用户名: 密码: 验证码:
非负矩阵分解方法及其在选票图像识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像识别是随着计算机技术发展而兴起的。它利用计算机对图像进行处理,以识别各种不同模式的目标和对象,是图像融合、立体视觉、运动分析等实用技术的基础。
     近年来,随着图像识别技术在自然资源分析、生理病变、天气预报、导航、地图与地形配准、环境监测等领域的广泛应用,各种理论和方法也被大量应用到图像识别中,非负矩阵分解(Non-negative Matrix Factorization, NMF)理论就是其中之一,是当今的研究热点。NMF是从“对整体的感知由对组成整体的部分感知构成”观点出发而构建的。它将一个非负矩阵分解为两个非负矩阵的乘积,原矩阵中的一列可以解释为基矩阵中所有列向量的加权和,而权重系数为权重矩阵中对应列向量中的元素。这样基于向量组合的分解具有可解释性和明确的物理意义,而且占用存储空间更少,是一个处理非负数据的强大工具。从模式识别角度来看,NMF实质上是一种子空间分析方法,其本质是一种特征提取和选择的方法。NMF的主要思想是在样本空间中寻找合适的子空间(特征子空间),通过将高维样本投影到低维子空间上,从而在子空间上获得样本的本质特征,利用这些特征实现分类。作为一项数据处理技术,NMF揭示了描述数据的本质,已经被广泛应用到人脸检测与识别、图像融合、图像检索、图像分类、图像复原、图像压缩、灰度图像的数字水印、文本分析与聚类、语音识别、生物医学工程、网络安全的入侵检测等诸多方面的研究中。
     本文在非负矩阵分解理论方面进行深入研究。首先,基于Frobenius范数和Kullback-Leibler散度的两个目标函数,利用Taylor展开式、稳定点求解和Newton求根公式,提出了一种非负矩阵分解的理论分析方法;然后,利用该方法,严格导出了三种非负矩阵分解方法,解决了相关问题。最后,将结构模式识别方法和本文的非负矩阵分解方法应用到选票图像中的特殊手写符号识别,详细给出了选票图像识别方法。本文的主要贡献有以下几个方面:
     1.提出了非负矩阵分解新方法
     根据Frobenius范数‖X-WH‖F2和Kullback-Leibler散度D(X‖WH),提出了一种新的非负矩阵分解(Novel Non-negative Matrix Factorization, NNMF)方法。从理论上严格推导了非负矩阵分解中基矩阵和权重矩阵的迭代公式,算法推导方法是新颖的。证明了算法的收敛性。给出了算法步骤。与标准NMF方法比较,本文的方法更容易找到辅助函数,从而更容易确定迭代公式。当使用Frobenius范数作为目标函数时,可以得到与标准NMF完全相同的迭代公式。当使用Kullback-Leibler散度作为口标函数时,获得了一组新的迭代公式;在人脸识别实验中,当收敛精度不是很高时,基矩阵的列基取不同值的大部分情况下,相对于相应的标准NMF算法,该算法具有较高的识别率。
     2.提出了近似正交非负矩阵分解方法
     将Frobenius范数和近似正交约束作为目标函数,提出了近似正交非负矩阵分解(Approximate Orthogonal Non-negative Matrix Factorization, AONMF)方法。利用Taylor展开式和稳定点求解方法,严格导出了非负矩阵分解的基矩阵和权重矩阵的迭代更新算法,并证明了算法的收敛性、阐述了基矩阵近似正交的理由。人脸识别结果表明:只要基矩阵的秩选择恰当,识别率是较高的。
     3.提出了收敛投影非负矩阵分解方法
     为了解决投影非负矩阵分解(Projective Non-negative Matrix Factorization, P-NMF)算法的收敛性问题,提出了收敛投影非负矩阵分解(Convergent Projective Non-negative Matrix Factorization, CP-NMF)方法。分别利用Frobenius范数和Kullback-Leibler散度作为目标函数,利用Taylor展开式和Newton迭代求根公式,严格导出了投影非负矩阵分解的基矩阵迭代算法,并证明了算法的收敛性。实验结果表明:该算法具有较快的收敛速度,而基矩阵的初值会影响收敛速度;相对于标准NMF,该方法的基矩阵具有更好的正交性和稀疏性,但数据重建结果说明基矩阵仍然是近似正交的;人脸识别结果表明该方法具有较高的识别率。
     4.提出了线性投影非负矩阵分解方法
     针对基于线性投影结构的非负矩阵分解(Linear Projection-Based Non-negative Matrix Factorization, LPBNMF)迭代方法比较复杂的问题,提出了线性投影非负矩阵分解(Linear Projective Non-negative Matrix Factorization, LP-NMF)方法。从投影和线性变换角度出发,将Frobenius范数作为目标函数,利用’Taylor展开式和稳定点求解方法,严格导出了基矩阵和线性变换矩阵的迭代算法,并证明了算法的收敛性。实验结果表明:该算法是收敛的;相对于一些非负矩阵分解方法,该方法的基矩阵具有更好的正交性和稀疏性;人脸识别结果说明该方法具有较高的识别率。
     5.提出了选票图像识别方法
     选票图像中的特殊手写符号通常是:勾“√”、圈“O”、叉“×”、杠“\、一、/(三种写法)”。为了解决基于光学字符识另(?)(Optical Character Recognition,OCR)技术的选举投票系统中手写符号图像的快速定位与识别问题,提出了选票图像识别方法。该方法在充分考虑选举信息的基础上,实现了选票的可视化设计。该选票设计记录了选举信息中相关对象的位置数据。利用这些数据,将选票图像预处理后,找到一个确定的参考点,再提取选票设计中的位置数据,将它转化为相对于这个参考点的图像位置,利用该位置搜索表格线,从而确定要识别图像的准确位置;基于该位置,可截取手写符号图像,对该图像进行一系列处理后,提取其结构特征,采用结构模式识别方法识别。如果结构特征无法判别,就采用本文的NMF方法进行新的特征提取后再识别。实验结果表明,这种方法的定位速度快、识别率高。结合选票设计的识别方法使得识别软件定位速度更快、选票版面可以更复杂,采用结构模式识别和NMF相结合的方法识别准确率更高,有效提高了系统效率,选举投票系统更加完善。
Image recognition has been developed with the development of computer technology. In it, the objects of different patterns are identified after their images are processed by computer. It is the basis of practical technologies for image fusion, stereo vision, motion analysis, and so on.
