用户名: 密码: 验证码:
高超声速内外流动激波/边界层相互作用的实验与数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在吸气式高超声速飞行器内、外流场中,激波/边界层相互作用是一类不可忽视的重要流动现象。它会导致流场中空间波系的剧烈改变和壁面流动分离。同时带来飞行器气动力、气动热负荷的分布不均匀与非定常振荡。严重时会引起进气道的不起动,影响发动机的正常工作。分析激波/边界层相互作用的产生机理、演化规律与影响,并利用流动控制手段加以削弱和消除壁面流动分离,改善飞行器内外流场的流动品质,具有十分重要的工程意义和实际价值。
     本文通过实验研究和数值模拟相结合的方法,考察了多种基本构型以及典型高超声速进气道内部的激波/边界层相互作用现象。研究中考察了流场的空间波系结构、边界层内部流动特征以及壁面的压力、热流密度分布等参量。讨论了流动现象与构型参数之间的关系及演化规律。分析了激波/边界层相互作用现象对进气道工作状态的影响。针对不同构型条件下的激波/边界层相互作用,讨论分析了流动控制技术对于壁面流动分离的控制效果以及其他流动参数的改善状况。最后对激波/激波干扰的相关实验做了简要的介绍。
     本文取得的主要结果与进展如下:
     1、对二维基本构型的实验和数值研究得到了激波/边界层相互作用诱发壁面分离随激波强度变化的变化趋势,数值模拟和实验研究得到了较好的符合。针对二维斜激波/平板边界层相互作用,考察了吹除控制手段对壁面流动分离的控制效果和若干影响因素。得到了吹除总温、总压与分离区尺度以及壁面流动参量分布的关系。考察了不同吹除工质及多种工质的混合物对吹除控制效果的影响,得到了若干定性的结论。
     2、在实验中考察了两级压缩的二维顶压式进气道内部激波/边界层相互作用的流场特征及对进气道工作状态的影响并考察了涡发生器与粗糙壁面对压缩面交界处流动分离的控制效果。利用数值模拟手段考察了两种来流条件下唇口位置的流动分离特征及抽吸手段的对壁面分离的控制效果及进气道内部流动参数的改善状况。
     3、发展了新的以近壁面流动特征为关注对象的可应用于激波风洞等高速空气动力学试验设备中的丝线方法,并将其应用于三维激波/边界层相互作用的壁面流动特征观测。实验结果证明了该方法的有效性以及简便性、实时性等优点。针对平板-鳍板构型的三维激波/边界层相互作用的空间波系特征与壁面流动参数分布也通过数值手段得到了考察和分析。
     4、利用多种流动显示方法观测了三组三面压缩进气道内部的激波/边界层相互作用现象,讨论分析了进气道内部的空间波系和壁面流动的特征。实验中也考察了抽吸控制方法对进气道内部壁面流动分离的控制效果。
     5、最后简单讨论了实验中得到的激波/激波干扰的相关结果,对激波/激波干扰现象建立基本的了解。
Shock wave/boundary layer interaction(SWBLI) is an important phenomenon in hypersonic air-breathing vehicles, which may cause not only harmful flow of no uniformity, total pressure loss, inlet unstart etc., but also bring about severe heat loads which may be far beyond the capability of predictions.
     In present thesis, some basic physical configurations and two kinds of hypersonic inlet are tested to investigate the SWBLI behaviors with experimental and numerical methods. Structure of shock waves and flow phenomenon close to the surface of the model are observed and pressure, shear stress and heat flux over the surface are analyzed. Furthermore, effect of flow control technology to weaken viscous separation is also evaluated. Some experimental results of shock wave/shock wave interaction are also analyzed.
     The main results of present work are:
     1, Results of two dimensional basic figures show the behaviors of SWBLI would change with grown strength of the shock wave. For the case of oblique shock wave impinges on the plate, blowing method was tested to weaken the separation caused by the SWBLI. Groups of data from numerical simulation were analyzed to show how flow phenomenon change with different total pressure and total temperature of the blowing jet. Several kinds of gases and mixtures as blowing jet were discussed and analyzed.
     2, Experiments were carried out to investigate the SWBLI phenomenon in a two-dimensional hypersonic inlet with two wedge ramps, especially for the condition when the inlet is close to unstarting flow. Roughness surface and vortex generators were used to impair the separation at the corner of two ramps. Separations arising at downstream of the cowl at different conditions of free stream were analyzed and discussed. Effect of bleeding to weaken the viscous separation was also evaluated by numerical simulation.
     3, A new kind of tuft method, which is conventionally used in low speed wind tunnels, was developed for using in the shock tunnel to observe details of flow field close to the surface. It was proved that the tuft method can visualize the near-wall dynamic behaviors effectively. SWBLI phenomenons over three-dimensional configurations were investigated by the tuft method, oil dot visualization and numerical simulation. Flow structures and some related parameter variations on the surface were revealed and analyzed.
