气相区体积增加时比冲量曲线值减小。爆源位置变化影响上封头顶部压力最大值,对其他位置器壁压力最大值几乎无影响;气相区体积减小和爆源能量增加时,容器内压力场强度和器壁最大压力值变大;气相区体积增加时,压力场强度和器壁最大压力值减小;设置塔盘后,塔盘下侧器壁单元压力时间曲线趋于平缓。采用平封头结构时,器壁最大压力值分布和比冲量曲线变化规律与采用球封头时相似。
     利用LS-DYNA软件对带间隙多层包扎圆筒在动态载荷作用下的力学响应进行了研究,分析过程中充分考虑了不同加载压力曲线、层板间隙以及平面应力和平面应变的影响,其中加载压力波形包括单波峰和两种双波峰情况,层板间隙包括0.02mm、O.1mm、0.2mm、0.3mm和0.4mm五种情况。计算结果显示,层板等效应力变化过程分成振荡变化阶段、屈服发展阶段、同步快速增加阶段和应力降低阶段:振荡变化阶段,层板等效应力振荡变化;屈服发展阶段,层板从内向外逐层屈服,屈服后等效应力增长减缓;同步快速增加阶段,最外层板屈服后,层板等效应力同步快速增加;等效应力降低阶段,内部层板应力降低速度大于外部层板等效应力降低速度。在整个加载过程中,层板间应力分布不连续;层板内应力分布不均匀;内层板应力不保证一直大于外层板应力,其中加载压力恢复至平衡压力后,间隙为0.02mm时,外层板应力高于内层板应力;层板运动速度发生变化。层板位移随加载压力降低而有所减小,等效塑性应变不随加载压力降低而减小。不同波峰加载下,次波峰作用时层板应力变化以首波峰结束时状态为基础开始发展,对恢复平衡压力时的等效应力、等效塑性应变和位移影响较小。间隙增加后,等效应力振荡变化阶段缩短;内部层板等效应力、等效塑性应变和位移增加,而外部层板的相关参量减小:加载压力恢复至平衡压力后,间隙为O.1mm时,内外层板等效应力几乎相等,间隙为0.2mm、0.3mm和0.4mm时,内部层板等效应力高于外部层板等效应力。相同层板间隙时,平面应力状态下的层板应力、等效塑性应变和位移值高于平面应变状态下的计算值。
     对尿塔爆破机理进行了再分析。首先讨论了尿塔气相区化学爆炸引起塔体爆破的可能性,分析了尿塔中化爆压力波传播规律的原因,结果显示平阴尿塔的初始断裂并非由气相区化学爆炸引起。总结了尿塔中缺陷类型,分析了内层板上存在裂纹时对多层包扎圆筒产生的影响,结果显示,随着裂纹长度增加,内层板应力降低,外层板应力增加;外层板与裂纹自由边相接触的位置会出现应力“加强区”,会导致应力腐蚀裂纹优先在该位置产生。建立缺陷层板包扎圆筒结构的物理模型,提出考虑裂纹层板影响时其他层板应力和临界裂纹长度的计算方法。以平阴尿塔为算例,分析了考虑裂纹层板影响时其他层板应力和临界裂纹长度变化规律,结果显示,考虑内层板裂纹影响时,外层板应力增加,临界裂纹长度变短,增加了尿塔运行的危险性。
     总之,通过对立式多层长圆筒容器内气相空间化学爆炸压力波传播过程的模拟,直观形象地展示了尿塔气相区化学爆炸压力波在尿塔中的传播过程。通过对尿塔中气相区化学爆炸引起塔体爆破的分析以及与化学爆炸观点关于爆炸波传播过程描述的比较,否定了平阴尿塔塔体初始断裂是由气相区化学爆炸引起的可能。通过对间隙多层包扎圆筒在动态载荷下的响应模拟研究,获得了间隙层板结构在动态载荷作用下的力学响应,为此类结构设备的防爆设计提供了直接的参考。对缺陷多层包扎圆筒的研究,很好地解释了尿塔层板中应力腐蚀裂纹分布规律。通过作者在本文中的研究,对明确尿素合成塔爆破原因和分析其他类似容器爆破原因提供了参考,对于采取有针对性的预防措施,保障此类容器的安全运行,具有重要的意义。此外,由于立式多层长圆筒容器事故非常复杂,要想彻底对尿塔爆破原因进行溯源研究,尚需对本文中的模拟结果进行容器爆破性实验验证。
The vessels with long vertical multilayer cylinder are widely used in large scale chemical plants. Explosion accidents of such vessels happen sometimes and cause serious loss of property and casualty. But, some accident causes have huge dispute, especially the dispute over Pingyin urea reactor accident is chemical explosion and physical explosion. And this situation goes against taking effective measures to prevent such accidents happening. In order to confirm the real explosion causes of such vessels, the author takes the relative study on the explosion accidents of vessels with long vertical multilayer cylinder. The main research topics are as follows:the first question is to study the pressure wave propagation in a vessel with long vertical multilayer cylinder resulting from the chemical explosion in gas space, including the influencing factors of the wave propagation process; the second one is the response of the multilayer cylinder structure, including the dynamic response under dynamic load and the mechanical response of defect shell under static load. Only these two questions are solved, the real causes of urea reactor explosion accidents can be confirmed and it can provide reference idea of similar accident analysis.