     In recent years, with the wide applications of image recognition technology in natural resource analysis, physiological changes, weather forecast, navigation, map and terrain matching, environmental monitoring and so on, many theories and methods have been applied to image recognition, and Non-negative Matrix Factorization (NMF) is one of them. NMF is a current research focus. NMF has been constructed according to the point of view which perception of the whole is based on perception of its parts. A non-negative matrix is factored into two non-negative matrixes. This can be interpreted as follows:each column of basis matrix contains a basis vector while each column of weight matrix contains the weights needed to approximate the corresponding column in the original matrix. There are interpretability and clear physical meaning in the decomposition of vector combination, and less storage space is occupied. NMF is a powerful tool for non-negative data processing. From the point of view of pattern recognition, NMF is essentially a subspace analysis method, and its essence is a method for feature extraction and selection. The main idea for NMF is that:a suitable subspace (feature subspace) in the sample space is found, and the high dimensional sample is projected to low dimension subspace, and the essential features of the sample in the subspace are obtained, and then classification is realized by these features. As a data processing technique, NMF has revealed the essence of describing data, and has been widely applied to the researches on face detection and recognition, image fusion, image retrieval, image classification, image restoration, image compression, digital watermarking in grey image, text analysis and clustering, speech recognition, biomedical engineering, intrusion detection in network security and so on.
     In this paper, NMF is studied deeply in theory. Firstly, based on two objective functions for Frobenius norm and Kullback-Leibler divergence, the Taylor series expansion, stable point for solving and the Newton iteration formula of solving root are used and a theoretical analysis method for NMF is proposed. Secondly, three methods for NMF are derived strictly by the method and some problems are solved. Finally, structural pattern recognition and the method for NMF in this paper are applied to the recognition of special handwritten characters in ballot image, and a method for ballot image recognition is given in detail. The main contributions of the paper are the following aspects:
     1. A novel method for NMF is proposed.
     Based on Frobenius norm‖X-WH‖F2and Kullback-Leibler divergence D(X‖WH), a method, called Novel Non-negative Matrix Factorization (NNMF), is proposed. In NNMF, iterative formulas for basis matrixes and weight matrixes are derived strictly from a theoretical point of view, and derivation method is new. The proofs of algorithm convergence are provided and algorithm steps are given. Relative to standard method for NMF, auxiliary functions are found and then the iterative formulas are determined more easily. When an objective function for Frobenius norm is used, the iterative formulas which are exactly the same as the iterative formulas for standard NMF with Frobenius norm may be gotten. When an objective function for Kullback-Leibler divergence is used, the novel iterative formulas are gotten, and in the experiments of face recognition, there are higher recognition accuracies for this algorithm than for corresponding algorithm in standard NMF in most cases which the ranks of the basis matrixes are set different values when the convergent precision is not very high.