     4, Several kinds of flow visualization technology were employed to observe flow field in the three-dimensional hypersonic inlet, which were also analyzed with supplement from the results of simulation. Bleeding was also examined to evaluate the control effectiveness of the separation.
     5, Some experimental results of shock wave/shock wave interaction were demonstrated, which is helpful for the better understanding of this flow phenomena.
引文
Ackeret J, Feldmann F, Rott N.1947. Investigations of Compression Shocks and Boundary Layers in Gases Moving at High Speed, NACA TM 1113,
    Adamson T C, Messiter A F.1980. Analysis of two-dimensional interactions between shock waves and boundary layers. Annual review of fluid mechanics 12:36.
    Alvi F S, Settles G S.1992. Physical Model of the Swept Shock-Wave Boundary-Layer Interaction Flowfield. AIAA Journal 30(9):2252-2258.
    Anderson J D.1989. Hypersonic and High Temperature Gas Dynamics. AIAA education.
    Babinsky H, Li Y, et al.2009. Microramp Control of Supersonic Oblique Shock-Wave/Boundary-Layer Interactions. AIAA Journal 47(3):668-675.
    Babinsky H, Ogawa H.2008. SBLI control for wings and inlets. Shock Waves 18(2):89-96.
    Babinsky H, Harvey J K.2011. Shock Wave-Boundary-Layer Interaction. Cambridge University Press.
    Barry F W, Shapiro A H, Neumann E P.1951. The Interaction of Shock Waves with Boundary Layers on a Flat Surface, Journal of Aerospace Sciences, Vol.18, No.4, pp.229-238.
    Barter J W, Dolling D S.1995. Reduction of Fluctuating Pressure Loads in Shock Boundary-Layer Interactions Using Vortex Generators. AIAA Journal 33(10):1842-1849.
    Barter J W, Dolling D S.1996. Reduction of fluctuating pressure loads in shock/boundary-layer interactions using vortex generators.2. AIAA Journal 34(1):195-197.
    Beam R M, Warming R F.1978. An Implicit Factored Scheme for the Compressible Navier-Stokes Equation. AIAA Jounral.16(2):393-402
    Bogdonoff S M, Kepler C E.1955. Separation of a Supersonic Turbulent Boundary Layer. JAS 22:414-424
    Bookey P, Wyckham C, Smits A.2005. Experimental Investigations of Mach 3 Shock-Wave Turbulent Boundary Layer Interactions.35th AIAA Fluid Dynamics Conference and Exhibit.
    Chapman D R, Kuehn D M, Larson H K.1957. Investigation of separated flow in supersonic and
    subsonic streams with emphasis on the effect of transition. NACA TN-3869.
    陈立为.2010.具有激波和湍流旋涡分离的可压缩绕流数值研究,中国科学技术大学.
    陈强.1975.激波管流动的理论和实验技术.中国科学技术大学五系..
    Chyu W J, Rimlinger M J, et al.1995. Control of Shock-Wave Boundary-Layer Interactions by Bleed. AIAA Journal 33(7):1239-1247.
    Delery J M.1985. Shock wave/turbulent boundary layer interaction and its control. Progress in Aerospace Sciences 22(4):209-280.
    邓建平,方德润.995.高超声速进气道内激波-边界层干扰研究.空气动力学学报(01):28-33.
    邓小刚,张涵信.1993.数值研究平板方舵激波-湍流边界层干扰.力学学报(06):651-657.
    邓学蓥,Settles G S.1987激波与边界层干扰中的分区特性研究.北京航空学院学报(04):21-27.
    邓学蓥,Settles G S.1989在激波边界层干扰中后掠柱形区的独立性原理研究(英文).空气动力学学报(04):442-448.
    邓学蓥,刘志忠.1990.后掠压缩角激波边界层柱形干扰研究.空气动力学学报(03):280-285.
    Dolling D S.1982. Comparison of Sharp and Blunt Fin-Induced Shock-Wave Turbulent Boundary-Layer Interaction. AIAA Journal 20(10):1385-1391.
    Dolling D, Murphy M.1983. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA Journal 21(12):1628-1634.
    Dolling D S, Mcclure W B.1985. Flowfield Scaling in Sharp Fin Induced Shock-Wave Turbulent Boundary-Layer Interaction. AIAA Journal 23(2):201-206.
    Dolling D S.2001. Fifty years of shock-wave/boundary-layer interaction research:What next? AIAA Journal 39(8):1517-1531.
    Donaldson C DuP, Lange R H.1952. Study of the Pressure Rise Across Shock Waves Required to Separate Laminar and Turbulent Boundary Layers, NACA TN 2770.
