用户名: 密码: 验证码:
布托啡诺对大鼠感染性休克和心肌缺血再灌注损伤炎性反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分布托啡诺对感染性休克大鼠血流动力学及炎性细胞因子的影响
     目的探讨布托啡诺对感染性休克大鼠的血流动力学指标及血清肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)和白细胞介素-10(IL-10)的影响。
     方法取健康雄性SD大鼠40只,随机分为4组(n=10):假手术组(C组)、手术组(CLP组)、手术加布托啡诺组(CLP+B组)、假手术加布托啡诺组(B组)。腹腔注射20%乌拉坦1 g·kg-1麻醉后,分离左侧股静脉置入22G套管针以备输注布托啡诺或生理盐水。CLP组、CLP+B组分别注射生理盐水5ml·kg-1和布托啡诺0.5 mg·kg-1后30分钟采用盲肠结扎加穿孔法(CLP)制备感染性休克模型,C组、B组分别注射生理盐水5 ml·kg-1和布托啡诺0.5mg·kg-1而不行CLP。分离各组大鼠右侧股动脉置管监测平均动脉压(MAP)和心率(HR),并分别于CLP后4h、12h和20h经右侧股动脉采血1 ml,采用酶联免疫吸附试验检测肿瘤细胞因子-α(TNF-α)、白细胞介素-6(IL-6)和白细胞介素-10(IL-10)浓度。
     结果CLP组MAP呈进行性下降,HR先快后慢,CLP+B组MAP下降幅度较小,HR波动小,CLP组和CLP+B组血清TNF-α和IL-6水平于CLP后各时点呈先增高后降低的趋势,并高于其余各组(P<0.05),且CLP组高于CLP+B组(P<0.05);CLP组和CLP+B组血清IL-10水平于CLP后4h后呈上升趋势,并高于其余各组(P<0.05),且CLP+B组高于CLP组(P<0.05);B组血流动力学指标及各细胞因子水平与C组比较无差异(P>0.05)。
     结论布托啡诺通过降低血清促炎性细胞因子TNF-α和IL-6,增加抗炎性细胞因子IL-10浓度对感染性休克大鼠血流动力学稳定方面起到保护作用,而对正常大鼠血流动力学指标及细胞因子无影响作用。
     第二部分布托啡诺对在体大鼠心肌缺血再灌注损伤作用的研究
     目的探讨布托啡诺对大鼠心肌缺血再灌注损伤的影响。
     方法健康雄性SD大鼠40只,体重200~250 g,随机分为5组,每组8只。假手术组(A组):左冠状动脉前降支(LAD)处只穿线不结扎。缺血/再灌注组(B组):左冠状动脉前降支处穿线结扎30 min后,松开结扎线再灌注120 min。A、B组在缺血前10 min经股静脉注射生理盐水5ml·kg-1后以5ml·kg-1·h-1持续静脉输注至实验结束。布托啡诺低剂量组(C组):缺血前10 min经股静脉注射布托啡诺25μg·kg-1,余处理同B组;布托啡诺中剂量组(D组):缺血前10 min经股静脉注射布托啡诺50μg·kg-1,余处理同B组;布托啡诺高剂量组(E组)缺血前10 min经股静脉注射布托啡诺100μg·kg-1,余处理同B组。
     腹腔注射20%乌拉坦1 g·kg-1麻醉后,气管切开行机械通气,分离左侧股静脉置入22G套管针以备输注布托啡诺或生理盐水,分离右侧股动脉置管监测平均动脉压(MAP)和心率(HR)。再灌注结束后,取心肌组织测心肌梗死范围,光镜观察心肌组织结构;取大鼠心肌缺血区组织测定丙二醛(MDA)水平。
     结果与缺血/再灌注组比较,布托啡诺处理各组心肌梗死范围减少(P<0.05),随着布托啡诺使用剂量的增加,心肌梗死范围逐渐减小,各浓度布托啡诺处理组之间差异具有统计学意义(P<0.05);缺血/再灌注组心肌组织结构明显损害,布托啡诺低剂量组心肌组织结构损害程度较缺血/再灌注组轻,布托啡诺中剂量组和高剂量组心肌组织结构更接近于正常A组。与A组比较,其余各组心肌组织丙二醛含量均有增加(P<0.05);与缺血/再灌注组比较,布托啡诺处理各组心肌组织丙二醛含量降低(P<0.05);随着布托啡诺使用剂量的增加,心肌组织丙二醛含量逐渐减小,各浓度布托啡诺处理组之间差异具有统计学意义(P<0.05)。
     结论布托啡诺可减少大鼠心肌缺血再灌注损伤后心肌梗死范围,减轻大鼠心肌缺血再灌注时心肌组织结构损伤程度,降低心肌缺血再灌注损伤后心肌组织丙二醛含量,对在体大鼠心肌缺血再灌注损伤有保护作用。
     第三部分炎性细胞因子在布托啡诺对大鼠心肌缺血再灌注损伤作用中的影响及其机制
     目的探讨炎性细胞因子在布托啡诺对大鼠心肌缺血再灌注损伤保护作用中的作用及其机制。
     方法健康雄性SD大鼠40只,体重200~250 g,随机分为5组,每组8只。假手术组(A组):左冠状动脉前降支处只穿线不结扎。缺血/再灌注组(B组):左冠状动脉前降支(LAD)处穿线结扎30 min后,松开结扎线再灌注120min。A、B组在缺血前10 min经股静脉注射生理盐水5 ml·kg-1后以5 ml·kg-1·h-1持续静脉输注至实验结束;布托啡诺组(C组):缺血前10 min经股静脉注射布托啡诺25μg·kg-1,其它处理同B组;Nor-BNI组(D组):缺血前20 min经股静脉注射选择性K阿片受体阻断剂Nor-BNI 2 mg·kg-1,余处理同C组;glibenclamide组(E组):缺血前10 min经股静脉注射KATP通道阻断剂glibenclamide 1 mg·kg1余处理同C组。
     实验动物腹腔注射20%乌拉坦1 g·kg-1麻醉后,分离左侧股静脉置入22G套管针,以备输注布托啡诺或生理盐水;连续监测Ⅱ导心电图;气管切开,连接动物呼吸机行机械通气。再灌注结束后,通过股动脉置管收集血样本测定血清TNF-α、IL-6和IL-10的浓度。
     结果与假手术组比较,其余各组血清TNF-α、IL-6和IL-10浓度均明显上升(P<0.01);与缺血/再灌注比较,布托啡诺处理各组血清TNF-α、IL-6浓度降低(P<0.05),IL-10浓度增高(P<0.05);与布托啡诺组相比,Nor-BNI组和glibenclamide组血清TNF-α、IL-6浓度增高(P<0.05),IL-10浓度降低(P<0.05)
     结论布托啡诺可降低大鼠心肌缺血再灌注时促炎性细胞因子的浓度并增加抗炎性细胞因子的浓度,且布托啡诺对这种炎性细胞因子的保护作用部分是通过心肌组织K阿片受体和KATP通道所产生的。
PART 1 Effects of butorphanol tartrate on inflammatory response in septic rats
