用户名: 密码: 验证码:
组织工程肌腱支架的设计及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌腱损伤是存在于从事体育运动人群的常见损伤之一。目前的治疗方法存在着一定的局限性或不足。组织工程技术的诞生和发展为临床肌腱修复提供了一种更为理想的、符合生理特点的方法。用组织工程技术修复肌腱缺损就是将获取少量的肌腱种子细胞在体外培养扩增后和可生物降解支架结合成复合物,将其植入缺损部位后种子细胞增殖、分化、分泌基质,形成修复组织,生物材料逐渐降解,最终达到生物学意义上的完全修复。其中支架在组织工程技术中占有非常重要的地位,它不仅起支撑作用,保持原有组织的形状,而且还起到模板作用,为细胞提供寄宿、成长、分化和增殖的场所,对受损组织的再生进行引导和对再生组织的结构进行控制,是决定组织工程技术是否能用于临床的关键因素。目前已有的组织工程肌腱支架通常有着良好的生物相容性,细胞能在支架上很好的黏附、增殖并分泌细胞外基质,但这些支架却无法满足在降解过程中的力学要求。本文设计并制备了一种新型组织工程肌腱支架,使其在满足种子细胞的黏附、增殖以及分泌细胞外基质的同时,还能够满足降解过程中的力学性能要求。
     本文根据组织工程肌腱支架的设计原则,选用PGA纤维和PLA纤维作为支架材料,设计了一种将两种纤维联合使用、具有“芯-鞘”结构的新型组织工程肌腱支架,“芯”为细胞的黏附和增殖提供场所,而“鞘”是支架增强体,在组织形成前提供足够的力学强度。其中“芯”为PGA纤维须条,“鞘”为小口径管状纬平针织物。制备支架增强体的纱线采用由PGA纤维和PLA纤维组成的编织线。
     本文对组织工程肌腱支架材料使用的PGA纤维和PLA纤维的基本性能、体外降解性能、细胞黏附性能进行了较为系统、全面的研究,并探讨了熔融纺丝工艺参数对PGA纤维降解性能的影响。本文研究表明,PGA纤维与PLA纤维具有良好的力学性能,可以在纺织技术中应用。PGA纤维的降解速度快于PLA纤维,在降解8周后失去几乎全部质量,在降解2周后失去绝大部分强力,在整个降解过程中表面形态发生了明显的变化,结晶度的上升说明了纤维的非结晶区降解速度较快。而PLA纤维在整个降解过程中的变化不明显。细胞在PGA纤维上的黏附要好于在PLA纤维上的黏附,并分泌了大量的细胞外基质。纺丝过程中牵伸倍数、牵伸温度和纺丝所用聚合物的特性粘度因素对PGA纤维的降解性能有着重要的影响。在实验范围内,较高牵伸倍数条件下制得的PGA纤维在降解过程中的降解速率较慢;较高牵伸温度条件下得到的PGA纤维降解速率较快;特性粘度较高的聚合物在相同纺丝条件下制得的纤维比由较低特性粘度的聚合物制得的纤维降解速率慢。
     本文研究了组织工程肌腱支架增强体用编织线的制备过程,探讨了编织加工对PGA纤维降解性能的影响,还研究了编织线中不同比例的PGA纤维和PLA纤维组分对编织线降解性能的影响。研究表明,PGA纤维和PGA编织线的降解大体趋势相同,两者的降解过程均可分为“强力下降期”、“非结晶区质量损失期”、“结晶区质量损失期”三个阶段。在第一阶段,编织线中的纤维断裂强力保持率始终高于未经编织的纤维。在第二阶段,未经编织的纤维的质量损失率始终高于编织线,结晶度的增大速率也快于编织线。在第三阶段,未经编织的纤维和编织线的结晶度趋于一致,但编织线的质量损失速率较大。对4种PGA与PLA纤维成分比例不同的编织线进行体外降解试验表明,降解过程中随着编织线中PGA纤维成分比例的增大,编织线的降解速度也不断加快。
     本文分别在圆机和横机上制备了作为组织工程肌腱增强体的小口径管状纬平针织物,并探讨了针织工艺参数对其几何形状、力学性能的影响。在用圆机制备组织工程肌腱增强体的过程中,弯纱深度、牵拉力和给纱张力等工艺参数对织物的几何形态以及力学性能产生影响。在弯纱深度较小、牵拉力较小以及给纱张力较大的条件下制得的织物线圈长度较小,线圈比较规整,歪斜少,结构较为紧密,断裂强力较高;而在弯纱深度较大、牵拉力较大以及给纱张力较小的条件下制得的织物线圈长度较大,结构较为稀松,断裂强力较低。在用横机制备组织工程肌腱增强体的过程中,弯纱深度、牵拉力和给纱张力等工艺参数对织物的几何形态以及力学性能的影响与在小口径圆机上一致。可通过改变横机编织针数的方法控制支架增强体直径,适用于有明确几何形态要求的组织工程肌腱支架增强体的制备。
     本文对组织工程肌腱支架增强体的体外降解性能和细胞黏附性能进行了研究,建立了小口径管状纬平针织物的几何模型。研究了不同PGA和PLA纤维成分比例对组织工程肌腱支架增强体的体外降解性能和细胞黏附性能的影响,发现在支架增强体中PGA纤维成分越多,降解速率越快,在降解过程中力学性能下降程度越大,细胞在支架增强体上的黏附情况越好,优选4PGA/2PLA编织线制备支架增强体。本文建立了小口径管状纬平针织物的几何模型,对线圈的几何形态进行了分析,给出了线圈横向和纵向变形达到极限时的几何特点,并推导了表面孔隙率的计算公式。
     本文制备了完整的组织工程肌腱支架,并对完整支架的性能进行了测试和研究。研究表明该“芯-鞘”结构的组织工程肌腱支架具有合适的几何形状,较高的孔隙率以及良好的力学性能。“芯-鞘”结构的组织工程肌腱支架的整个降解过程分为三个阶段,第一阶段的主要特点为强力的大幅下降,可称之为“强力下降期”;第二阶段的主要特点为质量损失率大幅上升,可称之为“质量损失期”;第三阶段,组织工程肌腱支架的质量损失率和强力保持率均较为稳定,可称之为“准稳定期”。