     The structure of a urea reactor and the synthesis process of urea production are analyzed at first. And then, the chemical explosion conditions of combustive gases in the urea reactor are analyzed. The chemical explosion characters are summarized occurred in gas space of the urea rector. The results show that the gas space can gather these combustive gases and the oxygen gases easily. Under the excitation of external energies, such as electrostatic sparks, there exists the explosion possibility. Because of the characters of vessels like a urea reactor, the chemical explosion occured in gas space has following characters:space airtightness, local explosion and sudden change of media character in the vessel.
     The pressure wave propagation process in a vessel with long vertical cylinder resulted from the gas space chemical explosion is studied. The combustive gas explosion source is compared with the solid explosive source at first. Equivalent analysis of two explosive sources is carried out. The explosive energy is calculated. The explosive model and the motion equations are introduced. The finite element model of such vessel is built. Based on these works, the pressure wave propagation process is simulated by using the LS-DYNA software. The chemical explosion pressure field evolution law is obtained. Meanwhile, the explosion pressure evolution law on vessel wall of different times and pressure evolution law versus time on vessel wall in different locations are obtained. The research results shows that the pressure wave propagation process can be described clearly by the pressure field evolution law, the explosion pressure evolution law on vessel wall of different times and pressure evolution law versus time on vessel wall in different locations. The explosion pressure evolution law of gas space is mainly formed by the gas motion. And it has persistence and irregularity. The first peak value of the pressure curve on the top of the top head is the maxim pressure value and the value is about400MPa. The pressure wave in the liquid space is formed by the gas-liquid interface vibration caused by the gas motion. It also has persistence and irregularity. Wave overlap and wave separation process will occur repeatedly during the pressure wave propagates in the liquid space. The first peak value of the pressure curve is no longer the maximum value for most of the time and the appearance time of the maximum pressure value is irregular. The pressure wave will propagate upward after it is reflected by the bottom head and it will superpose with the following pressure waves which propagate downward. The wave intensity increased after the wave superposition.
     The effects on the pressure wave propagation process of the influencing factors, such as the volume change of the gas space, the trays, the explosive energy and the gas space shape, are studied. The results show that the maximum pressure value of the whole cylinder appears at the top of the top head and the value is five times the maximum value of other positions. The maximum pressure value of the liquid space appears at the position nears the gas-space interface and it is about20MPa bigger than the pressure value of other positions. The exact position of the maximum value of liquid space changes a little as the influencing factors change. The maximum value of other positions of liquid space is at the same level. In most situations, the specific impulse value at the top position of the top head is the maximum value of the whole vessel. The specific impulse value of the pressure of "strengthen area" is even larger than the one of the top position of the top head when the explosive source is eccentric settled. As the distance from the explosive center increases, the specific impulse value decreases gradually. The specific impulse value of the element on the upside of the tray is a little larger than the value of the adjacent element on the downside of the tray. As the gas space volume decreases and the explosive energy increases, the specific impulse value of different positions increases. As the gas space volume increases, the specific impulse value of different positions decreases. The maximum pressure value of the top position of the top head changes a lot with the explosive center changes, but the value of other positions is almost unchanged. The maximum pressure value increases with the increase of the explosive energy and the decrease of the gas space volume. The maximum pressure value decreases with the increase of the gas space volume. The pressure curve becomes flat after the trays are settled. The maximum pressure distribution law and the specific impulse curve when the top head is flat head are similar to the spherical head.
     The dynamic response of multilayer cylinder vessel under dynamic load is simulated by the LS-DYNA. The effects of the load curve, the layer gaps and the plane stress state are considered during simulation. The load curves include a single peak curve and two kinds of double peak curve. The layer gaps include0.02mm,0.1mm,0.2mm,0.3mm and0.4mm. The results show that the layer stress increase process is divided into several stages such as oscillation change stage, yield development stage, quick increase simultaneously stage and stress decease stage. During the oscillation change stage, the layer stress shows a significantly change oscillation; at the yield development stage, the inner layer yield at first, and then the outer layers yield layer by layer, the stress increase rate of yield layers decrease a lot; at the quick increase simultaneously stage, all the layer stress increase simultaneously and quickly at the same time; during the stress decease stage, the stress decrease rate of inner layers is larger than the outer layers'. During the whole process, the layer stress show discontinuous distribution between layer and the layer stress is uneven distribution in a layer; the inner layer stress is not guarantee larger than the outer layer stress all the time, the outer layer stress is larger than the inner layer stress when the load returns to the balance pressure with the gap of0.02mm. The layer velocity changes during the loading. The final layer displacement decreases a little as the load decreases. The final plastic deformation does not change with the load decreases. Under the double peak load curve, the layer stress changes under the second pressure peak on the basis of the stress distribution when the first pressure peak comes to an end. The double peak pressure curve load has little influence on the final layer stress, the final plastic deformation and the final displacement. With the increase of gaps, the oscillation change stage time becomes shorter; the final layer stress and the final plastic deformation of inner layers grow larger, while the relative values of the outer layers grow smaller. The inner layer stress is almost equal to the outer layer stress while the load returns to the balance pressure with the gap of0.1mm, but the inner layer stress is still larger than the outer layer stress with gaps of0.2mm,0.3mm and0.4mm. With the same gaps, the layer stress and the plastic deformation under plane stress state are larger than those under plane strain state.