     2. A method for approximate orthogonal NMF is proposed.
     A method, called Approximate Orthogonal Non-negative Matrix Factorization (AONMF), is proposed. In AONMF, an objective function is defined to impose approximate orthogonal constraint, in addition to the non-negative constraint in standard NMF. The Taylor series expansion and stable point of solving are used. An algorithm of iterative update for basis matrix and weight matrix is derived strictly. A proof of the convergence of the algorithm is provided. The reasons of approximate orthogonality for the basis matrix are clarified. Empirical results of face recognition show that there is high recognition accuracy if only the rank of the basis matrix is set correctly.
     3. A method for convergent projective NMF is proposed.
     In order to solve the problem of algorithm convergence in Projective Non-negative Matrix Factorization (P-NMF), a method, called Convergent Projective Non-negative Matrix Factorization (CP-NMF), is proposed. In CP-NMF, two objective functions for Frobenius norm and Kallback-Leibler divergence are considered. The Taylor series expansion and the Newton iteration formula of solving root are used. Two iterative algorithms for basis matrixes are derived strictly, and the proofs of algorithm convergence are provided. Experimental results show that the convergence speeds of the algorithms are higher, however they are affected by the initial values of the basis matrixes; relative to standard NMF, the orthogonality and the sparseness of the basis matrixes are better, however the reconstructed results of data show that the basis matrixes are still approximately orthogonal; in face recognition, there are higher recognition accuracies.
     4. A method for linear projective NMF is proposed.
     In order to solve the problem that an iterative method for Linear Projection-Based Non-negative Matrix Factorization (LPBNMF) is complex, a method, called Linear Projective Non-negative Matrix Factorization (LP-NMF), is proposed. From projection and linear transformation angle, an objective function for Frobenius norm is considered. The Taylor series expansion and stable point of solving are used. An iterative algorithm for basis matrix and linear transformation matrix is derived strictly and a proof of algorithm convergence is provided. Experimental results show that the algorithm is convergent; relative to some methods for NMF, the orthogonality and the sparseness of the basis matrix are better; in face recognition, there is higher recognition accuracy.
     5. A method for ballot image recognition is proposed.
     Special handwritten characters are usually tick "(?)", circle "O", cross "X" and bars "\","—","/" in ballot images. In order to solve the problem of speedy locating and recognition of handwritten character image in voting system based on Optical Character Recognition (OCR), a method for ballot image recognition is proposed. In the method, a visual ballot design is realized based on voting information which has been taken full account of. Relevant position data recorded in the ballot design help to preprocess the ballot image, find a definite reference point, extract the position data in the ballot design, convert them to an image position data which is connected to the reference point position, then search table lines through the position data, and determine an exact position which an image will be recognized. Based on the exact position, the handwritten character image can be captured and preprocessed, and then the structure feature of the handwritten character is extracted. With the structure feature, the recognition of the handwritten character is realized through structural pattern recognition. If the handwritten character is not identified with the structure feature, it is identified with new features which have been extracted by the method for NMF in this paper. High speed of locating and accuracy of recognition in this method have been successfully proved by experiments. By this recognition method based on the ballot design, the speed of locating is higher in recognition software, and ballot layout may be more complicated. By the structural pattern recognition and the method for NMF, the recognition accuracy is higher. The system efficiency is improved, and the voting system is more comprehensive.