     本文在组织工程肌腱支架上接种细胞后进行体外构建,对该支架应用于临床的可能性进行评价。构建一周后的细胞-支架复合体的断裂强力为63N;细胞-支架复合物的表面较为光滑,表层的支架增强体与中心部分的PGA纤维须条结合紧密,细胞-支架复合物的几何形状在构建过程中发生了明显的变化,其直径变细,而长度变长;细胞在支架增强体和PGA纤维须条上均黏附较好,而且分泌了大量的细胞外基质。利用该种具有“芯-鞘”结构的组织工程肌腱支架构建出的组织结构致密,胶原沿力学轴向排列,细胞/胶原比与正常肌腱近似,具有临床应用的可能性。
Injures to tendons are very common in the physically active population. However, some limitations exist in the present therapies. The tissue engineering keeps the promise for tendon repair. Using the tissue engineering for tendon repair is as follows: combined the expanded cells and a biodegradable scaffold to form a composite, and cells proliferate, differentiate and produce the extracellular matrices to form a new tissue after grafting it in the injury position. The scaffold plays a key role in tissue engineering. It not only plays a support role to keep the original tissue shape, but also plays a template role to provide a place for cell attachment, growth, proliferation and differentiation. The scaffold which can conduct the tissue regeneration and control the structure of the tissue is a key factor to determine whether the tissue engineering can be used in clinical treatment or not. The present scaffold for tendon tissue engineering possessed the good biocompatibility, and cells could attach, proliferate and produce extracellular matrices. However, those scaffolds could not meet the mechanical requirements during degradation. This paper designed and prepared a novel scaffold for tendon tissue engineering. It not only could provide a place for cell attachment, proliferation and producing extracellular matrices, but also could meet the mechanical requirements during degradation.
     This paper designed a novel scaffold for the tendon tissue engineering according to the design principles of tissue engineering scaffolds. The scaffold composed of polyglycolide (PGA) and polylactide (PLA) fibers possessed a "core-sheath" structure. The "core" provided a place for cell attachment and proliferation, and the "sheath" was a scaffold reinforcement, which provided sufficient strength before tissue formation. The "core" was composed of PGA fibers, and the "sheath" was a small-diameter circular plain knitted fabric which is made from PGA/PLA braided yarns.