     Objective:To investigate the effects of butorphanol tartrate on inflammatory cytokines in septic rats.
     Methods:Forty adult male SD rats weighing 200~250 g were randomly divided into sham-operated group (group C), operated group (group CLP), operated and butorphanol group (group CLP+B) and butorphanol group(group B). Septic shock model was induced by cecal ligation puncture (CLP). Thirty minutes before CLP 5 ml·kg-1 saline and 0.5 mg·kg-1 butorphanol were injected intravenously in group CLP and group CLP+B respectively. Group C and group B only received saline (5 ml·kg-1) and butorphanol (0.5 mg·kg-1) respectively. Mean artery pressure (MAP) and heart rate (HR) were monitored via the right femoral artery. Tumor necrosis factor-α(TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10) in serum were measured at 4 h,12 h and 20 h after CLP.
     Results:MAP decreased progressively after CLP in group CLP and group CLP+B, while HR increased at first and decreased afterwards in group CLP. The decrease of MAP was inhibited, and the changes of HR were slight in group CLP+B. TNF-α, IL-6 and IL-10 concentrations in group CLP were higher than those in group C at 4,12 and 20 hours after CLP (P<0.05). TNF-a and IL-6 concentrations in group CLP+B were lower than those in group CLP(P<0.05).IL-10 concentrations in group CLP+B were higher than those in group CLP(P<0.05). There were no significant effects on TNF-α、IL-6 and IL-10 concentrations between group C and group B(P>0.05).
     Conclusions:Butorphanol tartrate has protective effects on septic shock rats by decreasing pro-inflammatory cytokines TNF-α, IL-6 concentrations and increasing anti-inflammatory cytokine IL-10 concentrations. Butorphanol tartrate has no significant effect on the TNF-α, IL-6 and IL-10 concentrations of normal rats.
     PART 2 Effects of butorphanol tartrate on myocardial ischemia reperfusion injury in rats
     Objective To observe the effects of butorphanol on myocardial infarct size,malondialdehyde and myocardial structure following myocardial ischemia-reperfusion (I/R) in rats.
     Methods Forty healthy male SD rats weighing 200-250 g were randomly divided into five groups with 8 in each group:control group(group A);I/R group(group B); low dosage butorphanol group (group C); moderate dosage butorphanol group(group D) and high dosage butorphanol group(group E). In group B,C,D and E myocardial ischemia-reperfusion was produced by occlusion of left anterior descending artery (LAD) for 30 min followed by 120 min reperfusion.In group C,D and E butorphanol 25μg·kg-1,50μg·kg-1and 100μg·kg-1 was given respectively IV 10 min before occlusion of LAD. The myocardial infarct size was determined by TTC method and the changes of myocardial microstructure were observed under light-microscope. The tissue concentrations of malondialdehyde were measured.
