用户名: 密码: 验证码:
非结构地形轮足式移动机器人设计与步态规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
军事、星球探测、自然资源探查等领域内,非结构环境移动机器人有着广泛的应用前景和社会需求。在地球陆地表面,有超过50%以上的面积为崎岖不平的山丘或沼泽,仅仅依靠轮式机械无法完全实现在这些自然环境中的移动。因此,设计和制造一个类似动物能够在自然环境中步行的机器,一直以来是人类追求的目标。同时如何实现移动机器人在非结构自然环境中的稳定、快速、平稳移动,是移动机器人研究面临的重要课题。非结构环境下移动不仅需要具有较强环境适应性的机器人结构,同时需要能够自调整的步态规划方法。
     因此,本论文针对非结构环境中的运动,系统研究了非结构环境下的轮足式移动机器人结构及其步态规划,论文完成的主要工作及贡献有:
     (1)提出了一种适应非结构战场的轮足式军用移动机器人结构,通过组合可以实现轮式、履带式、腿式及复合运动模式等多种运动方式,能够充分发挥各种运动模式在不同条件下的优点,以适应在自然环境下无人驾驶军用机器人顺利完成任务。
     (2)在分析四足动物时各腿协调关系的基础上,对四足动物行走步态进行了完整定义,提出了四足步态衍生谱,给出各标准步态间的转换关系,同时提出了步态与速度关系,给出了针对不同四足机构在不同速度下稳定行走时协调性最高、能耗最小的步态,为不同四足行走机构的步态选择提供参考,同时使在速度变化的情况下能够得到步态的连续变化。
     (3)在对四足动物运动规律分析的基础上,根据生物感知对运动调整的特点,引入了传感反射的定义,建立了从机器人姿态空间和传感器空间到关节轨迹空间的之间映射关系,并结合博弈决策原理,提出一种基于传感反射的步态博弈规划模型,对机器人在非结构环境下行走时进行膝关节角度在线调整,得到机器人在线规划步态,使机器人在未知环境下自主平稳行走。
     (4)在机器人腿式运动规划的基础上,对轮足式机器人复合移动模式进行分析,并根据前面腿的运动规划方法对复合步态进行规划以及各模式间切换变形的运动规划研究。
The unstructured environment robots have the broad foreground and social requirement in the fields like military affairs, celestial body detecting and natural resources detecting. About fifty percent of the surface of earth is covered by dene, marish, massif and so on. Though researchers have invent many kinds of wheeled machine, designing and manufacturing a legged robot like myriapod running in natural environment is still a huge challenge. How to realize stable, rapidity and smooth motion in the unstructured environment, is one of important subjects faced in mobile robot research. Motion in the unstructured environment, not only a compounded mobile mechanism with high environmental adaptability is necessary, but also a self-adjusting gait planning for such mechanism is required.
     Therefore, a wheel-legged mobile mechanism motion in the unstructured environment and the gait planning based on sensory reflex for the robot are studied in this dissertation. The main contributions of this dissertation are introduced as follows:
     (1) After analyzed the feature of unstructured environment and the requirements of mobile robot, a kind of wheel-legged military robot is presented for motion on the unstructured battlefield. By combining, the robot has multi-motion modes, such as wheel, leg, pedrail and compounded motion mode. With such mechanism, the robot can exert the advantages of these motion modes under different conditions, to adapt the unstructured environment for completing the tasks of unmanned military robots.
     (2) With the analysis of legs motion orderliness of quadrupeds, an integrated definition of quadruped gait is brought forward. With the quadruped gait derivative spectrum, we can get the successive transition between the standard gaits. At the same time, the relationship between the gait selection and motion speed was detected. Thus, the ideal gait with the most coordination and minimal energy consumption should be select for different four-legged mechanisms motion with different speed. With these theories, the reference for quadruped robot gait selection is afforded, and the successive transition for gait with motion speed is realized.