     This paper studied the basic properties, performance during degradation in vitro, and cell-fiber reaction of PGA and PLA fiber. The results showed that both PGA and PLA fiber possessed the good mechanical properties, and could be used in textile technologies. The PGA fiber degraded faster than PLA fiber. It lost almost all the mass after 8-week degradation, but lost almost all the tensile strength after 2-week degradation. The morphology changed obviously during degradation. The crystallinity increased firstly and then decreased with the degradation time, which indicated the degradation occurred in the amorphous region. However, the PLA fiber changed not obviously during degradation. Cells attached on PGA fibers much better than on PLA fibers, and cells on PGA fibers produced more matrix. Drawing multiple, drawing temperature and inherent viscosity of polymer had the influence on the performance of PGA fiber during degradation. The PGA fiber produced on higher drawing multiple degraded more slowly. The PGA fiber produced on higher drawing temperature degraded faster. The PGA fiber made from higher inherent viscosity polymer degraded more slowly.
     This paper studied the preparation of the braided yarns used in the reinforcement of scaffold for tendon tissue engineering, discussed the influence of braiding process on the performance of PGA fiber during degradation, and studied the influence of proportion of PGA and PLA fiber on the performance of braided yarns during degradation. The results showed that PGA fiber and PGA braided yarn had the same trend during degradation, and the degradation could be divided into three stages named as strength decrease stage, mass loss of amorphous region stage and mass loss of crystallinity region stage. In first stage, the strength remaining of fiber in braided yarn was higher than unbraided fiber, and the crystallinity decreased more obviously. In second stage, the mass loss rate of unbraided fiber was higher than fiber in braided yarn, and the crystallinity increased faster. In third stage, the crystallinity of unbraided fiber was nearly same as braided yarn, but the mass loss rate of braided yarn was faster. The results of the degradation test of 4 kinds of braided yarn with different proportion of PGA and PLA fiber indicated that with increase of PGA fiber component, the degradation rate of braided yarn increased.
     This paper prepared the reinforcement of scaffold for tendon tissue engineering on the circular and flat knitting machine respectively, and discussed the influence of knitting parameters on the geometric shape and mechanical property of the reinforcement. In the process of preparation of the reinforcement on the circular knitting machine, sinking depth, drawing force and feeding tension had the influence on the geometric shape and mechanical property. The fabric prepared on smaller sinking depth, smaller drawing force and larger feeding tension, possessed the smaller stitch length, the regular stitch shape, the closer structure and higher strength. By contraries, the fabric prepared on larger sinking depth, larger drawing force and smaller feeding tension possessed the larger stitch length; the more loosen structure and lower strength. In the process of preparation of the reinforcement on the flat knitting machine, the influence of sinking depth, drawing force and feeding tension on the geometric shape and mechanical property was the same as on the circular knitting machine. The diameter of the reinforcement could be controlled by changing the number of knitting needles on the flat knitting machine, which was suitable for preparation of the reinforcement that had specific geometric requirement.
     This paper studied the performance during degradation in vitro and cell attachment of the reinforcement of scaffold for tendon tissue engineering, and set up a geometric model of a small-diameter circular plain knitted fabric. The influence of proportion of PGA and PLA fiber on the performance during degradation in vitro and cell attachment was studied. The results showed that with the increase of the PGA fiber component, the degradation rate of the reinforcement of scaffold increase, and cells attached on the reinforcement better. A geometric model of a small-diameter circular plain knitted fabric was set up to analyze the geometric shape of the stitch. The geometric characteristics under extreme condition for both transverse and longitudinal extension were given. The formula for calculating surface porosity was developed.
     This paper prepared an integrated scaffold for tendon tissue engineering, and studied its properties. The results showed that the scaffold for tendon tissue engineering with a "core-sheath" structure possessed reasonable geometric shape, high porousity and excellent mechanical performance. The degradation could be divided into three stages. The main characteristic of the first stage was the sharp decrease of strength, which could be named as "strength decrease stage". The main characteristic of the second stage was the sharp increase of mass loss, which could be named as "mass loss stage". The mass loss and strength were stable in third stage which could be named as "quasi-stable stage".