     Results The myocardial infarct sizes were both significantly reduced in all butorphanol groups compared with those in I/R group (P<0.05), and myocardial infarct sizes in high dosage butorphanol group were lower than those in low dosage butorphanol group. The myocardial structures of rats in all butorphanol groups were better than those in I/R group, and in moderate dosage butorphanol group and high dosage butorphanol group the myocardial structures were generally normal. Concentrations of malondialdehyde in myocardial ischemia-reperfusion groups were higher than those in control group (P<0.05),Malondialdehyde concentrations in all butorphanol groups were reduced compared with those in I/R group (P<0.05).
     Conclusion Butorphanol provide a protective effect on rat heart in a dose-dependent manner following myocardial ischemia-reperfusion.
     PART 3 Effects and mechanisms of butorphanol tartrate on inflammatory response in myocardial ischemia-reperfusion rats
     Objective To investigate the effect and mechanism of butorphanol tartrate on inflammatory cytokines in myocardial ischemia-reperfusion(I/R) rats.
     Methods Forty healthy male SD rats weighing 200~250 g were randomly divided into 5 groups (n=8):control group (group A); I/R group (group B); butorphanol group (group C); Nor-BNI group (group D) and glibenclamide group (group E). In group B,C,D and E myocardial ischemia-reperfusion was produced by occlusion of left anterior descending artery (LAD) for 30 min followed by 120 min reperfusion. In group C,D and E butorphanol 25μg·kg-1 was givenⅣ10min before occlusion of LAD.In group D Nor-BNI 2mg·kg-1 was given IV 20 min before occlusion of LAD.In group E glibenclamide 1 mg·kg-1 was given IV 10 min before occlusion of LAD.In group A and B butorphanol were replaced by normal saline 5 ml·kg-1 followed 5 ml·kg-1-h-1. Blood samples were taken at 120 min of reperfusion for determination of serum TNF-α·IL-6 and IL-10 concentrations.
     Result Compared with control group, the concentrations of TNF-a,IL-6 and IL-10 were increased in all myocardial ischemia-reperfusion groups (P <0.01).Compared with I/R group, TNF-αand IL-6 concentrations were decreased and IL-10 concentrations were increased in all butorphanol groups (P<0.05). Compared with butorphanol group, TNF-αand IL-6 concentrations were higher and IL-10 concentration was lower than those in Nor-BNI group and glibenclamide group (P <0.05).
     Conclusion Serum TNF-αIL-6 and IL-10 levels were increased following myocardial ischemia reperfusion. Butorphanol decrease pro-inflammatory cytokines TNF-α, IL-6 concentrations and increase anti-inflammatory cytokine IL-10 concentrations. And the effects on cytokines of butorphanol may be attenuated by Nor-BNI or glibenclamide.
引文
1. Fujishima S. Morisaki H. Ishizaka A. et al. Neutrophil elastase and systemic inflammatory response syndrome in the initiation and development of acute lung injury among critically ill patients. Biomedicine Pharmacotherapy,2008.62 (5): 333-338.
    2. 刘保江,郭志佳.麻醉药物对心肌缺血再灌注损伤的保护研究进展.国际麻醉学与复苏杂志,2008,29:189-192.
    3. Jiang X. Shi E. Nakajima Y. et al. Inducible nitricoxide synthase mediates delayed cardiopmteetion induced by morphine in vivo. Anesthesiology,2004,101 (1):82-88.
    4. Jin YC. Kim W. Ha YM, et al. Propofol limits rat myocardial ischemia and reperfusion injury with an associated reduction in apoptotic cell death in vivo. Vascular Pharmacology,2009,50 (1-2):71-77.
    5. Moos MP, Funk CD. Endothelial Cysteinyl Leukotriene 2 Receptor Expression and Myocardial Ischemia/Reperfusion Injury. Trends in Cardiovascular Medicine.2008.18 (7):268-273.
    6. Frangogiannis NG. Smith CW. Entman ML.The inflammatory response in myocardial infarction, Cardiovasc Res,2002,53 (1):31-47.
    7. 王凌燕.蔡高军,孙文伟,等.脂质载体前列腺素E1对大鼠心肌缺血-再灌注损伤的保护作用.中国实验诊断学,2006,10(3):255-257.
    8. Agarwal A.Raza M, Dhiraaj S, et al. Pain during injection of propofol:The effect of prior administration of butorphanol. Anesth Analg,2004,99(1):117-119.
    9. Dunteman E.Karanikolas M,Filos KS. Transnasal butorphanol for the treatment of opioid-induced pruritusunresponsive to antihistamines. Journal of Pain and Symptom Management,1996,12 (4):255-260.
    10. Glatt W. A new method for detoxifying opioid-dependent patients. Journal of Substance Abuse Treatment,1999,17 (3):193-197.