     The mechanism of the explosion urea reactor is reanalyzed. The rupture possibility of urea reactor caused by the chemical explosion of gas space is discussed and the pressure wave propagation law is analyzed. The results show that the initial fracture of Pingyin urea reactor is not induced by the chemical explosion of gas space. The defects type is summarized in urea reactor. The effect caused by the inner layer cracks is analyzed. The results show that the inner layer stress grows smaller when the crack length grows and the outer layer stress grows larger. There is a stress strengthening area on the outer layer just behind the crack tip, where the stress corrosion cracks is priority to generate. The physical model of the multilayer cylinder with inner layer cracks is built. And the author proposes a method to calculate layer stress and critical crack length of other completed layers when the crack layers effect is considered. Take the Pingyin urea reactor as an example, the change law of the stress and the critical crack length of other completed layers is analyzed. The results show that the stresses of other completed layers grow larger and the critical crack length grow smaller when the inner crack is taken into consideration, which intensifies the risk of urea reactor running.
     In a word, through the simulation of the pressure wave propagation process in a vessel with long vertical multilayer cylinder, the propagation process is shown intuitionisticly. The research results proved that the initial fracture of Pingyin urea reactor is not caused by the chemical explosion of gas space. The dynamic response of multilayer structures under dynamic load is obtained can provide direct reference for explosion-proof design of similar vessels. The research on the defect multilayer structures explains the distribution law of stress corrosion cracks. The research enhances the recognition level to the multilayer urea reactor explosion. It is meaningful for the explosion prevention and the vessel safety running. However, the mechanism of such vessels is so complicated that the small scale vessel explosion test with large aspect ratio is required to verify the analysis and the results in this paper.
引文
[1]王威强,李梦丽,徐书根,等.尿素合成塔爆炸及层板严重腐蚀开裂原因[J].金属热处理,2007,32(S1):197-205.
    [2]陈宪禧,王威强,朱衍勇,等.平阴鲁西化工第三化肥厂有限公司尿素合成塔失效分析报告[R].2005.
    [3]国家质量技术监督检验检疫总局.国质检特函(2005)689号文-关于进一步加强尿素合成塔生产使用检验工作的通知[Z].2005.
    [4]王威强,徐书根,刘燕,等.尿素合成塔爆破原因分析综述[J].机械强度,2012,34(3):427-435.
    [5]KHAN F I, ABBASI S I. Major accidents in process industries and an analysis causes and consequences [J]. Journal of Loss Prevention in the Process Industries, 1999,12(5):361-378.
    [6]尼古拉斯.化学动力学.气体反应的近代综述[M].吴树森译,北京:高等教育出版社,1987:161-162.
    [7]张英华,黄志安.燃烧与爆炸学[M].北京:冶金工业出版社,2010:81-83.
    [8]康德拉季耶夫.自由基-物质的活性形式[M].叶学融译,上海:上海科学技术出版社,1983:22-27.
    [9]RAYSON L. GOH S H, ONG S H.自由基化学[M1.穆光照,甘礼雅,陈敏为译,上海:上海科学技术出版社,1983:22-27.
    [10]赵学庄编著.化学反应动力学原理(上册)[M].北京:高等教育出版社,1990:199-200.
    [11]陆守香,何杰,于春宏,等.水抑制瓦斯爆炸的机理研究[J].煤炭学报,1998,23(4):417-421.
    [12]赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996:13.
    [13]ZHANG Y, YU L X, WEI X L, et al. Numerical and experimental investigation on the prevention of CO deflagration [J]. Journal of Loss Prevention in Process Industries,2009:169-175.
    [14]挥寿榕,赵衡阳.爆炸力学[M].北京:国防工业出版社,2005:13-29.
    [15]范宝春.两相系统的燃烧、爆炸和爆轰[M].北京:国防工业出版社,1998:280-281.
    [16]张国伟,韩勇,敬瑞群.爆炸作用原理[M].北京:国防工业出版社,2006:79-87.
    [17]崔克清,张礼敬,陶刚.安全工程科学导论[M].北京:化学工业出版社,2004:130.
    [18]NAGY J, VERAKIS H C. Development and Control of Dust Explosions [M]. New York, Marcel Dekker Inc,1983:75-77.
    [19]BERNARD L, GUENTHER V E. Combustion, Flames and Explosions of Gases, Third Edition [M]. Orlando, Academic Press,1987:597-609.
    [20]RANDALL K N. Engineering Analysis of Fires and Explosions [M]. New York, CRC Press,1995:64-67.
    [21]CHIPETT S. Modeling of vented deflagration [J]. Combustion and Flame,1984, 55(2):127-140.