     This paper constructed a tissue engineered tendon by cell-seeding on the scaffold, and evaluated the feasibility of clinical application of the scaffold. The maximum tensile load of the cell-scaffold was 63N. The surface of the cell-scaffold was smooth, and the reinforcement and PGA fibers combined closely. The geometric shape of the cell-scaffold changed obviously during construction. The diameter became smaller, and the length became longer. Cells attached well both on the reinforcement and PGA fibers, and produced a lot of extracellular matrices. The tissue constructed using the scaffold for tendon tissue engineering with a "core-sheath" structure, possessed the close structure, the arrangement of the collagen along the mechanical axis direction, and the similar proportion of cell/ collagen with a normal tendon. The scaffold was feasible for the clinical application.
引文
[1]吕浩然,刘尚礼.人工肌腱的研究进展.中国矫形外科杂志,2005,13(10):786-788.
    [2]斯清庆,侯春林.肌腱替代物的研究进展.美中国际创伤杂志,2004,3(2):38-41.
    [3]杨志明,项周,龚全.肌腱组织工程研究.中国现代手术学杂志,2000,4(3):226-228.
    [4]夏旭,伍洪波.人工腱研究进展.国外医学生物医学工程分册,1998、21(1):39-44.
    [5]Mendes CG, Iusim M, Angel D, et al. Histologic pattern of biomechanic properties of carbon fiber-augmented ligament tendon. Clin Orthop,1985, 19(6):51-60.
    [6]戴克戎,俞昌泰.人工肌腱临床应用初步报告.上海医学,1980,(8):28-31.
    [7]黄凤鸣,韩汉平,宋涛,等.人发肌腱的实验研究与临床应用.中华实验外科杂志,1988,(2):64-66.
    [8]曹启迪,蔡俊杰.109HH人工腱植入新西兰兔体内后腱化过程观察.中华实验外科杂志,1996,13(4):237-238.
    [9]Langer R, Vacanti JP. Tissue engineering. Science,1993,260(5110): 920-926.
    [10]姚康德,毛津淑.组织工程用生物降解材料特性.材料导报,2000,14(10):8-10.
    [11]俞耀庭.生物医用材料.2000,天津大学出版社,天津,74-76.
    [12]Edwards SL, Mitchell W, Matthews JB, et al. Design of nonwoven scaffold structures for tissue engineering of the anterior cruciate ligament. AUTEX Research Journal,2004,4(2):86-94.
    [13]Chen G, Ushida T, Tateishi T. Scaffold Design for Tissue Engineering. Macromol. Biosci,2002, (2):67-77.
    [14]翟华玲.组织工程人工肌腱的研究进展.国外医学生物医学工程分册,2004,27(2):104-107.
    [15]杜孟芳,薛金增,闵思佳,等.丝素共混膜的研究进展.纺织学报,2005,26(3):132-135.
    [16]Liu H, Ge Z, Wang Y, et al. Modification of Sericin-free Silk Fibers for Ligament Tissue Engineering Application. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2007,82B(1):129-138.
    [17]Altman GH, Horan RL, Lu HH, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials,2002,23(20):4131-4141.
    [18]Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. Journal of Biomedical Materials Research,1999,48(3):342-353.
    [19]徐倩,齐鲁.可吸收手术缝合线的研究进展.合成纤维,2007,(11):26-30.
    [20]Li Y, Zhang P, Feng X. Fabrication of a Knitted Biodegradable Stents for Tracheal Regeneration. Journal of Donghua University,2004,121 (2): 98-101.
    [21]沈尊理,沈华,张菁,等.睫状神经营养因子涂层的聚羟基乙酸聚乳酸神经导管修复犬胫神经缺损.中华显微外科杂志,2006,29(5):347-349.
    [22]魏海刚,李蜀光,张佩华,等.甲壳素涂层PGLA神经导管修复兔面神经缺损的实验研究.中国美容医学,2006,15(10):1112-1115.
    [23]Incardona S, Fambri L, Migliaresi C. Poly-L-lactic acid braided fibres produced by melt spinning:characterization and in vitro degradation. Journal of Materials Science:Materials in Medicine,1996,7(7):387-391.
    [24]Athanasiou K. Niederauer G, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials,1996,17(2):93-102.
    [25]王艳华,李曦光.PLA、PGA及其共聚物支架在组织工程中的研究应用.锦州医学院学报,2004,25(3):60-62.