    Dupont, P., S. Piponniau, et al.2008. Investigation by particle image velocimetry measurements of oblique shock reflection with separation. AIAA Journal 46-6):1365-1370.
    Edney B.1968. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the present of an impinging shock. Aeronautical Research Institute of Sweden, Report 115, Stockholm
    Erengil M E, Dolling D S.1990. Correlation of separation shock motion in a compression ramp interaction with pressure fluctuations in the incoming boundary layer. AIAA 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. AIAA Paper 1646:1990.
    范洁川等.2002.近代流动显示技术.近代空气动力学丛书,国防工业出版社,
    Ferri A.1940. Experimental Results with Airfoils Tested in the High Speed Tunnel at Guidonia. NACA TM 946,
    Gadd G E, Holder D W, Regan J D.1953. The Interaction of an Oblique Shock Wave with the Boundary Layer on a Flat Plate Part Ⅱ-Interim Note on the Results for M D1:5,2,3 and 4. British Aeronautical Research Council.15591.
    Ghosh S, Choi J I, et al.2010. Numerical Simulations of Effects of Micro Vortex Generators Using Immersed-Boundary Methods. AIAA Journal 48(1):92-103.
    Hahn T O, Shih T IP, et al.1993. Numerical Study of Shock-Wave Boundary-Layer Interactions with Bleed. AIAA Journal 31(5):869-876.
    Hamed A, Lehnig T.1995. Effect of Bleed Configuration on Shock Laminar Boundary-Layer Interactions. Journal of Propulsion and Power 11(1):42-48.
    Holden H, Babinsky H.2003. Shock/Boundary layer Interaction Control Using 3D Devices, AIAA Paper 2003-447
    Holden M S, Wadhams T.2003. A database of aerothermal measurements in hypersonic flow in building block experiments for CFD validation. AIAA paper 1137:2003.
    Holden M S.2006. Historical Review of Experimental Studies and Prediction Methods to Describe Laminar and Turbulent Shock Wave/Boundary Layer Interactions in Hypersonic Flows.44th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 0494:2006.
    Howarth L.1947. The Propagation of Steady Disturbances in a Supersonic Stream Bounded on One Side by a Parallel Subsonic Stream. Proc Cambridge Phil Soc,380-390.
    Humble, R. A., F. Scarano, et al.2009. Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. Journal of Fluid Mechanics 635:47-74.
    Hung C M, MacCormack R W.1977. Numerical Solution of Supersonic Laminar Flow over a Three-Dimensional Compression Corner, AIAA Paper 0694:1977.
    Jenkins L, Gorton S, Anders S.2002. Flow control device evaluation for an Internal flow With an adverse pressure gradient, AIAA Paper 0266:2002.
    金志光,张垫元.高超侧压式进气道高焓脉冲风洞实验[J].推进技术,2005,(04):319-323.
    Johannesen N H.1952. Experiments On Two-Dimensional Supersonic Flow in Corners and over Concave Surfaces. British Aeronautical Research Council,14607.
    Kim H D, Setoguchi T.2007. Shock Induced Boundary Layer Separation.8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows.
    Knight D D, and Degrez G.1998. Shock Wave Boundary Layer Interactions in High Mach Number Flows. A Critical Survey of Current Numerical Prediction Capabilities. Advisory Rept. 319, AGARD, Vol.2, Dec. pp.1.1-1.35.
    Krishnan L, Sandham N D, et al.2009. Shock-Wave/Boundary-Layer Interactions in a Model Scramjet Intake. Aiaa Journal 47(7):1680-1691.
    Liepmann H W.1946. The Interaction Between Boundary Layer and Shock Waves in Transonic Flow, Journal of Aerospace Sciences, Vol.13, No.12,623-637.
    Liepmann H W, Roshko A, Dhawan S.1959. On Reflection of Shock Waves From Boundary Layer. Coll Aero Cranfiled Note No.93.
    李素循,倪招勇.2003.高超声速层流干扰流场研究.宇航学报.(6):255-263
    梁德旺,Bohning R.1998.管内正激波/湍流边界层干扰的数值模拟.空气动力学学报,(02):187-191
    Lin J C.2002. Review of research on low-profile vortex generators to control boundary-layer separation. Progress in Aerospace Sciences 38(4-5):389-420.
    李素循.典型外形高超声速流动特性.国防工业出版社.2007
    Lee S, Goettke M K, et al.2010. Microramps Upstream of an Oblique-Shock/Boundary-Layer Interaction. AIAA Journal 48(1):104-118.
    Lu F K, Settles G S.1991. Inception Length to a Fully-Developed, Fin-Generated, Shock-Wave, Boundary-Layer Interaction. AIAA Journal 29(5):758-762.