     (3) An online gait planning approach is proposed base on the characterization of quadruped walking. In accordance with the application of gait of motion robot in unstructured environment, the concept of sensory reflex is defined; the posture space and sensor space are mapped to the joint trajectory space directly. In addition, combined with the game theory, it can be made an online gait planning model with sensory reflex and game decision. With this model, the angle of knuckle would be adjusted to cause a calm motion when the robot walking on the unstructured environment.
     (4) Based on the gait planning of leg motion, the complex motion of wheel-leg of robot was analyzed. The gait planning of multi-motion modes was brought out and the motion capability of the robot motion on the unstructured environment was analyzed.
引文
[1]王海彬,黄永生,姚丹霖.国外地面军用机器人系统综述.汽车运用, 2005, 11: 18-20.
    [2]蔡鹤皋.机器人技术的发展与在制造业中的应用.机械制造与自动化, 2004, 1: 6-10.
    [3]王树国,付宜利.我国特种机器人发展战略思考.自动化学报. 2002, 28(s): 70-76.
    [4]霍伟.机器人动力学与控制.北京:高等教育出版社, 2005.
    [5] Vanderborght B, Van H R, Verrelst B, et al. Overview of the Lucy Project: Dynamic Stabilization of a Biped Powered by Pneumatic Artificial Muscles. Advanced Robotics. 2008, 22(10): 1027-1051.
    [6] Okumura Y, Tawara T, Endo K, et al. Realtime ZMP compensation for biped walking robot using adaptive inertia force control. Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vagas, USA. 2003: 335-339.
    [7] Prahlad V, Dip G. Meng-Hwee C, et al. Disturbance rejection by online ZMP compensation. Robotica. 2008, 26(1): 9-17.
    [8]张秀丽.四足机器人节律运动及环境适应性的生物控制研究: [博士学位论文].北京:清华大学, 2004.
    [9]仲崇慧,贾喜花.国外地面无人作战平台军用机器人发展概况综述.机器人技术与应用, 2005, 4: 18-24.
    [10]静思.各国地面军用机器人研制情况.机器人技术与应用, 1996, 3: 9-13.
    [11]王永寿.美国军用机器人的现状与开发动向.飞航导弹, 2003, 2: 11-15.
    [12]曹玉芬,张国斌.美国无人地面车辆计划.国外坦克, 2004, 5: 25-27.
    [13] Danna Voth. A New Generation of Military Robots. IEEE Intelligent Systems, 2004, 19(4): 2-3.
    [14] R. Allan. Technology at war. Electronic Design, 2005, 53(5): 43-52.
    [15]英国军用机器人研究近况.机器人技术与应用, 2000 2: 17-18.
    [16] Sungchul Kang, Woosub Lee, Munsang Kim, Kyungchul Shin. ROBHAZ-rescue: rough-terrain negotiable teleoperated mobile robot for rescue mission. Proceedings of the 2005 IEEE International Workshop on Safety, Security and Rescue Robotics, Kobe, Japan, June 2005, 6-9: 105-110.
    [17]王巍,夏玉华,梁斌.月球漫游车关键技术初探团.机器人. 2001, 23(3): 280-284.
    [18]仝爱莲.世界各航天国家再次把目标对准月球.中国航天, 1995, 6: 41-45.
    [19]刘进长,辛键成.机器人世界.郑州:河南科学技术出版社, 2000: 93-104.
    [20] Klaus Schilling,Christoph Jungius. Mobile robots for Planetary Exploration. Espoo.Finland: IFAC Intelligent Autonomous Vehicles. 1995. 109-119.
    [21] Kyrre Gletter. Motion Control for a Planetary Exploration Rover with Six Steerable Wheels. Norway: Norwegian University of Science and Technology (NTNU). Trondheim. 2004. 2-10
    [22] Gat E, Desai R, Ivlev R, Loch J, and Miller D P. Behavior control for robotic exploration of planetary surfaces. IEEE Transactions on Robotics and Automation, 1994, 10(4): 490-503.
    [23] Hayari S, Volpe R, et al. The rocky 7 rover: a Mars science craft prototype. Proceedings of IEEE International Conference on Robotics and Automation, 1997, 2485-2464.