    [22]王淑兰,丁信伟,贺匡国.容器内烃类气体爆燃温度和压力的数值解[J].大连理工大学学报,1992,32(2):127-140.
    [23]BARTKNECHT W. Explosions:Course, Prevention Protection [M]. Springer-Verlag:Berlin,1981:10-13.
    [24]GOING J E, CHATRATHI K, CASHDOLLAR K L. Flammability limit measurements for dusts in 20-L and 1-m3 vessels [J]. Journal of Loss Prevention in the Process Industries,2000,13(3-5):209-219.
    [25]PROUST C, ACCPRSI A, DUPONT L. Measuring the violence of dust explosions with the "20 L sphere" and with the standard "ISO 1 m3 vessel": Systematic comparison and analysis of the discrepancies [J]. Journal of Loss Prevention in the Process Industries,2007,20(4-6):599-606.
    [26]RANDEBERG E, ECKHOFF R K. Measurement of minimum ignition energies of dust clouds in the<1 mJ region [J]. Journal of Hazardous Materials,2007, 140(1-2):237-244.
    [27]汪佩兰,王海福,李盛,等.含能材料粉尘爆炸压力和压力上升速率的研究[J].兵工学报,1995,3(3):59-63.
    [28]高聪,李化,苏丹,等.密闭空间煤粉的爆炸特性[J].爆炸与冲击,2010,30(2):164-168.
    [29]BAYLESS D J, SCHROEDER A R. The effect of natural gas CO2 firing on the ignition delay of pulverized coal and coke particles [J]. Combustion Science and Technology,1994, (98):185-198.
    [30]徐景德,周心权,吴兵.矿井瓦斯爆炸传播的尺寸效应研究[J].中国安全科学学报,2001,11(6):36-40.
    [31]张英浩,王志杰.管道内瓦斯爆炸压力的传播研究[J].工业安全与环保,2009,35(1):43-44.
    [32]MARX W P M, JOHNSON D M, PETCOCK J. Validation of scaling techniques for experimental vapor explosion investigations[C]. AJCHE Loss Prevention Symposium, Georgia, USA,1994:1-20.
    [33]徐景德,周心权,吴兵.瓦斯浓度和火焰对瓦斯爆炸传播影响的实验分析[J]. 煤炭科学技术,2001,29(11):15-18.
    [34]MICHELE M J, GENERA R, ERNESTO S, et al. Numerical simulation of gas explosion in linked vessels [J]. Journal of Loss Prevention in Process Industries, 1999,12:189-194.
    [35]菅从光,林柏泉,翟成,等.瓦斯爆炸过程中爆炸波的结构变化规律[J].中国矿业大学学报,2003,32(4):363-365.
    [36]MARXW P M, VANDEBAG A C, Developments in vapor cloud explosion blast modeling [J]. Journal of Hazardous Materials,2000,71(2):301-319.
    [37]周凯元.气体爆燃火焰在狭缝中的淬熄[J].火灾科学,1998,8(1):22-23.
    [38]王汉良,周凯元,夏昌敬.气体爆轰波在弯曲管道中传播特性的实验研究[J].火灾科学,2001,10(4):209-212.
    [39]MASRI A R, IBRAHIM S S, NEHIAT N, et al. Experimental study of premixed flame propagation over various solid obstructions [J]. Experimental Thermal and Fluid Science,2000,21:109-116.
    [40]林柏泉,张仁贵,吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J].煤炭学报,1999,28(1):56-59.
    [41]林柏泉,周世宁.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报,1999,28(2):104-107.
    [42]秦涧,谭迎新,王惠青,等.管道内障碍物形状对瓦斯爆炸影响的试验研究[J].煤炭科学技术,2012,40(2):35-38.
    [43]何学秋,杨艺,王恩元,等.障碍物对瓦斯爆炸火焰结构及火焰传播影响的研究[J].煤炭学报,2004,29(2):185-189.
    [44]KHOKHLOV A M, ORAN E S, THOMAS G O. Numerical simulation of deflagration to detonation transition:the role of shock flame interactions in turbulent flames [J]. Combustion and Flame,1999,117(1-2):323-339.
    [45]CATLIN C A, FAIRWERTHER M, IBRAHIM, S S. Prediction of turbulent, premixed flame propagation in explosion tubes[J]. Combustion and Flame,1995, 107(2):115-128.
    [46]BIELERT U, SICHEL M. Numerical simulation of premixed combustion processes in closed tubes [J]. Combustion and Flame,1998,114(3-4):397-419.
    [47]HASHIMOTOA A, MATSUOB A. Numerical analysis of gas explosion inside two rooms connected by ducts [J]. Journal of Loss Prevention in the Process Industries,2007,20:445-461.
    [48]KOBIERA A, KINDRACKI J, ZYDAK P. A new phenomenological model of gas explosion base on characteristics of flame surface [J]. Loss Prevention in the Process Industrial,2008,20:271-280.
    [49]严清华,王淑兰,李岳,等.大型球形密闭容器内可燃气体爆炸过程的数值模 拟[J].天然气工业,2004,24(4):101-103.