    [26]陈莉,赵保中,杜锡光.聚羟基乙酸及其共聚物的研究进展.化工新 型材料,2002,30(3):11-15.
    [27]田怡,钱欣.聚乳酸的结构、性能与展望.石化技术与应用,2006,24(3):233-237.
    [28]朱久进,王远亮,胡勇,等.聚乳酸的合成、微观结构及性能.包装工程,2005,26(2):1-3.
    [29]Ray S, Bousmina M. Biodegradable polymers and their layered silicate nanocomposites:In greening the 21st century materials world. Progress in Materials Science,2005(50):962-1079.
    [30]Tsuji H, Sumidn K. Poly(L-lactide):V. Effects of storage in swelling solvents on physical properties and structure of poly(L-lactide). Journal of Applied Polymer Science,2001,79(9):1582-1589.
    [31]Mikos GA, Thorsen JA, Czerwonka LA, et al. Preparation and characterization of poly(L-lactic acid) foams. Polymer,1994,35(5): 1068-1077.
    [32]Krieheldorf RH, Saunders KI, Boettcher C, et al. Polylactoncs: Sn(Ⅱ)octoate-initiated polymerization of L-lactide:A mechanistic study. Polymer,1995,36(6):1253-1259.
    [33]Ljungberg N, Andersson T, Wesslen B. Film extrusion and film weldability of poly(lactic acid) plasticized with triacetine and tributyl citrate. Journal of Applied Polymer Science,2003,88(14):3239-3247.
    [34]朱莉芳,闫玉华.聚乳酸的合成与降解机理.生物骨科材料与临床研究,2006,3(1):42-51.
    [35]汪朝阳,赵耀明.生物降解材料聚(乳酸-乙醇酸)研究进展.江苏化工.2006,33(2):9-12.
    [36]Blomqvista J, Mannfors B, Pietila LO. Amorphous cell studies of polyglycolic, poly(L-lactic), poly(L,D-lactic) and poly(glycolic/L-lactic) acids. Polymer,2002,43(17):4571-4583.
    [37]Yang Q, Shen X, Tan Z. Investigations of the preparation technology for polyglycolic acid fiber with perfect mechanical performance. Journal of Applied Polymer Science,2007,105(6):3444-3447.
    [38]贾广霞,夏磊,张迪.聚乳酸纤维的纺丝与拉伸.天津工业大学学报,2007,26(1):20-22.
    [39]Fu B, Hsiao B. A study of structure and property changes of biodegradable polyglycolide and poly(glycolide-co-lactide) fibers during processing and in vitro degradation. Chinese Journal of Polymer Science, 2003,21(2):159-167.
    [40]You Y, Min B, Li S, et al. In Vitro Degradation Behavior of Electrospun Polyglycolide, Polylactide, and Poly(lactide-co-glycolide). Journal of Applied Polymer Science,2005,95(2):193-200.
    [41]姚军燕,杨青芳,周应学,等.高性能聚乳酸纤维的研究进展.化工进展,2006,25(3):286-291.
    [42]吴之中,张政朴.聚乳酸的合成降解及在骨折内固定材料的应用.高分子通报,2000(1):75-76.
    [43]Li S, Garreau H, Vert M. Structure-property relationships in the case of the degradation of massive poly(a-hydroxy acids) in aqueous media Part 1 Poly(DL-lactic acid). Journal of Materials Science:Materials in Medicine, 1990,1(3):123-130.
    [44]Li S, Garreau H, Vert M. Structure-property relationships in the case of the degradation of massive poly(a-hydroxy acids) in aqueous media Part 2 Degradation oflactide-glycolide copolymers:PLA37.5GA25 and PLA75GA25. Journal of Materials Science:Materials in Medicine,1990, 1(3):131-139.
    [45]Li S, Garreau H, Vert M. Structure-property relationships in the case of the degradation of massive poly(a-hydroxy acids) in aqueous media Part 3 Influence of the morphology of poly(L-Lactic acid). Journal of Materials Science:Materials in Medicine,1990,1(3):198-206.
    [46]Tsuji H, Mizuno A, Ikada Y. Properties and Morphology of Poly(L-lactide). III. Effects of Initial Crystallinity on Long-Term In Vitro Hydrolysis of High Molecular Weight Poly(L-lactide) Film in Phosphate-Buffered Solution. Journal of Applied Polymer Science,2000,77(7): 1452-1464.