    [24] Volpe R, Balaram J, et al. Rocky 7: a next generation Mars rover prototype. Advanced Roboties, 1997, 11(4): 341-358.
    [25] Volpe R, Olum T, et al. A Prototype manipulation system for Mars rover science operation. Proceedings of the IEEE/RSJ International Conference on Robots and Systems, 1995, 1487-1492.
    [26]丁希仑,洪弈光,赵志文,等.自动球形行星探测机器人的研究.中南工业大学学报, 2000, 31.(中国2000年机器人学大会论文专辑),长沙, 2000.10.23-26: 438-441.
    [27]邓宗全,高海波,胡明,王少纯.行星越障轮式月球车的设计.哈尔滨工业大学学报, 2003 35(2): 203-213.
    [28]居鹤华,崔平远,崔枯涛.具有滑移的摇臂式月球车建模与控制.机械工程学报. 2005, 9: 134-139.
    [29] Bares J, Whittaker W L. Configuration of autonomous walkers for extreme terrain. The International Journal of Robotics Research, 1993, 12(6): 535-559.
    [30] J. Bares and D. Wenttergreen. Dante11: Technical Description Results and Lessons Learned. International Journal of Robotics Research, 1999, 18(7): 621-649.
    [31] Jun Morimoto, Jun Nakanishi, Gen Endo, et al. Poincare-Map-Based Reinforcement Learning For Biped Walking. Proceedings of the 2005 IEEE International Conference Robotics and Automation. Barcelona, Spain, April 2005: 2392-2397.
    [32] R.S. Mosher. Test and Evaluation of a Versatile Walking Truck. Proc. Off-Road Mobility Research Symp., 1968, 359–379.
    [33] R.B. McGhee and A.A. Frank. On the Stability Properties of Quadruped Creeping Gaits. Math. Biosci., 1968, 3: 331-351.
    [34] D.J. Todd. Walking Machines: An Introduction to Legged Robots. London: Kogan Page Ltd, 1985.
    [35] J. Angeles. Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms. New York: Springer-Verlag, 1997.
    [36] R. M. Alexander. Gaits of Mammals and Turtles. J. of the Robotics Society of Japan, 1993,11(3): 314-319.
    [37] K. Arikawa and S. Hirose. Development of Quadruped Walking Robot TITAN-VIII. Procs. of the 1996 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Osaka, Japan, 1996, 208-214.
    [38] S. Hirose and K. Kato. Study on Quadruped Walking Robot in Tokyo Institute of Technology-Past, Present and Future. Proc. of the 2000 IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, 2000, 414-419.
    [39]蒋新松,机器人学导论,辽宁:辽宁科学技术出版社, 1993.
    [40]汪劲松,荣松年,张伯鹏.全方位双三足步行机器人(Ⅰ)——步行原理、机构及控制系统.清华大学学报(自然科学版), 1994, 2: 102-107.
    [41]马培荪,马烈.全方位四足步行机器人JIUWM-II转弯步态控制的研究.上海交通大学学报, 1995, 29(5): 97-92.
    [42] X.D. Chen. Novel Formulation of Static Stability for a Walking Quadruped Robot. Chinese J. of Mechanical Engineering, 2003, 16(2): 120-122.
    [43] Takashi Kubota, Tesuto Yoshimitsu. Asteroid Exploration Rover. EIEEICRA 2005 Planetary Rover Workshop, Barcelona, Spain, April, 2005.
    [44]刘方湖,陈建平,马培荪.行星探测机器人的研究现状和发展局势.机器人, 2002, 24(3): 268-273.
    [45] Charles R. Weisbin, Dvaaid B. Lvaey, Gtlillermo Rodriguez. Robots in Space: U.S. Missions and technology requirements into the Next Cenutyr. Atltonomous Robots, 1997, 4: 159-173.
    [46]季学武.车辆一沙地相互作用关系及仿驼足轮胎关键技术的研究: [博士学位论文].吉林:吉林工业大学, 1994: 4-5.