引文
[1]L. J. Hubert, J. J. Meulman, W. J. Heiser. Two purposes for matrix factorization: A historical appraisal[J]. SIAM Review,2000,42:68-82
    [2]D. D. Lee, H. S. Seung. Learning the parts of objects by non-negative matrix factorization[J]. Nature,1999,401(6755):788-791
    [3]S. E. Palmer. Hierarchical structure in perceptual representation[J]. Cognitive Psychology,1977,9(4):441-474
    [4]E. Wachsmuth, M. W. Oram, D. I. Perrett. Recognition of objects and their component parts:responses of single units in the temporal cortex of the macaque[J]. Cerebral Cortex,1994,4(5):509-522
    [5]N. K. Logothetis, D. L. Sheinberg. Visual object recognition[J]. Annual Review of Neuroscience,1996,19(1):577-621
    [6]I. Biederman. Recognition-by-components:a theory of human image unders tanding[J]. Psychological review,1987,94(2):115-147
    [7]S. Ullman. High-Level Vision:Object Recognition and Visual Cognition [M]. Cambridge:MIT Press,1996
    [8]D. D. Lee, H. S. Seung. Algorithms for non-negative matrix factorization[J]. Advances in Neural Information Processing Systems, Cambridge:MIT Press, 2001:556-562
    [9]M. Heiler, C. Schnorr. Learning sparse representations by non-negative matrix factorization and sequential cone programming[J]. Journal of Machine Learning Research,2006,7(7):1385-1407
    [10]C. H. Q. Ding, T. Li, M. I. Jordan. Convex and semi-nonnegative matrix factorizations [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32(1):45-55
    [11]A. Cichocki, S. Amari, R. Zdunek, et al. Extended SMART algorithms for non-negative matrix factorization [J]. Lecture Notes in Artificial Intelligence,2006, 4029:548-562
    [12]陈卫刚,戚飞虎.可行方向算法与模拟退火结合的NMF特征提取方法[J].电 子学报,2003,31(z1):1290-1293
    [13]Z. Yang, X. Chen, G. Zhou, et al. Spectral unmixing using nonnegative matrix factorization with smoothed LO norm constraint[C]. Proceedings of SPIE.2009,7494: 74942K-1:8
    [14]C. Ding, T. Li, W. Peng, et al. Orthogonal nonnegative matrix t-factorizations for clustering[C]. Proceedings of the 12th International Conference on Knowledge Discovery and Data Mining,2006:126-135
    [15]S. Choi. Algorithms for orthogonal non-negative matrix factorization[C]. Proceedings of the IEEE International Joint Conference on Neural Networks, 2008:1828-1832
    [16]Z. Li, X. Wu, H. Peng. Non-negative matrix factorization on orthogonal subspace[J]. Pattern Recognition Letters,2010,31(9):905-911
    [17]J. Yoo, S. Choi. Orthogonal non-negative matrix factorization for co-clustering: multiplicative updates on stiefel manifolds[J]. Information Processing & Management,2010,46(5):559-570
    [18]X. Pei, S. H. Fang, C. B. Chen. Group locality preserving orthogonal nonnegative matrix factorization[C]. Proceedings of the 7th International Conference on Fuzzy Systems and Knowledge Discovery,2010,5:2086-2088
    [19]T. Feng, S. Z. Li, H. Y. Shum, et al. Local non-negative matrix factorization as a visual representation[C]. Proceedings of the 2nd International Conference on Development and Learning,2002:178-183
    [20]T. ZHANG, B. FANG, Y. YUAN, et al. Locality preserving nonnegative matrix factorization with application to face recognition[J]. International Journal of Wavelets, Multiresolution and Information Processing,2010,8(5):835-846
    [21]S. Z. Li, X. W. Hou, H. J. Zhang, et al. Learning spatially localized, parts-based representation[C]. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,2001:1-6
    [22]P. O. Hoyer. Non-negative matrix factorization with sparseness constraints[J]. Journal of Machine Learning Research,2004,5(9):1457-1469
    [23]P. O. Hoyer. Non-negative sparse coding[C]. Proceedings of IEEE Worksop on Neural Networks for Signal Processing,2002:557-565
    [24]M. G. Hosen, B. Z. Massoud, J. Christian. A fast approach for over complete sparse decomposition based on smoothed L0 norm[J]. IEEE Transactions on Signal Processing,2009,57(1):289-301
    [25]B. J. Shastri, M. D. Levine. Face recognition using localized features based on non-negative sparse coding[J]. Machine Vision and Applications,2007, 18(2):107-122
    [26]杨荣根,任明武,杨静宇.基于稀疏表示的人脸识别方法[J].计算机科学,201 0,37(9):267-269