    [47] Huang Y, Qi M. Degradation mechanisms of Poly(lactic-co-glycolic acid)films in vitro under static and dynamic environment. Trans. Nonferrous Met. Soc. China, 2006,16:293-297.
    [48]Hurrell S, Cmeron R. Polyglycolide: degradation and drug release. Part Ⅰ: Changes in morphology during degradation. Journal of materials science: Materials in medicine, 2001,12(9): 811-816.
    [49]Hurrell S, Milroy G. Polyglycolide: degradation and drug release. Part Ⅱ: Drug release. Journal of materials science: Materials in medicine, 2001, 12(9): 817-820.
    [50]Hurrell S, Milroy G, Cmeron RE, et al. The distribution of water in degrading polyglycolide. Part I: Sample size and drug release. Journal of materials science: Materials in medicine, 2003, 14(5): 457-464.
    [51] Milroy G, Cmeron RE, Mantle MD, et al. The distribution of water in degrading polyglycolide. Part II: Magnetic resonance imaging and drug release. Journal of materials science: Materials in medicine, 2003. 14(5): 465-473.
    [52]Hurrell S, Milroy G, Cameron RE. The Degradation of Polyglycolide in Water and Deuterium Oxide. Part I: The Effect of Reaction Rate. Polymer, 2003,44(5): 1421-1424.
    [53] Milroy G, Smith R, Hollands R, et al. The Degradation of Polyglycolide in Water and Deuterium Oxide. Part II: Nuclear Reaction Analysis and Magnetic Resonance Imaging of Water Distribution. Polymer, 2003, 44(5): 1425-1435.
    [54] King E, Robinson S, Cameron RE. Effect of hydrolytic degradation on the microstructure of quenched, amorphous poly(glycolic acid): an X-ray scattering study of hydrated samples. Polym Int. 1999, 48(9): 915-920.
    [55] King E, Cmeron RE. Effect of Hydrolytic Degradation on the Microstructure of Poly (glycolic acid): An X-ray Scattering and Ultraviolet Spectrophotometry Study of Wet Samples Ultraviolet. Journal of Applied Polymer Science, 1997,66(9): 1681-1690.
    [56]Chu C. Hydrolytic Degradation of Polyglycolic Acid: Tensile Strength and Crystallinity Study. Journal of Applied Polymer Science, 1981, 26(5): 1727-1734.
    [57]Montes H, Ward I. Structure and mechanical properties of PGA crystals and fibres. Polymer 2006,47(20): 7070-7077.
    [58] Yuan X, Mak A, Yao K. In Vitro Degradation of Poly(L-lactic acid) Fibers in Phosphate Buffered Saline. Journal of Applied Polymer Science, 2002, 85(5): 936-943.
    
    [59]Shawe S, Buchanan F, Jones E, et al. A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA). J Mater Sci, 2006, 41(15): 4832-4838.
    [60]Hilla S, Ocab H, Klein PG, et al. Dynamic mechanical studies of hydrolytic degradation in isotropic and oriented Maxon B. Biomaterials, 2006, 27(17): 3168-3177.
    [61]Shum A, Mak A. Morphological and biomechanical characterization of poly(glycolic acid) scaffolds after in vitro degradation. Polymer Degradation and Stability, 2003,81(1): 141-149.
    [62]Hurrell S, Cameron RE. The effect of buffer concentration, pH and buffer ions on the degradation and drug release from polyglycolide. Polym Int, 2003, 52(3): 358-366.
    
    [63]Hurrell S, Cameron RE. The effect of initial polymer morphology on the degradation and drug release from polyglycolide. Biomaterials, 2002, 23(11): 2401-2409.
    
    [64]Braunecker J, Baba M, Milroy G, et al. The effects of molecular weight and porosity on the degradation and drug release from polyglycolide. International Journal of Pharmaceutics, 2004, 282: 19-34.
    
    [65]Sarazin P, Virgilio N, Favis B. Influence of the Porous Morphology on the In Vitro Degradation and Mechanical Properties of Poly(L-lactide) Disks. Journal of Applied Polymer Science, 2006, 100(2): 1039-1047.