    [47] http://www.telerobotics.jpl.nasa.gov/inrfasturcutre/genealogy/images/inflatable.jpg.
    [48] http://www.cs.cmu.edu/asf/cs/Project/space/gyrover/gyrover.html7.
    [49] Atsushi Koshiyama. Design and Control of an All-Direction Steering Type Mobile Robot. The International Journal of Robotic Research, 1993, 12(5): 411-419.
    [50] Shigeo Hirose. Super-Methanol-Colony and SMC Rover with Detachable Wheel Units. Proc. COE workshop, 1999: 67-72.
    [51] httP://www.snsagami.org/shoukai/katsudou/kenrobo/saga_ken/image/utyuken/l006127.html.
    [52] R. J. Bachmann, F. J. Boria, et al. Utility of a sensor platform capable of aerial and terrestrial locomotion. 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, CA, USA, 24-28 July 2005, 1581-1586.
    [53] P. J. Lewis, D. N. Flann, et al. Chaos an intelligent ultra-mobile sugv: Combining themobility of wheels, tracks, and legs, Proceedings of SPIE, Unmanned Ground Vehicle Technology VII, 2005, 5408: 427-438.
    [54] httP://mpfwww.jpl.nasa.gov/MPF/rovercom/rovcom.html.
    [55] Sreenivasan S V, Wilcox B H. Stability and traction control of an actively actuated micro-rover. Journal of Robotic systems, 1994, 116: 487-502.
    [56] Leppanen I., Salmi S., et al. Work Partner, HUT Automation’s new hybrid walking machine. CLAWAR’98 First International Symposium, Brussels, Belgium, 26-28 November, 1998: 1123-1128.
    [57]王海彬,黄永生,姚丹霖.国外地面军用机器人系统综述.汽车运用, 2005, 157(11): 18-20.
    [58] http://military.china.com.
    [59] httP://www.legacy.eos.ncsu.edu/microrobotics/erl_microbotics.html.
    [60] FRANC, OIS MICHAUD, DOMNIIC L'ETOURNEAU. Multi-Modal Locomotion Robotic Platform Using Leg-Track-Wheel Articulations. Autonomous Robots. 2005, 18: 137-156.
    [61]赵海峰.特种机器人在中国的创新发展.中国制造业信息化, 2005, 11: 21-22.
    [62] Paule S. Schenker, Terry L. Htlntsberger, Eric T. Buangartner, eat al. Planetary Rover Developments Supporting Mars Exploration, Sample Return and Future Human-Robotic colonization. Autonomous Robots. 1997, (4): 159-173.
    [63] R.B. McGhee. Some Finite State Aspects of Legged Locomotion. Math. Biosci.,1968, 2: 67-84.
    [64] S. Hirose, H. Kikuchi and Y. Umetani. The Standard Circular Gait of the Quadruped Walking Vehicle. J. of the Robotics Society of Japan, 1984, 2(6): 545-556.
    [65] C.D. Zhang and S.M. Song. Gaits and Geometry of a Walking Chair for the Disabled. Journal of Terramechanics 26(3): 211-233.
    [66] P.K. Pal and K. Jayarajan. Generation of Free Gait - A Graph Search Approach. IEEE Trans. On Robotics and Automation, 1991, 7(3): 299-305.
    [67] K. Inagaki and H. Kobayashi. A Gait Transition for Quadruped Walking Machine. Procs. of the 1993 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Yokohama, Japan, 1993, 525-531.
    [68] R. M. Alexander. Gaits of Mammals and Turtles. J. of the Robotics Society of Japan, 1993, 11(3): 314-319.
    [69] S. Bai, H. Low and G. Seet et al, A New Free Gait Generation for Quadrupeds Based on Primary/Secondary Gait. Proc. of the 1999 IEEE Int. Conf. on Robotics and Automation, Detroit, Michigan, 1999, 1371-1376.
    [70] V. Hugel and P. Blazevic. Towards Efficient Implementation of Quadruped Gait with Duty Factor of 0.75. Proc. of the 1999 IEEE Int. Conf. on Robotics and Automation, Detroit, Michigan, 1999, 2360-2365.