    马汉东,李素循,等.2000.变高度圆柱诱导的激波边界层干扰.力学学报(04):486-490.MacComack R W.1971. Numerical Solution of the Interaction of a Shock Wave With a Laminar Boundary Layer. Lecture Notes in Physis.151-163
    McConnell D A.1999. Roughness Effects on Impinging Shock Wave/Turbulent Boundary Layer Interactions.The paper of Master of Cambridge University Engineering Department. (8):33-35
    Meyer M J, T A Butler et al.1997. Compressible turbulence measurements in a supersonic boundary layer with impinging shock wave interaction. AIAA,35th Aerospace Sciences Meeting & Exhibit,. AIAA Paper 0427:1997.
    潘宏禄,马汉东,等.2008.压缩拐角激波/湍流边界层干扰特性分析.计算物理.No.123(05):549-554.
    Price S A, Vannahme M, Stollery J L.1999. Experiments on the Hypersonic Turbulent Shock-Wave/Boundary Layer Interaction And the Effects of Surface Roughness. AIAA.1999:99-147
    Priebe S, et al.2009. Direct Numerical Simulation of a Reflected Shock Wave/Turbulent Boundary Layer Interaction. Aiaa Journal 47(5):1173-1185.
    Shang J S, Hankey W L.1977. Numerical Solution of the Navier-Stokes Equations for a Three-Dimensional Corner. AIAA Journal 15(11):1575-1582.
    Schulte D, Henckels D, et al.1998. Reduction of shock induced boundary layer separation in hypersonic inlets using bleed. Aerospace Science and Technology 2(4):231-239.
    Srinivasan K R, Loth E, et al.2006. Aerodynamics of recirculating flow control devices for normal shock/boundary-layer interactions. AIAA Journal 44(4):751-763.
    苏纬仪,张堃元,等.2011.高超声速进气道附面层分离无源被动控制.推进技术v.32;No.178(04):455-460.
    苏纬仪,陈立红,等.2010.MHD控制激波诱导湍流边界层分离的机理分析.推进技术v.31;No.169(01):18-23.
    Sun M.1998. Numerical and experimental studies of shock wave interaction with bodies. PhD thesis, Tohoku University, Japan.
    Sun M, Takayama K.1999. Conservative smoothing on an adaptive quadrilateral grid. Journal of Computational Physics.150:143-180
    Sun M, Takayama K.2003. An artificially upstream flux vector splitting scheme for the Euler equations. Journal of Computational Physics, Vol.189,305-329.
    Thivet F, Knight D D, et al.2002. Analysis of observed and computed crossing-shock-wave/turbulent-boundary-layer interactions. Aerospace Science and Technology 6(1):3-17.
    Tindell R, Willis B.1997. Experimental investigation of blowing for controlling obique shock/boundary layer interactions, AIAA Paper 2642:1997
    Tournier S E, Paduano J D.2006. Flow Control in a Transonic Inlet. AIAA Paper 3883:2006.
    童秉刚,孔祥言,邓国华.1996.气体动力学.高等教育出版社.
    Tsien H, Sue S, Finston M.1949. Interaction between Parallel Streams of Subsonic and Supersonic Velocities.J.Aero.Sci.16(9):515-528
    涂国华,袁湘江,等.2006.一类TVD型的迎风紧致差分格式.应用数学和力学(06):675-682.
    Viegas J R, Horstman C C.1979. Comparison of Multi-Equation Turbulence Models for Several Shock Boundary-Layer Interaction Flows. AIAA Journal 17(8):811-820.
    王福军.2004.计算流体动力学分析—CFD软件原理与应用.清华大学出版社.
    王革,蒋旭旭,等.2007.超燃冲压发动机进气道内激波/边界层干扰研究.哈尔滨工程大学学报No.132(11):1206-1212.
    王世芬,王宇,刘鹏.1993.高超音速后掠激波与边界层干扰流场特性,航空学报,14(9):449-454
    William H. Heiser, David T. Pratt et al.1994. Hypersonic Airbreathing Propulsion. AIAA education series. Washington, DC.
    肖雅彬,岳连捷,等.2008.三面压缩式高超声速进气道流动结构研究[J].实验流体力学.(02):64-67.
    肖志祥,陈海昕,等.2004.激波/边界层干扰流动数值模拟格式的应用研究.西北工业大学学报(06):800-805.
    张树道,韩肇元,等.1999.双燃式(超燃)冲压发动机中激波与边界层之间相互作用对内部流动的影响.流体力学实验与测量(02):17-22.
    张树道,司徒明,韩肇元.2000.SFD方法模拟高超声速进气道中激波与边界层干扰.推进技术(01):16-20.
    张红杰,马晖扬,童秉纲.高超声速复杂流动中湍流模式应用的评估.空气动力学学报,2001,(2):11-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700