    [27]Y. Yuan, X. Li, Y. Pang, et al. Binary sparse nonnegative matrix factorization[J]. IEEE Transactions on Circuits and Systems for Video Technology,2009, 19(5):772-777
    [28]C. Zhang, J. Liu, Q. Tian, et al. Image classification by non-negative sparse coding, low-rank and sparse decomposition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2011:1673-1680
    [29]R. Zhi, M. Flierl, Q. Ruan, et al. Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B:Cybernetics,2011,41(1):38-52
    [30]Z. J. Yuan, E. Oja. Projective nonnegative matrix factorization for image compression and feature extraction[C]. Proceedings of the 14th Scandinavian Conference on Image Analysis,2005:333-342
    [31]H. F. Liu, Z. H. Wu. Non-negative matrix factorization with constraints[C]. Proceedings of the 24th AAAI Conference on Artificial Intelligence,2010:506-510
    [32]I. Buciu, I. Pitas. NMF, LNMF, and DNMF modeling of neural receptive fields involved in human facial expression perception[J]. Joural of Visual Communication and Image Representation,2006,17(5):958-969
    [33]I. Buciu, I. Nafornita. Non-negative matrix factorization methods for face recognition under extreme lighting variations[C]. Proceedings of the International Symposium on Signals, Circuits and Systems,2009:125-128
    [34]Y. Wang, J. Jia, C. Hu, et al. Non-negative matrix factorization framework for face recognition[J]. International Joural of Pattern Recognition and Artificial Intelligence,2005,19(4):495-512
    [35]X. Li, K. Fukui. Fisher non-negative matrix factorization with pairwise weighting[J]. Machine Vision Applications,2007,1:380-383
    [36]Y. Xue, C. S. Tong, W. S. Chen, et al. A modified non-negative matrix factorization algorithm for face recognition[C]. Proceedings of the 18th International Conference on Pattern Recognition,2006,3:495-498
    [37]I. Bociu, I. Pitas. A new sparse image representation algorithm applied to facial expression recognition[C].Proceedings of the 14th IEEE Signal Processing Society Workshop, Machine Learning for Signal Processing,2004:539-548
    [38]I. Kotsia, S. Zafeiriou, I. Pitas. A novel discriminant non-negative matrix factorization algorithm with applications to facial image characterization problems[J]. IEEE Transactions on Information Forensics and Security,2007, 2(3):588-595
    [39]C. LIU, H. E. Kun, J. Z. ZHOU. Generalized Discriminant Orthogonal Non-negative Matrix Factorization[J]. Journal of Computational Information Systems,2010,6(6):1743-1750
    [40]S. Zafeiriou, A. Tefas, I. Buciu, et al. Class-specific discriminant non-negative matrix factorization for frontal face verification[J]. Pattern Recognition and Image Analysis,2005:206-215
    [41]王亚芳.邻域保持判别非负矩阵分解[J].计算机工程与应用,2010,46(28):163-166
    [42]S. Nikitidis, A. Tefas, I. Pitas. Recent advances in discriminant non-negative Matrix Factorization[C]. Proceedings of the First Asian Conference on Pattern Recognition,2011:1-6
    [43]R. Zdunek, A. Cichocki. Non-negative matrix factorization with constrained second-order optimization[J]. Signal Processing,2007,87(8):1904-1916
    [44]Y. Chen, M. Rege, M. Dong, et al. Non-negative matrix factorization for semi-supervised data clustering[J]. Knowledge and Information Systems,2008, 17(3):355-379
    [45]Y. Liu, R. Jin, L. Yang. Semi-supervised multi-label learning by constrained non-negative matrix factorization[C]. Proceedings of the National Conference on Artificial Intelligence,2006,21(1):421
    [46]V. Blondel, N. D. Ho, P. V. Dooren. Algorithms for weighted non-negative matrix factorization[EB/OL]. http://www.in-ma.ucl.ac.be/publi/303209.pdf, 2007-3-15
    [47]D. Guillamet, J. Vitria, B. Schiele. Introducing a weighted non-negative matrix factorization for image classification[J]. Pattern Recognition Letters,2003, 24(14):2447-2454
    [48]G. L. Wang, A. V. Kossenkov, M. F. Ochs. LS-NMF:A modified non-negative matrix factorization algorithm utilizing uncertainty estimates[J]. BMC Bioinformatics,2006,7:175
    [49]A. Cichocki, R. Zdunek, S. Amari. Csiszar's divergences for non-negative matrix factorization:Family of new algorithms[J]. Lecture Notes in Computer Science, 2006,3889:32-39