    [71]王新杰.多足步行机器人运动及力规划研究: [博士学位论文].武汉:华中科技大学, 2005.
    [72] Hirose, S., Kikuchi, H., and Umetani, Y. 1986. The standard circular gait of a quadruped walking vehicle. Advanced Robotics, 1(2):143-164.
    [73] S.M. Song and K.J. Waldron. An Analytical Approach for Gait Study and Its Application on Wave Gaits. Int. J. of Robotic Research, 1987, 6(2):.60-71.
    [74] Huang Qiang. Planning walking patterns for a biped robot. IEEE Transactions on Robotics and Automation, 2001, 17(3): 280-289.
    [75]窦瑞军,马培荪,谢玲.两足机器人步态的参数化设计及优化.机械工程学报, 2002, 38(4): 36-39.
    [76] K. Kawabata and H. Kobayashi. A Gait Generation for Walking Robot by Distributed Intelligent Control Structure. J. of the Robotics Society of Japan, 1996, 14(7): 977-985.
    [77] E. Celaya and J. M. Porta. A Control Structure for the Locomotion of a Legged Robot on Difficult Terrain. IEEE Robotics and Automation Magazine, 1998, 5(2): 43-51.
    [78] J.F. Gardner, K. Srinivasan and K.J. Waldron. A Solution for the Force Distribution Problem in Redundantly Actuated Closed Kinematic Chains. Trans. of the ASME, J. of Dynamic Systems, Measurement, and Control, 1990, 112: 523-526.
    [79] C. Villard, P. Gorce and J.G. Fontaine. Study of a Distributed Control Architecture for a Quadruped Robot. J. of Intelligent and Robotics Systems, 1995, 11(3): 269-291.
    [80] R. Prajoux and F. Martins. A Walk Supervisor Architecture for Autonomous Four-Legged Robots Embedding Real-Time Decision-Making. Procs. of the 1996 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Osaka, Japan, 1996, 200-207.
    [81] D. E. Orin and S.Y. Oh. Control of Force Distribution in Robotic Mechanism Containing Closed Kinematic Chains. Trans. of the ASME, J. of Dynamic Systems, Measurement, and Control, 1981, 102: 134-141.
    [82] C. A. Klein and S. Kittivatcharapong. Optimal Force Distribution for the Legs of a Walking Machine with Friction Cone Constraints. IEEE Trans. On Robotics and Automation, 1990, 6(1): 73-85.
    [83] M.A. Nahon and J. Angeles. Optimization of Dynamic Forces in Mechanical Hands. Trans. of the ASME, J. of Mechanical Design, 1991, 113: 167-173.
    [84] S.S. Kumar and A. Guez. ART based adaptive pole placement for neurocontrollers. Neural Networks, 1991, 4: 319-335.
    [85]郑伟红,马培荪,陈佳品.模糊神经网络在四足步行机器人控制中的应用.上海交通大学学报, 1996, 30(1): 42-48.
    [86]马培荪,郑伟红.四足步行机器人模糊神经网络控制.机器人, 1997, 19(1): 56-60.
    [87] Brooks R A. A robust layered control system for a mobile robot. IEEE. Journal of Robotics and Automation, 1985, 2(1): 14-23.
    [88] Hasslacher Brosl, Tilden Mark W. Living machines. Robotics and Autonomous Systems, 1995, 15(1-2): 143-169.
    [89] Roberts P D. Classification of temporal patterns in dynamic biological networks. Neural Computation, 1998, 10: 1831-1846.
    [90] Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics, 1985, 52: 367-376.
    [91] Fukuoka Y, Kimura H, Cohen AH. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. International Journal of Robotics Research, 2003, 22(2): 187-202.
    [92] M.G,培克,孙凯南.陆用车辆行驶原理.北京:中国工业出版社, 1962, 60-170.
    [93]冯建农,柳明.自主移动机器人智能导航研究进展.机器人, 1997, 6: 468-473.