    [50]毕明树,尹旺华,丁信伟.密闭容器非理想爆源爆炸过程的数值模拟[J].化学工业与工程技术,2003,24(3):1-3.
    [51]徐景德,杨庚宇.置障条件下的矿井瓦斯爆炸传播过程数值模拟研究[J].煤炭学报,2004,29(1):53-56.
    [52]王志荣,蒋军成,郑杨艳.连通容器内气体爆炸过程的数值模拟[J].化学工程,2006,34(10):13-16.
    [53]范宝春,雷勇,姜孝海.激波与堆积粉尘相互作用的数值模拟[J].爆炸与冲击,2002,22(3):216-220.
    [54]司荣军.矿井瓦斯煤尘爆炸传播数值模拟研究[J].中国安全科学学报,2008,18(10):82-86.
    [55]高波,施光明,姜华磊.尿素合成塔爆炸事故机理的研究[J].中国安全生产科学技术,2011,7(8):73-78.
    [56]DENG G D, XU P, ZHENG J Y, et al. Numerical simulation of blast loadings on a thick-wall cylindrical vessel [C]. Proceedings of 2007 ASME Pressure Vessels and Piping Division Conference, San Antonio:ASME,2007:195-198.
    [57]ALIA A, SOULI M. High explosions simulation using multi-material formulations [J]. Applied Thermal Engineering,2006,26(10):1032-1042.
    [58]王定贤,王万鹏,石培杰,等.柱形爆炸容器动力学响应的有限元模拟与实验检验[J].压力容器,2008,25(7):13-16.
    [59]霍宏发,于琴,黄协清.组合式爆炸容器内冲击载荷及其动力响应的数值模拟[J].西南交通大学学报,2003,38(5):513-516.
    [60]邓贵德.离散多层爆炸容器内爆载荷和抗爆特性研究[D].杭州:浙江大学,2008.
    [61]ZHENG J Y, CHEN Y J, DENG G D, et al. An elastodynamic solution for discrete multilayered cylinder under transient loading [C]. Proceedings on Fracture and Damage of Advanced Material, Hangzhou,2004:105-111.
    [62]张立权.整体包扎多层式高压容器的设计与制造-西德克虏伯公司多层高压容器专利综述[J].化工与通用机械,1982,(1):27-40.
    [63]陈锡国.层板容器焊后层间夹渣的解剖试验[J].石油化工设备,1986,15(3):17-18.
    [64]陈国理,王瑜.内压消除多层容器层间间隙的试验研究[J].压力容器,1986,3(2):9-11.
    [65]PIMSHTEIN P G.. Strength of multilayer high pressure vessel [J]. Chemical and Petroleum Engineering,1968,4(7):574-578.
    [66]XU S G, WANG W Q, SONG M D, et al. Modified formulation of layer stress due to internal pressure of a layered vessel with interlayer gaps [J]. Journal of Pressure Vessel Technology,2010,132(5):05120101-05120108.
    [67]XU S G, WANG W Q. Analysis on elastoplastic stress distribution in a layered cylindrical vessel with interlay er gaps [J]. Journal of Pressure Vessel Technology, 2012,134(3):03126-03130.
    [68]宋明大,王威强,赵亚凡,等.多层包扎尿素合成塔应力状况分析[J].机械强度,2008,127(1):15-23.
    [69]吴俊飞,张燕飞,刘军涛.尿素合成塔衬里间隙对衬里层应力分布的影响[J].计算机与应用化学,2010,27(8):1077-1079.
    [70]奚桂明.高压容器环焊缝错开结构的研究及其应用[J].化工机械,1980,(3):9-14.
    [71]张文杰.尿素合成塔衬里的腐蚀与修复[J].化工设备与防腐蚀,2004,7(2):71-72.
    [72]陈长宏.(?)1200mm尿素合成塔裂纹成因分析[J].化工机械,2007,34(4):218-220.
    [73]WANG W Q, LIU H D, SONG M D, et al. A simplification method of defects in multilayered vessels detected by acoustic emission detection [C]. Proceedings of Fracture Mechanics and Structural Integrity Conference, Chengdu,2009, 587-593.
    [74]BAKER W E. The elastic-plastic response of thin spherical shells to internal blast loading [J]. Journal of Applied Mechanics,1960, (27):139-144.
    [75]CINELLI G.. Dynamic vibrations and stresses in elastic cylinders and spheres [J]. Journal of Applied Mechanics,1966,33(4):825-830.
    [76]BELOV A I, KORNILO V A, KLAPOVSKII V E, et al. Comparative investigation of the elastic reaction of cylindrical and spherical shells under internal explosive loading [J]. Combustion, Explosion and Shock Waves,1990, 26(3):354-357.
    [77]ALEKSANDROV L N, IVANOV A G, MINEE V N, et al. Plastic deformation of spherical steel shells under internal blast loading [J]. Journal of Applied Mechanics and Technical Physics,1982,23(6):831-835.
    [78]ZHDAN S A. Dynamic load acting on the wall of an explosion chamber [J]. Combustion, Explosion and Shock Waves,1981,17(2):142-146.