    [50]R. Kompass. A generalized divergence measure for nonnegative matrix factorization[J]. Neural computation,2007,19(3):780-791
    [51]R. Zdunek, A. Cichocki. Non-negative matrix factorization with quasi-Newton optimization[J]. Lecture Notes in Artificial Intelligence,2006,4029:870-879
    [52]S. Yang, M. Ye. Multistability of a-divergence based NMF algorithms [J]. Computers & Mathematics with Applications,2012:1865-1870
    [53]A. Cichocki, H. Lee, Y. D. Kim, et al. Non-negative matrix factorization with α-divergence[J]. Pattern Recognition Letters,2008,29(9):1433-1440
    [54]吕伟.基于Alpha散度的NMF人脸识别方法[J].西南师范大学学报(自然科学版),2012,37(3):133-136
    [55]I. Dhillon, S. Sra. Generalized non-negative matrix approximations with Bregman divergences[J]. Advances in Neural Information Processing Systems, Cambridge:MIT Press,2005:283-290
    [56]李乐,章毓晋.非负矩阵分解算法综述[J].电子学报,2008,36(4):737-743
    [57]李乐,章毓晋.非负矩阵集分解[J].电子与信息学报,2009,31(2):255-260
    [58]李乐,章毓晋.基于双线性型的非负矩阵集分解[J].计算机学报,2009,32(8):1536-1549
    [59]D. Guillamet, M. Bressan, J. Vitria. A weighted non-negative matrix factorization for local representations[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001,1:942-947
    [60]D. Wang, T. Li, C. Ding. Weighted feature subset non-negative matrix factorization and its applications to document understanding[C]. Proceedings of the IEEE 10th International Conference on Data Mining,2010:541-550
    [61]Jun Y, Jintao M, Xiaoxu L. A kernel based non-negative matrix factorization[C]. Proceedings of the Second IITA International Conference on Geoscience and Remote Sensing,2010,1:376-379
    [62]D. Zhang, Z. H. Zhou, S. Chen. Non-negative matrix factorization on kernels[J]. Proceedings of the Trends in Artificial Intelligence,2006:404-412
    [63]A. Cichocki, R. Zdunek. Multilayer nonnegative matrix factorization[J]. ELECTRONICS LETTERS-IEEE,2006,42(16):947
    [64]C. Zhang, Z. Zhang. A survey of recent advances in face detection[J]. Microsoft Research,2010, (6):152-155
    [65]N. D. Ho, D. P. Van. Non-negative matrix factorization with fixed row and column sums[J]. Linear Algebra and its Applications,2008,429(5):1020-1025
    [66]A. Cichocki, R. Zdunek. Regularized alternating least squares algorithms for non-negative matrix/tensor factorization[J]. Advances in Neural Networks, 2007:793-802
    [67]D. Zhang, S. Chen, Z. H. Zhou. Two-dimensional non-negative matrix factorization for face representation and recognition[J]. Analysis and Modelling of Faces and Gestures,2005:350-363
    [68]S. Yang, M. Ye. Global Minima Analysis of Lee and Seung's NMF Algorithms[J]. Neural Processing Letters,2012:1-23
    [69]Z. Huang, A. Zhou, G. Zhang. Non-negative Matrix Factorization:A Short Survey on Methods and Applications[J]. Computational Intelligence and Intelligent Systems,2012:331-340
    [70]D. Cai, X. He, X. Wu, et al. Non-negative matrix factorization on manifold[C]. Proceedings of the 8th IEEE International Conference on Data Mining, 2008:63-72
    [71]L. Wei, W. Zeng, F. Xu. Adaptively weighted subpattern-based isometric projection for face recognition[J]. Artificial Intelligence and Computational Intelligence,2011:554-561
    [72]P. Gong, C. Zhang. Efficient Nonnegative Matrix Factorization via projected Newton method[J]. Pattern Recognition,2012,45(9):3557-3565
    [73]王炫盛,陈震,卢琳璋.Lanczos双对角化:一种快速的非负矩阵初始化方法[J].厦门大学学报(自然科学版),2012,51(2):149-152
    [74]R. Albright, J. Cox, D. Duling, et al. Algorithms, initializations, and convergence for the nonnegative matrix factorization[EB/OL]. http://meyer.math.ncsu. edu/Meyer/Abstracts/Publications. html,2006
    [75]A. N. Langville, C. D. Meyer, R. Albright, et al. Initializations for the nonnegative matrix factorization[C]. Proceedings of the 12th International Conference on Knowledge Discovery and Data Mining,2006:23-26
    [76]翟亚利,吴翊.NMF初始化研究及其在文本分类中的应用[J].计算机工程,2008,34(16):191-193,197
    [77]D. Guillamet, J. Vitria. Determining a suitable metric when using non-negative matrix factorization[C]. Proceedings of the 16th International Conference on Pattern Recognition,2002,2:128-131