    11. Wittert G, Hope P,Pyle D. Tissue distribution of opioid receptor gene expession in the rat. Biochem Biophys Res Commun,1996,218 (3):877-881.
    12. Stevens CW. The evolution of vertebrate opioid receptors. Frontiers in Bioscience,2009,14:1247-1269.
    13. Wittert G, Hope P,Pyle D. Tissue distribution of opioid receptor gene expession in the rat. Biochem Biophys Res Commun,1996,218 (3):877-881.
    1. Karima R, Matsumoto S, Higashi H,et al. The molecular pathogenesis of endotoxic shock and organ failure. Mol Med Today,1999,5 (3):123-132.
    2. Wichterman KA. Baue AE, Chaudry IH, et al. Sepsis and septic shock:A review of laboratory models and a proposal. J Surg Res,1980,29 (2):189.
    3.林毅红,梁仲培,刘金宝.盲肠结扎穿孔致大鼠败血症的改良模型.广州医药,1998,1:39-40.
    4.金惠铭.盲肠结扎穿孔后的大鼠败血症模型.中国病理生理学杂志,1990.6(2):126-127.
    5. Landmann R,Zimmerli W,Sansano S, et al. Increased circulating soluble CD 14 is associated with high motality in gram negative septic shock. J Infec Dis,1995,171 (3):639-644.
    6. Schafer R, Sheil JM. Superantigens and their role in infectious disease. Adv Pediatr Infect Dis,1995,10:369-390.
    7. Brandtzaeg P, Hogasen K, Kierulf P, et al. The excessive complement activation in fulmimant meningococcal septicemia is predominantly caused by alternative pathway adivadtion. J Infec Dis,1996,173 (3):647-655.
    8. Kooy NW, Royall JA, YeYz, et al. Evidence for in vivo peroxynitrite production in human acute lung injury. AMJ Respir Crit Care Med,1995,151 (4):1250-1254.
    9. De Bont ES, Martens A,Van Raan J,et al. Diagnostic value of plasma levels of tumor necrosis factor alpha and interleukin-6 in newborns with sepsis. Acta Pediatr,1994,83 (7):696-699.
    10.黄敬孚,郭大任.儿科急危重抢救手册.天津:天津科学技术出版社,1988:68.
    11. Parker SJ, Watkins PE. Experimental models of gram negative sepsis. Br J Surg,2001,88(1):22-30.
    12.李建国,宋学敏,王焱林,等.氯胺酮对感染性休克大鼠血浆促炎性细胞因子和肝脏核因子κB的影响.中华麻醉学杂志,2004,24(9):691-693.
    13. Lever A., Mackenzie I. Sepsis:definition, epidemiology, and diagnosis. BMJ 2007,335(7625):879-883
    14. Cavaillon JM,Annane D. Compartmentalization of the inflammatory response in sepsis and SIRS. J Endotoxin Res,2006,12(3):151-170.
    15. Taniguchi T, Koido Y, Aiboshi J. Change in the ratio of interleukin-6 to interleukin-10 predicts a poor outcome in patients with systemic inflammatory response syndrome. Crit Care Med,1999,27(7):1262-1264.
    16.董月青,姚咏明.脓毒症中细胞免疫紊乱的机制.中国危重病急救医学,2004,16(10):636-638.
    17. Iwasaka H, Noguchi T. Thl/Th2 balance in systemic inflammatory response syndrome(SIRS). Nippon Rinsbo,2004,62(12):2237-2243
    18. Lin SL, Lee YM, Cheng YW, et al. Effects of naltrexone on lipopolysaccharide-induced sepsis in rats. J Mol Science,2005,12(2):431-440.
    19. Borovikova LV, Ivanova S, Zhang M, et al. Vague nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature,2000,405(6785): 458-462.
    20. Ke JJ, Zhan J, Feng XB, et al. A comparison of the effect of total intravenous anaesthesia with propofol and remifentanil and inhalational anaesthesia with isoflurane on the release of pro- and anti-inflammatory cytokines in patients undergoing open cholecystectomy. Anaesth Intensive Care,2008,36(1):74-78.
    21.陈紫千.白细胞介素-10基因治疗在炎症性病变中的应用.外科理论与实践,2004,9(5):439-441
    22. Sewnath ME, Olszyna DP, Birjmohun R, et al. IL-10-deficient mice demonstrate multiple organ failure and increased mortality during Escherichia coli peritonitis despite an accelerated bacterial clearance. J Immunol,2001,166(10):6323-6331
    23. Torre D, Tambini R, Aristodemo S, et al. Anti-inflammatory response of IL-4, IL-10 and TGF-beta in patients with systemic inflammatory response syndrome. Mediators Inflamm,2000,9(3-4):193-195
    24. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway.J Clin Invest,2007,117(2):289-296.
    1. Wajima Z,Nakajima Y.Kim C,et al. Ⅰ.v.compared with brachial plexus infusion of butorphanol for postoperative analgesia. Br J Anaesth,1995,74(4):392-395.