    [66]Tsuji H, Ikada Y. Properties and morphology of poly(l-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly(l-lactide) in phosphate-buffered solution. Polymer Degradation and Stability. 2000. 67(1): 179:189.
    [67] Chen VJ, Ma PX. The effect of surface area on the degradation rate of nano-fibrous poly(L-lactic acid) foams. Biomaterials, 2006,27(20): 3708-3715.
    [68] Evans GR, Brandt K, Widmer MS, et al. In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials, 1999,20(12): 1109-1115.
    [69]Goh JCH, Ouyang HW, Teoh SH, et al. Tissue-Engineering Approach to the Repair and Regeneration of Tendons and Ligaments. Tissue engineering, 2003, 9( Suppl. 1): 31-44.
    [70] Robinson PH, Vanderlei B, Hoppen HJ, et al. Nerve regeneration through a two-ply biodegradable nerve guide in the rat. Microsurgery, 1991, 12(6): 412-419.
    [71] Hudson TW, Evans GR, Schmidt CE. Engineering strategies for peripheral nerve repair. Clin. Plast. Surg., 1999, 26(4): 617-628.
    [72] You Y, Lee S, Youk JH, et al. In vitro degradation behaviour of non-porous ultra-fine poly(glycolic acid)/poly(L-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres. Polymer Degradation and Stability, 2005, 90(3): 441-448.
    [73]Pegoretti A, Fambri L, Migliaresi C. In Vitro Degradation of Poly(L-lactic acid) Fibers Produced by Melt Spinning. Journal of Applied Polymer Science, 1997, 64 (2): 213-223.
    [74]Browning A, Chu C. The effect of annealing treatments on the tensile properties and hydrolytic dcgradative properties of polyglycolic acid sutures. Journal of Biomedical Materials Research, 1986. 20 (5): 613-632.
    [75] Chu C, Browning A. The study of thermal and gross morphologic properties of polyglycolic acid upon annealing and degradation treatments. Journal of Biomedical Materials Research,1988,22(8): 699-712.
    [76]Chu C, The invitro degradation of poly(glycolic acid) sutures-effect of pH. Journal of Biomedical Materials Research,1981,15(6):795-804.
    [77]Deng M, Zhou J, Chen G, et al. Effect of load and temperature on in vitro degradation of poly(glycolide-co-L-lactide) multifilament braids. Biomaterials,2005,26(20):4327-4336.
    [78]Coombes A, Heckman JD. Gel casting of resorbable polymers:1.Processing and applications. Biomaterials,1992,13(4): 217-219.
    [79]Schugens C, Maquet V, Grandfils C, et al. Biodegradable and macroporous polylactide implants for cell transplantation:1.Preparation of macroporous polylactide supports by solid-liquid phase separation. Polymer,1996,37(6):1027-1038.
    [80]Ge Z, Yang F, Goh JCH, et al. Biomaterials and scaffolds for ligament tissue engineering. Journal of Biomedical Materials Research Part A,2006, 77A (3):639-652.
    [81]Alexander H, Weiss AB, Parsons JR. Ligament and tendon repair with an absorbable polymer-coated carbon fiber stent. Bull Hosp Jt Dis Orthop Inst,1986,46(2):155-173.
    [82]Cao YL, Vacanti JP, Ma X, et al. Generation of neo-tendon using synthetic polymers seeded with tenocytes. Transplant Proc,1994,26(6): 3390-3391.
    [83]项舟,杨志明.组织工程人工肌腱的实验研究.中华手外科杂志,2000,16(3):140-143.
    [84]曲彦隆,杨志明,谢慧琪,等.梯度降解三维支架材料与肌腱细胞复合培养的实验研究.中华显微外科杂志,2004,27(3):193-195.
    [85]Cooper J, Lu H, Ko FK, et al. Fiber-based tissue-engineered scaffold for ligament replacement:design considerations and in vitro evaluation. Biomaterials,2005,26(13):1523-1532.
    [86]Lu H, Cooper J, Manuel S, et al. Anterior cruciate ligament regeneration using braided biodegradablescaffolds:in vitro optimization studies. Biomaterials,2005,26(23):4805-4816.
    [87]Ouyang HW, Goh JCH, Thambyah A, et al. Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit achilles tendon. Tissue Engineering, 2003,9(3):431-439.