    [79]WANG X, GONG Y. An elasto-dynamic solution for multilayered cylinders [J]. International Journal of Engineering Science,1992,30(1):25-33.
    [80]王熙.具有初始层间压力的层合圆筒的热冲击研究[J].应用数学和力学,1999,20(10):1065-1071.
    [81]WANG X, XIA X H, HAO W H. An elastodynamic solution of finite long orthotropic hollow cylinder under torsion impact [J]. Journal of Sound and Vibration,2003,267(1):67-86.
    [82]郑津洋,陈勇军,邓贵德,等.强动载荷下离散多层圆筒的弹性动力响应分析[J].浙江大学学报(工学版),2005,39(12):1847-1853.
    [83]ZHENG J Y, CHEN Y J, DENG G D, et al. Dynamic elastic response of an infinite discrete multi-layered cylindrical shell subject to uniformly distributed pressure pulse [J]. International Journal of Impact Engineering,2006,32(11): 1800-1827.
    [84]田锦邦,赵隆茂,郑津洋.扁平绕带式压力容器的刚塑性动力响应分析[J].应用力学学报,2005,22(3):426-430.
    [85]田锦邦,赵隆茂,郑津洋.双层扁平绕带式压力容器的刚塑性动力响应分析[J].爆炸与冲击,2006,26(1):59-64.
    [86]陈俊英,王春香,程靳,等.在爆炸冲击载荷作用下层板的应力分析[J].哈尔滨工业大学学报,1993,25(5):101-105.
    [87]BALOV A I. Elastic response of multilayer and monometallic shells to explosive loading [J]. Strength of Material,1991,22(6):917-920.
    [88]朱锡,张振华,刘润泉,等.水面舰船舷侧防雷舱模型抗爆试验研究[J].爆炸与冲击,2004,24(2):133-139.
    [89]姚熊亮,梁德利,许维军.双层壳结构抗冲击性能仿真研究[J].哈尔滨工程大学学报,2004,25(3):267-273.
    [90]陈卫东,于诗源,王飞,等.多层板壳结构在水下接触爆炸载荷作用下的试验研究[J].哈尔滨工程大学学报,2009,30(1):19-22.
    [91]XU S G, WANG W Q, LIU Y. A new approach to elastodynamic response of cylindrical shell based on generalized solution structure theorem for wave equation [C]. Proceedings of the ASME 2010 Pressure Vessel & Piping Conference, New York,2010:2523301-2523310.
    [92]TANG S. Dynamic response of a tube under moving pressure [J]. Journal of the Engineering Mechanics Division,1965,91(5):97-122.
    [93]BELTMAN W M, SHEPHERD J E. Linear elastic response of tubes to internal detonation loading [J]. Journal of Sound and Vibration,2002,252(4):617-655.
    [94]SARANJAM B, BAKHSHANDEH K, KADIVAR M H. The dynamic response of a cylindrical tube under the action of a moving pressure [J]. Journal of Mechanical Engineering,2007,53(6):409-419.
    [95]MIRZAEI M, MAZAHERI K, BIGLARI H. Analytical modeling of the elastic structural response of tubes to internal detonation loading [J]. International Journal of Pressure Vessels and Piping,2005, (82):883-895.
    [96]MIRZAEI M, BIGLARI H, SALAVATIAN M. Analytical and numerical modeling of the transient elasto-dynamic response of a cylindrical tube to internal gaseous detonation [J]. International Journal of Pressure Vessels and Piping,2006, (83):531-539.
    [97]IRZAEI M. On amplification of stress waves in cylindrical tubes under internal dynamic pressures [J]. International Journal of Mechanical Science,2008, (50): 1292-1303.
    [98]田锦邦.扁平绕带式压力容器在爆炸载荷作用下的动力特性研究[D].太原,太原理工大学,2007.
    [99]王志荣,蒋军成,徐进.气体爆炸载荷作用下抗爆容器的动力学响应[J].石油化工高等学校学报,2006,19(3):76-80.
    [100]饶国宁,陈网桦,王立峰,等.内部爆炸载荷作用下容器动力响应的数值模拟[J].中国安全科学学报,2007,17(2):129-133.
    [101]张跃东,陈斌.爆炸载荷作用下夹层板的动力响应仿真分析[J].采矿技术,2005,5(3):90-92.
    [102]宋延泽,李志强,赵隆茂.爆炸载荷作用下扁平绕带式高压容器动力响应的数值模拟[J].太原理工大学学报,2006,37(2):242-244.
    [103]MIRZAEI M. Failure analysis of an exploded gas cylinder [J]. Engineering Failure Analysis,2008, (15):820-834.
    [104]MIRZAEI M, HARANDI A, KARIMI R. Finite element analysis of deformation and fracture of an exploded gas cylinder [J]. Engineering Failure Analysis,2009, (16):1607-1615.
    [105]BOZZANO G, DENTE M, ZARDI F. New internals for urea production reactors [J]. Journal of Chemical Technology and Biotechnology,2003,78(2-3):128-133.