    2. Agarwal A.Raza M,Dhiraaj S,et al. Pain during injection of propofol:The effect of prior administration of butorphanol. Anesth Analg,2004,99(1):117-119.
    3. Dunteman E,Karanikolas M,Filos KS. Transnasal butorphanol for the treatment of opioid-induced pruritusunresponsive to antihistamines. Journal of Pain and Symptom Management,1996,12(4):255-260.
    4. Glatt W. A new method for detoxifying opioid-dependent patients. Journal of Substance Abuse Treatment,1999,17(3):193-197.
    5.程虹,刘莞.姜黄素对大鼠心肌缺血再灌注损伤的保护作用.中国药理学通报,2005,21(10):1238-1242.
    6. 赵淑敏,马立辉,刘胜.心肌缺血再灌注对大鼠心肌和血管内皮细胞超微结构的影响.承德医学院学报,2004,21(4):280-282.
    7. Zhuang J,Zhou Z. Protective effects of intermittent hypoxia adaptation on myocardium and its mechamism. Biol Signals Recept,1999,8:316-322.
    8. 闫秋丽,罗得生,化长林.银杏叶、硒对大鼠心肌缺血再灌注损伤的保护作用.中国现代临床医学杂志,2005,3:322-323.
    9. 师玲玲,肖昕,刘誉,等.心肌缺血大鼠血浆8-异前列腺素F2α水平及N-乙酰半胱氨酸干预作用.中国当代儿科杂志,2005,7(1):8-11.
    10. Jiang X, Shi E, Nakajima Y, et al. Inducible nitric oxide synthase mediates delayed cardioprotection induced by morphine in vivo. Anesthesiology,2004, 101(1):82-88.
    11. Oyama J,Blais C Jr,Liu X,et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation,2004,190(6):784-789.
    12. Kis A,Yellon DM, Baxter GF. Role of nuclear factor-KB activation in acute ischaemia-reperfusion injury in myocardium. British Journal of Pharmacology, 2003,138(5):894-900.
    13. Liu HR, Tao L, Erhe G, et al. Anti-apoptotic effects of rosiglitazone in hyper cholesterolemic rabbits subjected to myocardial ischemia and reperfusion. Cardiovascullar Research,2004,62(1):135-144.
    14.徐叔云,卞如濂,陈修.药理实验方法学.第2版.北京:人民卫生出版社,1991:938.
    15.殷仁富,陈金明主编.心脏能量学:代谢与治疗.上海第二军医大学出版社,2002,103-113.
    16. Kevin LG,Katz P,Camara AKS,et al. Anesthetic preconditioning:Effects on latency to ischemic injury in isolated hearts. Anesthesiology,2003,99(2): 385-391.
    17. Liu GS. Observations of changes in ultrastructure and calcium ion distribution in rabbit heart after various periods of ischemia. Zhong hua Bing Li xue za zhi,1994, 23(2):115-117.
    18.李国营,李洁,田素民,等.不同时段的心肌缺血后再灌注损伤与心肌细胞凋亡的实验研究.解剖学研究,2003,25(2):97-99.
    19.强北平,黄体钢,杨万松,等.家兔缺血/再灌注心肌的超微结构改变.实用心脑肺血管病杂志,1997,5(2):8-10.
    20. Simonin F,Gaveriaux-Ruff C,Kieffer BL,et al. Kappa-opioid receptor in humans:cDNA and genomic cloning,chromosomal assignment,functional expression,pharmacology,and expression pattern in the central nervous system.Proc Natl Acad Sci USA,1995,92(15):7006-7010.
    21. Simonin F,Valverde O,Kieffer BL,et al. Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50488H and at tenuates morphine withdrawal. EMBO J,1988,17(4):886-897.
    22. Raynor K,Kong H,Hines J,et al. Molecular mechanisms of agonist-induced desensitization of the cloned mouse kappa opioid receptor. J Pharmacol Exp Ther, 1994,270(3):1381-1386.
    23. Kong H,Raynor K,Yano H,et al. Agonist s and antagonists bind to different domains of the cloned kappa opioid receptor. Proc Natl Acad Sci USA, 1994,91(17):8042-8046.
    24. Shippenberg TS, Rea W. Sensitization to the behavioral effects of cocaine:modulation by dynorphin and kappa-opioid receptor agonists. Pharmacol Biochem Behav,1997,57(3):449-455.
    25. Panegyres PK, Hughes J. Activation of c-fos mRNA in the brain by the kappa-opioid receptor agonist enadoline and the NMDA receptor antagonist dizocilpine. Eur J Pharmacol,1997,328(1):31-36.
    26. Ventura C, Pintus G. Opioid peptide gene expression in the primary hereditary cardiomyopathy of the Syrian hamster.Ⅲ:Autocrine stimulation of prodynorphin gene expression by dynorphin B. J Biol Chem,1997,272(10):6699-6705.