    [78]C. J. Lin. On the convergence of multiplicative update algorithms for nonnegative matrix factorization[J]. IEEE Transactions on Neural Networks,2007, 18(6):1589-1596
    [79]H. Laurberg, M. G. Christensen, M. D. Plumbley, et al. Theorems on positive data:On the uniqueness of NMF[J]. Computational Intelligence and Neuroscience, 2008:2532-2540
    [80]H. Laurberg. Uniqueness of non-negative matrix factorization[C]. Proceedings of the 14th Workshop on Statistical Signal,2007:44-48
    [81]F. J. Theis, K. Stadlthanner, T. Tanaka. First results on uniqueness of sparse non-negative matrix factorization[C]. Proceedings of the 13th European Signal Processing Conference,2005:785-788
    [82]A. Cichocki, P. Anh-Huy. Fast local algorithms for large scale nonnegative matrix and tensor factorizations[J]. IEICE transactions on fundamentals of electronics, communications and computer sciences,2009,92(3):708-721
    [83]R. Zdunek, A. Cichocki. Fast nonnegative matrix factorization algorithms using projected gradient approaches for large-scale problems[J]. Computational intelligence and neuroscience,2008, (1):1-13
    [84]O. Okun, H. Priisalu, A. Alves. Fast non-negative dimensionality reduction for protein fold recognition[C]. Proceedings of the 16th European Conference on Machine Learning,2005:665-672
    [85]D. Kim, S. Sra, I. S. Dhillon. Fast Newton-type methods for the least squares nonnegative matrix approximation problem[C]. Proceedings of Conference on Data Mining,2007:343-354
    [86]S. A. Vavasis. On the complexity of nonnegative matrix factorization[J]. Journal on Optimization,2009,20(3):1364-1377
    [87]C. Ding, D. Kong. Non-negative matrix factorization using a robust error function[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal,2012:2033-2036
    [88]D. Ross, R. Zemel. Multiple cause vector quantization[J]. Advances in Neural Information Processing Systems 15, Cambridge:MIT Press,2003:1041-1048
    [89]X. J. Ge, S. Iwata. Learning the parts of objects by auto-association[J]. Neural Networks,2002,15:285-295
    [90]P. Paatero, U. Tapper. Positive Matrix Factorization:An non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetries, 1994, (15):111-126
    [91]P. Paatero. Least squares formulation of robust non-negative factor analysis[J]. Chemometrics and Intelligent Laboratory Systems,1997,37(1):23-35
    [92]P. Paatero. The multilinear engine—a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model[J]. Journal of Computational and Graphical Statistics,1999,8(4):854-888
    [93]D. D. Lee, H. S. Seung. Unsupervised learning by convex and conic coding[J]. Advance in Neural Information Proeessing Systems,1997:515-521
    [94]王丰.基于肤色和非负矩阵分解算法的人脸检测技术研究[D].华侨大学,中国,2006
    [95]林庆,李佳,雍建平等.一种改进的基于NMF的人脸识别方法[J].计算机科学,2012,39(5):243-245
    [96]D. Guillamet, J. Vitria. Non-negative matrix factorization for face recognition[C]. Proceedings of the 5th Catalonian Conference on AI:Topics in Artificial Intelligence,2002:336-344
    [97]M. Chu, R. J. Plemmons. Non-negative matrix factorization and applications[J]. Bulletin of the International Linear Algebra Society,2005,34:2-7
    [98]郎利影,夏飞佳.人脸识别中的零范数稀疏编码[J].应用科学学报,2012,30(3):281-286
    [99]I. Buciu. Non-negative matrix factorization, a new tool for feature extraction: Theory and applications [C]. Proceedings of the IEEE 2nd International Conference on Computers, Communications and Control,2008:45-52
    [100]苗启广,王宝树.图像融合的非负矩阵分解算法[J].计算机辅助设计与图形学学报,2005,25(6):2029-2032
    [101]L. Xu, J. Y. Dong, C. B. Cai, et al. Multi-focus Image Fusing Based on Non-negtive Matrix Factorization[J]. Proceedings of Mechatronics and Machine Vision in Practice,2007,4(6):108-111
    [102]张素文,陈娟.基于非负矩阵分解和红外特征的图像融合方法[J].红外技术,2008,(8):446-449
    [103]D. Liang, J. Yang, Y. C. Chang. Relevance feedback based on non-negative matrix factorisation for image retrieval[J]. IEEE Proceedings on Vision, Image and Signal Processing,2006,153(4):436-444
    [104]梁栋,杨杰,卢进军,常宇畴.基于非负矩阵分解的隐含语义图像检索[J].上海交通大学学报,2006,40(5):787-791
    [105]张江,王年.基于NMF与邻接谱的图像分类[J].中国科学技术大学学报, 2008.38(3):247-251