    [106]WANG W Q, LI AI J, ZHU Y Y, et al. The explosion reason analysis of urea reactor of Pingyin [J]. Engineering Failure Analysis,2009,16(3):972-986.
    [107]钱镜清.再谈尿素合成塔爆炸原因[J].氮肥与甲醇,2006,1(5):5-10.
    [108]徐书根,王威强,李梦丽,等.尿素合成塔爆炸载荷类型与破坏形态的关系分析[J].山东大学学报(工学版),2008,38(3):51-56.
    []09]杨柏森.关于尿素合成塔气相空间化学性爆炸问题的探讨[J].中氮肥,1992,(1):72-74.
    [110]祁春生.尿素一分塔内部爆炸原因分析[J].化工劳动保护:安全技术与管理分册,1994(3):20-21.
    [111]Secretary of Labor, Complainant v. Arcadian Corporation, Respondent. OSHRC Docket No.93-0628 [P].
    [112]JoimaT. Urea reactor failure [J]. Ammonia Plant Safety,1979,21:111-119.
    [113]Secretary of Labor, Petitioner v. Arcadian Corporation and OSHRC, Respondents. United States Court of Appeals, Fifth Circuit. No.96-60126[P].
    [114]河北省迁安化肥厂事故调查组.河北省迁安化肥厂关于1#尿素合成塔爆炸事故的调查报告[R].1996.
    [115]池树增.国外某厂尿素合成塔爆破事故原因初探[J].中氮肥,2006,(2):10-13.
    [116]PATTERSON L B. Ammonia separator accident [J]. Ammonia Plant Safety and Related Facilities,1979,21:95-99.
    [117]杨柏森.尿素生产中化学性爆炸问题的探讨[J].中氮肥,1999,(1):24-26.
    [118]韩志勇,刘永坤.尿素系统爆炸原因分析及解决措施[J].中氮肥,2000,(3):12-13.
    [119]沈华民.尿素合成的安全[J].化肥设计,2005,43(4):3-8.
    [120]黄雪琴,王振辉,李廷杰,等.尿塔断裂失效分析[J].河北科技大学学报,2003,24(1):80-85.
    [121]黄雪琴,王振辉,丁春燕,等.尿塔断裂物料能量估算[J].河北科技大学学报,2004,25(1):69-72.
    [122]丁春燕,杨杰.尿塔断裂金相分析[J].河北科技大学学报,2008,29(1):57-59.
    [123]丁春燕,杨杰.尿塔物理断裂失效分析[J].河北工业科技,2008,25(1):21-23.
    [124]胡德栋,王威强,吴俊飞,等.平阴尿塔的物料和爆炸能量估算[J].山东大学学报(工学版),2008,38(3):46-50.
    [125]吴俊飞,王威强,胡德栋,等.平阴尿塔塔体爆炸能量的分析与计算[J].山东大学学报(工学版),2008,38(4):80-83.
    [126]钱镜清.再谈尿素合成塔爆破原因[J].氮肥与甲醇,2008,3(2):55-59.
    [127]罗建烘.也谈尿素合成塔爆炸[J].氮肥与甲醇,2006,1(4):20-23.
    [128]林靖宇,林清宇,林榕瑞,等.某厂尿素合成塔层板开裂事故分析[J].腐蚀与防护,2008,29(9):566-568.
    [129]吕延茂.尿素合成塔爆炸原因分析[J].中氮肥,2007,(6):7-11.
    [130]徐书根.层板包扎容器多元物料蒸汽爆炸及壳体动力学响应研究[D].济南:山东大学,2010:83-91.
    [131]鲁周田.中型氮肥厂尿素装置爆炸事故原因分析及对策[J].中氮肥,1996,(2):32-36.
    [132]袁一,王本善.尿素[M].北京:化学工业出版社,1997:4-5.
    [133]钱镜清.水溶液全循环尿素工艺在我国45年的发展历程—并记Q-1100节能型水溶液全循环法尿素工艺[J].化肥工业,2011,38(1):11-15.
    [134]张香平,陈理,刘新彦,等.尿素合成塔模拟计算[J].大连理工大学学报,2001,41(6):653-658.
    [135]SONG M D, WANG W Q, ZHAO Y F, et al. Urea reactor integrity evaluation based on failure analysis [J]. Journal of Pressure Vessel Technology,2007,129(4): 744-753.
    [136]陈国理,王瑜.内压消除多层层间间隙的试验研究[J].压力容器,1982,2(2):9-11.
    [137]钱镜清.提高尿塔转化率的技术发展趋势[J].化工设计通讯,2011,37(1):51-58.
    [138]程忠振.中、小型水溶液全循环法尿素装置特大安全事故隐患和有效防范[J].化肥设计,2002,(1):47-49.
    [139]赵学庄.化学反应动力学原理(上册)[M].北京,教育出版社,1984:259-273.
    [140]崔克清.安全工程燃烧爆炸理论与技术[M].北京,中国计量出版社,2005.
    [141]VANDERBROEK L, VERPLAETSEN F. Auto-ignition hazard of mixtures of ammonia, hydrogen, methane and air in a urea plant [J]. Journal of Hazardous Material,2002,93(1):123-136.