    27. hen YT,Lee AY.Opioids in myocardial ischaemia:potentiating effects of dynorphin on ischaemic arrhythmia, bradycardia and cardiogenic shock following coronary artery occlusion in the rat.Eur Heart J,1993,14(9):1273-1277.
    28.傅李莉,夏强,沈岳良.内源性阿片物质参与大鼠缺血预处理的心肌保护作用.生理学报,1998.50(6):603-610.
    29. Peart JN, Gross ER, Gross GJ. Effect of Exogenous Kappa-Opioid Receptor Activation in Rat Model of Myocardial Infarction. J Cardiovasc Pharmacol, 2004,43(3):410-415.
    30.陈迈,贾国良,裴建明,等.U50488H预处理大鼠诱导的延迟性心脏保护效应及其机制.心脏杂志(Chin Heart J),2003,15(5):397-399.
    31.王珏,高琴,沈佳,等.K阿片受体介导缺血后处理的心肌保护作用及其受体后机制.浙江大学学报(医学版),2007,36(1):41-47
    32. Zhang SZ,Wang NF,Xu J,et al. Kappa-Opioid receptors mediate cardioprotection by remote preconditioning.Anesthesiology,2006,105(3):550-556.
    1. Stevens CW. The evolution of vertebrate opioid receptors. Frontiers in Bioscience,2009,14:1247-1269.
    2. Wittert G,Hope P,Pyle D. Tissue distribution of opioid receptor gene expession in the rat. Biochem Biophys Res Commun,1996,218(3):877-881.
    3. Zimlichman R,Gefel D,Eliahou H,et al. Expression of opioid receptors during heart ontogeny in normotensive and hypertensive rats. Circulation,1996,93(5): 1020-1025.
    4. Wittert G,Hope P,Pyle D. Tissue distribution of opioid receptor gene expession in the rat. Biochem Biophys Res Commun,1996,218(3):877-881.
    5. Schultz J J,Hsu AK,Gross GJ. Ischemic preconditioning in the intact rat heart is mediated by δ1 but not μ or κ opioid receptors. Circulation,1998,97(13): 1282-1289.
    6. Zhang WX,Wan HJ,Zeng XH,et al. Protective effect of vitamin C on rat heart mitochondria injury induced by oxygen radicals.Haerbin Yike Daxue Xue bao 2001,35:82.
    7. Nordlie MA,Wold LE,Simkhovich BZ,et al. Molecular aspects of ischemic heart disease;ischemia/reperfusion induced genetic changes and potential applications of gene and RNA interference therapy. J Cardiovasc Pharmacol Ther,2006,11(1): 17-30.
    8.王凌燕,蔡高军,孙文伟,等.脂质载体前列腺素E1对大鼠心肌缺血-再灌注损伤的保护作用.中国实验诊断学,2006,10(3):255-257.
    9. Torre AG,Kapadia S,Lee J,et al. Expression and functional signfication of tumor necrosis receptors in human myocardium.Circulation,1995,92(6):1487-1493.
    10. Sugano M, Hata T,Tsuchida K,et al. Local delivery of soluble TNF-alpha receptor 1 gene reduces infarct size following ischemia/reperfusion injury in rats. Mol Cell Biochem,2004,266(1-2):127-132.
    11.Conover CA, Chen BK, Resch ZT, et al. Regulation of pregnancy-associated plasma protein-A expression in cultured human osteoblasts. Bone,2004,34(2): 297-302.
    12. Beaudeux JL,Burc L, Imbert-Bismut F, et al. Serum plasma pregnancy-associated protein A:a potential marker of echogenic carotid atherosclerotic plaques in asymptomatic hyperlipidemic subjects at high cardiovascular risk. Arterioscler Thromb Vasc Biol,2003,23(1):7-10.
    13.Gwechenberger M, Mendoza LH,Youker KA,et al. Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation,1999,99(4):546-551.
    14. Danesh J,Kaptoge S,Mann AG,et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease:Two new prospective studies and a systematic review. Plos Med,2008,5(4):e78:0001-0011.
    15. Taylor NM,Lacoumenta S,Hall GM.Fentanyl and the interleukin-6 response to surgery. Anaesthesia,1997,52(2):112-115.
    16.Frangogiannis NO, Smith CW, Entman ML. The inflammatory response in myocardial infarction. J Cardiovasc Res,2002,53(1):31-47.
    17. Howard M, O'Garra A. Biological properties of interleukin 10. Immunol Today, 1992,13(6):198.
    18.盛西陵,王东明,陈畅,等.大鼠心肌缺血再灌注中IL-10、MPO的变化及关系,江西医学院学报,2003,43(3):23-25.
    19.Frangogiannis NG, Mendoza LH, Lindsey ML,et al. IL-10 is induced in the reperfused myocardium may modulate the reaction to injury. J Immunol,2000, 165(5):2798-2808.
    20. Yang Z, Zingarelli B, Szabo Csaba. Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury. Circulation,2000,101(9): 1019-1026.