    [106]D. Guillamet, B. Schiele. Analyzing non-negative matrix factorization for image classification[C]. Proceedings of 16th International Conference on Pattern Recognition,2002:116-119
    [107]I. Kopriva, D. Nuzillard. Non-negative matrix factorization approach to blind image deconvolution[C]. Proceedings of the 6th International Conference on Independent Component Analysis and Blind Signal Separation,2006:966-973
    [108]张永鹏,郑文超,张晓辉.非负矩阵分解及其在图像压缩中的应用[J].西安邮电学院学报,2008,13(3):58-61
    [109]刘维湘,郑南宁,游屈波.非负矩阵分解及其在模式识别中的应用[J].科学通报,2006,51(3):241-250
    [110]M. Ouhsain, A. B. Hamza. Image watermarking scheme us-ing nonnegative matrix factorization and wavelet transform[J]. Expert Systems with Applications, 2009,36(2):2123-2129
    [111]F. Shahnaz, M. W. Berry, V. P. Pauca, R. J. Plemmons. Document clustering using nonnegative matrix factorization[J]. Information Processing and Management, 2006,42(2):373-386
    [112]Z. Wang, Q. Zhang, X. Sun. Document clustering algorithm based on NMF and SVDD[C]. Proceedings of the Second International Conference on Communication Systems, Networks and Applications,2010,1:192-195
    [113]Y. C. Cho, S. Choi, S. Y. Bang. Non-negative component parts of sound for classification[C]. Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology,2003:633-636
    [114]A. Frigyesi, M. Hoglund. Non-negative matrix factorization for the analysis of complex gene expression data:identifica-tion of clinically relevant tumor subtypes[J]. Cancer Informatics,2008,6:275-292
    [115]H. Kim, H. Park. Cancer class discovery using non-negative matrix factorization based on alternating non-negativity-constrained least squares[C]. Proceedings of the 3rd Inter-national Symposium on Bioinformatics Research and Applications,2007:477-487
    [116]X. H. Guan, W. Wang, X. L. Zhang. Fast intrusion detection based on a non-negative matrix factorization model[J]. Journal of Network and Computer Applications,2009,32(1):31-44
    [117]Z. R. Yang, Z. J. Yuan, J. Laaksonen. Projective non-negative matrix factorization with applications to facial image processing[J]. Intenational Journal of Pattern Recognition and Artificial Intelligence,2007,21(8):1353-1362
    [118]H. Zhang, Z. Yang, E. Oja. Adaptive multiplicative updates for projective nonnegative matrix factorization[C]. Neural Information Processing,2012:277-284
    [119]李乐,章毓晋.基于线性投影结构的非负矩阵分解[J].自动化学报,2010,36(1):23-39
    [120]王思佳,韩纬,陈克非.电子选举研究的挑战和进展[J].计算机工程,2006,32(15):7-9,27
    [121]I. Goirizelaia, M. Huarte, J. Unzilla, et al. An optical scan e-voting system based on N-version programming[J]. IEEE Security and Privacy,2008,6(3):47-53
    [122]P. E. Sarah, K. G.Kristen, D. B.Michael, et al. Electronic voting machines versus traditional methods:improved preference, similar performance[C]. Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems,2008:883-892
    [123]I. Marosi. OCR Voting Methods for Recognizing Low Contrast Printed Documents[C]. Proceedings of the Second International Conference on Document Image Analysis for Libraries,2006:111-115
    [124]肖刚,刘海萍,陈久军等.基于无向图的选票版面结构理解算法[J].计算机工程,2008,34(18):223-225
    [125]肖刚,陆佳炜,陈久军等.一种基于版面分析的选票快速识别统计方法及系统[P].中国:CN101447017,2009-06-03
    [126]沈军强,肖刚,高飞等.基于表格线游程的选票图像几何结构识别[J].计算机工程,2009,35(17):187-189,192
    [127]沈军强.选票图像的版面理解和快速识别方法研究[D].杭州:浙江工业大学,2009
    [128]阎慧,王金锁,费江涛.基于图像识别的干部测评系统的设计与实现[J].计 算机工程与设计,2009,30(15):3684-3686
    [129]L. Daniel, N. George, E. B. Smith. Document analysis issues in reading optical scan ballots[C]. Proceedings of the 9th IAPR International Workshop on Document Analysis Systems,2010:105-112
    [130]David W Embley, Daniel Lopresti, George Nagy. Notes on Contemporary Table Recognition[C]. Proceedings of the Seventh International Workshop on Document Analysis Systems,2006:164-175
    [131]Ferihane Kboubi, Anja Habacha Chabi, Mohamed Ben Ahmed. Table Recognition Evaluation and Combination Methods[C]. Proceedings of the Eighth International Conference on Document Analysis and Recognition,2005:1237-1241
    [132]吴建国,刘苏南,夏承宝等.基于图像符号识别的电子票箱[P].中国:CN2874635,2007-02-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700