    [88]Sahoo S, Ouyang HW, Goh JCH, et al. Characterization of a Novel Polymeric Scaffold for Potential Application in Tendon/Ligament Tissue Engineering. Tissue engineering,2006,12(1):91-99.
    [1]Edwards SL, Mitchell W. Design of nonwoven scaffold structures for tissue engineering of the anterior cruciate ligament. AUTEX Research Journal,2004,4(2):86-94.
    [2]Ouyang HW, Goh JCH, Mo XM, et al. Characterization of anterior cruciate ligament cells and bone marrow stromal cells on various biodegradable polymeric films. Materials Science and Engineering C-Biomimetic and Supramolecular Systems,2002,20:63-69.
    [3]沈尊理,沈华,张菁,等.睫状神经营养因子涂层的聚羟基乙酸聚乳酸神经导管修复犬胫神经缺损.中华显微外科杂志,2006,29(5):347-349.
    [4]魏海刚,李蜀光,张佩华,等.甲壳素涂层PGLA神经导管修复兔面神经缺损的实验研究.中国美容医学,2006,15(10):1112-1115.
    [5]李毅,张佩华,冯勋伟,等.针织复合材料人工气管的开发及力学性能研究.上海纺织科技,2003,31(1):57-58.
    [6]吴长福,王文祖.人造血管的发展与应用.产业用纺织品,2003,21(8):4-7.
    [1]任杰,董博.聚乳酸纤维制备的研究进展.材料导报,2006,20(2):82-84.
    [2]International Organization for Standardization, Biological evaluation of medical devices-Part 5:Test for in vitro cytotoxicity. ISO10993.5,1999.
    [3]国家食品药品监督管理局,外科植入物,聚交酯共聚物和共混物,体外降解试验,YY/T0473,2004.
    [4]Yang Q, Shen X, Tan Z, et al. Investigations of the preparation technology for polyglycolic acid fiber with perfect mechanical performance. Journal of Applied Polymer Science,2007,105(6): 3444-3447.
    [1]Brunnschweiler D. Braids and braiding. Textile Inst.,1953,13(44): 666-686.
    [2]刘国华.编织结构生物可降解神经再生导管的制造及性能研究.东华大学博士论文,2006.
    [3]陈克权.冷拉伸对聚酯纤维聚集态结构和回弹性的影响.金山油化纤,2005,24(2):1-9.
    [1]Peirce F. Geometrical Principles Applicable to the Design of Functional Fabrics. Textile Research Journal,1947,17:123-147.
    [2]Munden D. The Geometry and Dimensional Properties of Plain-Knit Fabrics. Journal of Textile Institute,1959,50:T448-T471.
    [3]Leaf G. Models of the Plain-Knitted Loop. Journal of Textile Institute, 1960,51:T49-T58.
    [4]Morooka H, MATSUMOTO Y, MOROOKA H. A Geometric Analysis of the Stitch Form of a Circular Plain Knit Fabric Inserted over a Cylinder. Textile Research Journal,1998,68:930-936.
    [1]Awad HA, Butler DL, Boivin GP, et al. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Engineering,1999,5(3):267-77.
    [2]Harris MT, Butler DL, Boivin GP, et al. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. J Orthop Res,2004,22(5):998-1003.
    [3]Chen FG, Zhang WJ, Bi D, et al. Clonal analysis of nestin(-) vimentin(+) multipotent fibroblasts isolated from human dermis. J Cell Sci,2007, 120(Pt 16):2875-83.
    [4]翟华玲,许锋,曹德君,等.生长因子在人肌腱细胞和皮肤成纤维细胞中的表达差异.上海第二医科大学学报,2004,24(4):271-274.
    [5]许锋,刘伟,曹德君,等.人肌腱与皮肤组织及其细胞中Ⅰ型和Ⅲ型胶原表达的比较研究.上海第二医科大学学报,2004,24(4):275-278.
    [6]陈兵,刘伟,邓丹,等.皮肤成纤维细胞构建组织工程化肌腱的实验研究.中华医学杂志2006,86(6):416-418.
    [7]Ralphs JR, Waggett AD, Benjamin M. Actin stress fibres and cell-cell adhesion molecules in tendons:organisation in vivo and response to mechanical loading of tendon cells in vitro. Matrix Biol 2002,21(1): 67-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700