    21. Gok S,Vatansever S,Vural K,et al. The role of ATP sensitive K+ channels and of nitric oxide synthase on myocardial ischemia/reperfusion-induced apoptosis. Acta Histochem,2006,108(2):95-104.
    22. Pignac J, Lacaille C, Dumont L. Protective effects of the Kchannel opener,aprikalim, against free radicals in isolated rabbit hearts. Free Radical Biol Med,1996,20(3):383-389.
    1. Dirksen MT, Laarman GJ, Simoons ML,et al. Reperfusion injury in humans:a review of clinical trials on reperfusion injury inhibitory strategies. Cardiovasc Res,2007,74(3):343-355.
    2. Zhang WX, Wan HJ,Zeng XH,et al. Protective effect of vitamin C on rat heart mitochondria injury induced by oxygen radicals. Ha er bin Yi ke Da xue Xue bao, 2001,35:82.
    3. Nordlie MA,Wold LE,Simkhovich BZ,et al. Molecular aspects of ischemic heart disease;ischemia/reperfusion induced genetic changes and potential applications of gene and RNA interference therapy. J Cardiovasc Pharmacol Ther,2006,11(1): 17-30.
    4. Yellon DM, Baxter GF. A"second window of protection"or delayed preconditioning phenomenon:future horizons for myocardial protection?J Mol Cell Cardiol,1995,27(4):1023-1034.
    5. Tsai BM, Wang MJ, March KL,et al. Preconditioning:evolution of basic mechanisms to potential therapeutic strategies. Shock,2004,21(3):195-209.
    6. Tsang A, Hausenloy DJ, Mocanu MM.et al. Postconditioning:a form of "modified reperfusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res,2004,95(3):230-232.
    7. Sun HY, Wang NP,Kerendi V,et al. Hypoxic postcondition reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol,2005,288(4):H1900-H1908.
    8. Galagudza M, Kurapeev D, Minasian S,et al. Ischemic postconditioning:brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm. Eur J Cardiothorac Surg,2004,25(6):1006-1010.
    9. Yang XM, Proctor JB, Cui L,et al. Multiple,brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol,2004,44(5):1103-1110.
    10. Halkos ME, Kerendi F, Corvera JS,et al. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg, 2004,78(3):961-969.
    11. Vinen-Johansen J, Zhao ZQ,Zatta AJ,et al. Postconditioning-a new link in nature'sarmor aainst myocardial ischemia-reperfusion injury. Basic Res Cardiol, 2005,100(4):295-310.
    12. Kin H, Zhao ZQ,Sun HY,et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res,2004,62(1):74-85.
    13. Dosenko VE, Nagibin VS,Tumanovskaya LV,et al. Postconditioning prevents apoptotic necrotic and autophagic cardiomyocyte cell death in culture. Fiziol Zh, 2005,51(3):12-17.
    14. Kin H, Zatta AJ,Lofye MT,et al. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res, 2005,67(1):124-133.
    15. Stevens CW. The evolution of vertebrate opioid receptors. Frontiers in Bioscience,2009,14:1247-1269.
    16. Wittert G,Hope P,Pyle D.Tissue distribution of opioid receptor gene expession in the rat. Biochem Biophys Res Commun,1996,218(3):877-881.
    17. Zimlichman R,Gefel D,Eliahou H,et al. Expression of opioid receptors during heart ontogeny in normotensive and hypertensive rats. Circulation,1996,93(5): 1020-1025.
    18. Bell SP, Sack MN,Patel A,et al. Delta opioid receptor stimulation mimics ischemic precondiyioning in human heart muscle. J Am Coll Cardiol,2000,36(7): 2296-2302.
    19. Xiao RP, Pepe S,Spurgeon HA,et al. Opioid peptide receptor stimulation reverses beta-adrenergic effects in rat heart cells. Am J Physiol,1997,272(2 pt 2): H797-H805.
    20. Wittert G,Hope P,Pyle D. Tissue distribution of opioid receptor gene expession in the rat. Biochem Biophys Res Commun,l996,218(3):877-881.
    21. Schultz JJ,Hsu AK, Gross GJ. Ischemic preconditioning in the intact rat heart is mediated by 81 but not μ or κ opioid receptors. Circulation,1998,97(13): 1282-1289.
    22. Schultz JJ, Hsu AK,Gross GJ. Ischemic preconditioning is mediated by a peripheral opioid receptor mechanism in the intact rat heart. J Mol Cell Cardiol, 1997,29(5):1355-1362.
    23. Fryer RM,Wang YG,Hsu AK,et al. Dependence of δ1-opioid receptor-induced cardioprotection on a tyrosine kinase-dependent but not a src-dependent pathway. JPET,2001,299(2):477-482.
    24. Bell SP, Sack MN,Patel A,et al. Delta opioid receptor stimulation mimics ischemic preconditioning in human heart muscle. J Am Coll Cardio 1,2000,36(7): 2296-2302.