    [142]李梦丽,王威强,徐书根,等.物料化学爆炸引起塔体爆破可能性分析[J].山东大学学报(工学版),2008,38(6):1-6.
    [143]MECHELE M J, GENERA R, ERNESTO S, et al. Numerical simulation of gas explosions in linked vessels [J]. Journal of Loss Prevention in Process Industries, 1999,12:189-194.
    [144]王志荣,蒋军成,郑杨艳.连通器内气体爆炸过程的数值模拟[J].化学工程,2006,34(10):13-16.
    [145]施光明,高波,姜华磊,等.尿素合成塔爆炸事故的数值模拟研究[J].四川大学学报(工程科学版),2011,43(6):206-212.
    [146]戴树和.工程风险分析技术[M].北京:化学工业出版社,2007:130-132.
    [147]李生娟,毕明树,章正军,等.气体爆炸研究现状及发展趋势[J].化工装备技术,2002,23(6):15-19.
    [148]邓贵德.离散多层爆炸容器内爆载荷和抗爆性能研究[D].杭州:浙江大学,2008:32.
    [149]Livemore Software Technology Corporation. LS-DYNA keyword user's manual volume Ⅱ (Version 960) [M]. California:Livemore Software Technology Corporation,2001:39-42.
    [150]杨庆生,郑代华.高等计算力学[M].北京:科学出版社,2009:135.
    [151]LEE E L, HORING H C, KURY J W. Adiabatic expansion of high explosive detonation products, UCRL-50422[R]. California:University of California,1968.
    [152]胡春红,周晶.火药量和场地条件对水下爆炸地震波影响的数值模拟[J].爆破,2007,24(3):11-15.
    [153]胡八一,柏劲松,张明,等.真实爆炸容器壳体动力响应的强度分析[J].应力力学学报,2001,18(5):91-95.
    [154]袁建红,朱锡,张振华.水下爆炸载荷数值模拟方法[J].舰船科学技术,2011,33(9):18-23.
    [155]ALIA A, SOULI M. High explosive simulation using multi-material formulations [J]. Applied Thermal Engineering,2006, (26):1032-1042.
    [156]李文贺.舰船水下爆炸冲击波载荷作用下动力响应研究[D].大连,大连理工大学,2009:21.
    [157]孟宪昌,张俊秀.爆轰理论基础[M].北京:北京理工大学出版社,1988:154.
    [158]庞军.TNT装药水中爆炸的数值模拟[J].火炸药学报,2009,32(5):37-39.
    [159]张守中.爆炸基本原理[M].北京,国防工业出版社,1988:234.
    [160]RODRIGUEE A, ROMEROC. Hydrodynamic modeling of detonations for structural design of containement vessels [C]. Proceedings of 2006 ASME Pressure Vessels and Piping Division Conference, Vancoucer,2006.
    [161]黄炎.多层容器的应力分析[J].化工炼油机械通讯,1980,(3):20-27.
    [162]陈国理,赖仁芳.多层高压容器存在间隙时的应力分析与计算程序[J].华南工学院学报,1981,9(4):90-104.
    [163]CAMMAROTAF, BENEDETTOA, RUSSO P, et al. Experimental analysis of gas explosions at non-atmospheric initial conditions in cylindrical vessel [J]. Process Safety and Environmental Protection,2010,88:341-349.
    [164]尹晓春,冯思艳,龚育宁.利用Laplace变换确定双层厚壁长圆筒的轴对称界面碰撞压力[J].爆炸与冲击,1998,18(4):365-374.
    [165]尹晓春,王良国,余洋.带间隙双层套筒多次内碰撞的若干研究[J].南京理工大学学报,1999,23(4):357-361.
    [166]RUSSELL A O. Explosion hazard analysis for an enclosure partially filled with a flammable gas [J]. Process Safety Progress,1999,18(3):170-177.
    [167]蔡凤英,谈宗山,孟赫,等.化工安全工程[M].北京:科学出版社,2001:50.
    [168]赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996:35.
    [169]黄载生主编.化工机械力学基础[M].北京:化学工业出版社,1990:96-103.
    [170]李梦丽,王威强,徐书根,等.物料化学爆炸引起尿塔塔体爆破可能性分析[J].山东大学学报(工学版),2008,38(6):1-9.
    [171]王宁.爆炸冲击波在通海管路系统中的传播规律及其防护[D].华中科技大学,2009.
    [172]刘晶波,闫秋实,伍俊.坑道内爆炸冲击波传播规律的研究[J].振动与冲击,2009,28(6):8-11.
    [173]宋明大,王威强,陈鹭宾,等.多层包扎尿素合成塔应力腐蚀裂纹成因分析[J].石油化工高等学校学报,2007,20(2):73-76.
    [174]宋明大.多层包扎尿素合成塔检验与剩余寿命评估方法研究[D].济南:山东 大学,2008:20.
    [175]李永东.理论与应用断裂力学[M].北京:兵器工业出版社,2005:81-82.
    [176]中国金属学会《断裂》编辑部合编.断裂分析与断裂韧性测试研究[M].长沙:湖南科学技术出版社,1980:307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700