    [94] Kai-TaiSong, Charles C. Chang. Reactive navigation in dynamic environment using a multi-sensor predictor. IEEE Trans Syst Man Cybern B Cybern. 1999, 29(6): 870-878.
    [95]王仲民,岳宏,刘继岩.移动机器人多传感器信息融合技术述评.传感器技术, 2005, 4: 5-7.
    [96]肖本贤,刘海霞,张松灿,赵明阳,齐东流.基于多传感器行为融合基础上的AGV导航研究.系统仿真学报, 2005, 8: 1939-1943.
    [97] L. Ojeda, J. Borenstein, and et al. Terrain Characterization and Classification with a Mobile Robot. Journal of Field Robotics, 2006, 23(2): 103-122.
    [98]龙斌.基于机体姿态调整的非结构环境机器人机构研究: [硕士学位论文]上海:东华大学, 2006.
    [99] K. Iagnemma, H. Shibly, and S. Dubowsky. Terrain parameter estimation for planetary rovers. Presented at Proceedings of the IEEE International Conference on Robotics and Automation, 2002, 3142-3147.
    [100] D. Sadhukhan, C. Moore, and E. Collins. Terrain Estimation Using Internal Sensors. Proceeding of Robotics and Applications, 2004, 447-800.
    [101]程刚.非结构化环境中移动机器人系统越障运动机理的研究: [博士学位论文].合肥:中国科学技术大学, 2006.
    [102]马宏绪,张彭,张良起.两足步行机器人研究.高技术通讯, 1995, 9: 17-20.
    [103] M.伍科布拉托维奇著,马培荪译.步行机器人和动力型假肢.北京:科学出版社, 1983.
    [104] http://www.md.kth.se/-cas/publications/pubdata/hardarson_1997_LDT.pdf.
    [105]孙靖民.机械优化设计.北京:机械工业出版社, 1990.
    [106]黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社. 1996: 29-35.
    [107] Lewis S. Brown. Animals in motion / Eadweard Muybridge. New York: Dover Publications, Inc., c1975.
    [108] Inagaki, K., Kobayashi, H. A gait transition for quadruped walking machine. Proceedings of the 1993 IEEE/RSJ international conference on, 1993, 1: 26-30.
    [109] MM Abitbol. Speculation on posture, locomotion, energy consumption, and blood flow in early hominids. Gait & Posture, 1995, 3(1): 29-37.
    [110] D. F. Hoyt and C. R. Tailor. Gait and the Energetics of Locomotion in Horses. Nature, 1981, 292: 239-240.
    [111] Ito S, Yuasa H, Ito K, et al. Energy-based pattern transition in quadrupedal locomotion with oscillator and mechanical model. IEEE. Systems, Man and Cybernetics, 1996, 2321-2326.
    [112]席裕庚,王长军.控制、规划和调度问题中的博弈论应用.中国计量学院学报, 2005, 16(1): 8-12。
    [113]罗云峰.博弈论教程.北京:清华大学出版社, 2007: 9-31.
    [114]王鹏飞.四足机器人稳定行走规划与控制技术研究: [博士学位论文].哈尔滨:哈尔滨有个大学, 2007.
    [115]程军伟,高连华,王红岩,宋海军,刘峰.集中载荷条件下的履带车辆转向分析.装甲兵工程学院学报, 2006, 2: 54-58.
    [116]刘振山.自主移动机器人运动控制系统的设计与实现: [硕士学位论文].青岛:中国海洋大学, 2004.
    [117] Xsens Technologies B.V. MTi and MTx User Manual and Technical Documenta-tion. 2006.
    [118]北京星网宇达科技开发有限公司.高精度高动态接收机XW-PS1000用户手册.
    [119] http://www.cnbtec.com
    [120]国腾微电子有限公司. GM3101数据手册.
    [121] SHARP. General Purpose Type Distance Measuring Sensors GP2D12/GP2D15. Datasheet.
    [122]陈学东,孙翊,贾文川.多足步行机器人运动规划与控制.湖北:华中科技大学出版社, 2006: 21-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700