    25. Wu JP, Chen YT,Lee AY. Opioids in myocardial isehaemia:potentiating effects of dynorphin on ischaemic arrhythmia, bradycardia and cardiogenic shock following coronary artery occlusion in the rat. Eur Heart J,1993,14(9): 1273-1277.
    26.傅李莉,夏强,沈岳良.内源性阿片物质参与大鼠缺血预处理的心肌保护作用.生理学报,1998,50(6):603-610.
    27. Peart JN, Gross ER,Gross GJ. Effect of Exogenous Kappa-Opioid Receptor Activation in Rat Model of Myocardial Infarction. J Cardiovasc Pharmacol., 2004,43(3):410-415.
    28.陈迈,贾国良,裴建明,等.U50488H预处理大鼠诱导的延迟性心脏保护效应及其机制.心脏杂志(Chin Heart J),2003,15(5):397-399.
    29. Baker J E, Konorev EA,Gross GJ,et al. Resistance to myocardial ischemia in five rat strains:is there a genetic component of cardioprotection?Am J Physiol,2000,278(4):H1395-H1400.
    30. Ghosh S, Standen N B,Galinanse M. Evidence for mitochondrial KATP channel as effectors of human myocardial preconditioning. Cardionisc Res,2000,45(4): 934.
    31. Gross GJ,Auchampch JA. Blockade of the ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res,1992,70(2):223-233.
    32.周逸.线粒体ATP敏感性钾通道与心肌缺血预适应.中国心理起搏与心电生理杂志,2004,18(2):133-135.
    33. Holmuhamedov EL,Wang L, Terzic A. ATP sensitive K+ channel openers prevent overload in rat cardiac mitochondria. J Physiol,1999,519 pt 2:347-360.
    34.季永,喻田,李宗权,等.缺血预处理对大鼠离体缺血再灌注心脏心肌功能和线粒体ATP敏感性钾通道的影响.中华麻醉学杂志,2006,26(3):238-241.
    35. Katoh H, Nishigaki N, Hayashi H. Diazoxide opena the mitochondrial pemesbility transition pore and alters Ca2+ transients in rat ventricularmyocytes. Circulation,2002,105(22):2666-2671.
    36.吴立玲.心血管病理生理(第一版).北京:北京医科大学出版社,2000:13-42.
    37. Ozcan C,Bienengraeber M,Petras P,et al. Rotassium channel openers proect cardiac mitochondra by attenurating oxidant stress at reoxygrnation. Am J Physiol Heart Cire Physiol,2002,282(2):11531-11539.
    38.田首元,刘保江.线粒体介导细胞凋亡和心肌保护新途径.国外医学(麻醉学与复苏分册),2005,26(6):377-380.
    39. Xu MF,Wang YG,Ayub A,et al. Mitochondrial KATP channel activation reduces anoxic injury by restoring mito-chondrial membrane potential. Am J Physiol Heart Circ Physiol,2001,281(3):H1295-1303.
    40. Wakiyama H, Cowan DB,Toyoda Y,et al. Selective opening of mitochondrial ATP sensitive potassium channels during surgically induced myocardial ischemia decreases necrosis and apoptosis. Eur J cardiothorac Surg,2002,21(3):424-433.
    41. Schultz JJ, Hsu AK,Gross GJ. Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart. Circulation Research,1996,78(6):1100-1104.
    42. Liang BT, Gross GJ.Direct preconditioning of cardiac myocytes via opioid receptors and KATP channels. Circ Res,1999,84(12):1396-1400.
    43. Groban L, Vernon JC, Butterworth J. Intrathecal morphine reduces infarct size in a rat model of ischemia-reperfusion injury. Anesth Analg,2004,98(4):903-909.
    44. Jiang X, Shi E,Nakajima Y,et al. Inducible nitric oxide synthase mediates delayed cardioprotection induced by morphine in vivo. Anesthesiology,2004,101(1): 82-88.
    45. Frassdorf J,Weber NC,Obal D,et al. Morphine induces late cardioprotection in rat herats in vivo:the involvement of opioid receptors and nuclear transcription factor kappa B. Anesth Analg,2005,101(4):934-941.
    46. Kato R,Ross S,Foex P. Fentanyl protects the heart against ischemic injury via opioid receptors,adenosine Al receptors and KATP channel linked mechanism in rats. Br J Anaesth,2000,84(2):204-214.
    47. Zhang Y, Irwin MG, Wong TM, et al. Remifentanil preconditioning confers cardioprotection via cardiac κ and δ-opioid receptors. Anesthesiology,2005, 102(2):371-378.
    48. Schultz JJ,Hsu AK,Gross GJ. Ischemic preconditioning is mediated by a peripheral opioid receptor mechanism in the intact rat heart. J Mol Cell Cardiol, 1997,29(5):1355-1362.
    49.李玲文,张海燕,卢中秋等.纳洛酮对兔急性心肌缺血-再灌注损伤血浆细胞因子的影响.医学研究杂志,2007,10(10):29-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700