用户名: 密码: 验证码:
基于量热法的高强度聚焦超声功率测量和双频共焦增效研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强度聚焦超声(HIFU)越来越多的用于临床肿瘤的治疗。HIFU声功率是关系到临床治疗效果的关键剂量参数。HIFU设备声功率准确的测量对于避免治疗中的副作用和保证靶区肿瘤细胞在合适的超声强度下完全消融都非常重要。由于HIFU声场是高度聚焦的强声场,导致准确声输出功率的实际测量困难。本文研制了一种新型基于量热法原理的HIFU功率测量装置,并提出了一种提高治疗效率的双频共焦HIFU技术。
     从声功率测量的方法入手,概述了各种超声功率测量方法的原理及装置,包括有辐射力法,互易法,热学法,声光衍射法,水听器扫查声场测量法,全息摄影法等。介绍了各种测量方法特点以及在测量中应该注意的问题。目前,辐射力法被认为声功率小于20W的理想声场条件下最准确的声功率测量方法。HIFU换能器功率通常在200W以上,声场中非线性的干扰因素明显增加造成辐射力法HIFU声功率测量中许多实际问题。
     采用全吸收靶辐射力法对HY2900型聚焦超声肿瘤系统换能器不同增益条件下的声功率进行了实际测量。测量结果表明所得声功率与换能器驱动电压平方之间相关性较好。测量中存在靶受力不稳定,重复测量值之间有一定的差别等现象。分析实验中造成测量误差的可能原因:高强度聚焦超声可以造成局部瞬时温度升高,甚至导致在焦点处水蒸气爆发;聚焦超声声场中产生声流、空化等非线性效应作用于吸收靶;吸收靶吸收热量;换能器声轴与靶中心轴偏离;电子天平本身有一定的误差;杠杆机构的传递损失,靶的不完善性等。结合实际测量经验总结了注意事项。
     利用量热法的基本原理,采用144个热电偶并联测量平均温升技术,研制了一种新型基于量热法的高强度聚焦超声声功率测量装置。介绍了热电偶并联测温的原理,对测量装置中所用热电偶进行了测试校正,结果表明自制热电偶测量误差较小,测量结果可信。对瞬时量热法测量声功率的原理以及计算方法进行了叙述。针对大功率聚焦超声的特点对量热法声功率测量装置进行了设计,采用了小容器,小声窗,锥形容器底部,进油/排气孔,空间平均放置测温热电偶的设计方法。采用该测量装置对HY2900型高强度聚焦超声换能器声功率进行了实际测量,与前一章辐射力法的测量结果进行了对比,并分析了本装置测量中出现误差的可能原因。实际测量的声功率与驱动电压平方之间线性度好,与辐射力法测量结果接近,测量可重复性强,方法简便快捷,可以作为高强度聚焦超声声功率测量切实可行的方法。结合实际测量经验,对本装置的改进和测量中需要注意的事项进行了阐述。
     针对当前HIFU治疗中单次辐照毁损灶体积小的问题,引入了一种新型双频共焦HIFU技术。实验设备既可以在双频模式下,也可以在单频模式下工作。在仿组织透明体模中对比了双频和传统单频模式下产生毁损灶的大小,探讨双频共焦HIFU增强组织超声能量沉积、提高HIFU治疗效率的可能性。采用的仿组织体模为聚丙烯酰胺凝胶和蛋清混合物,蛋清用于温度敏感指示剂。分别用双频共焦和单频模式HIFU对仿组织体模进行不同时间辐照,测量HIFU毁损灶的长度和直径。结果显示,相同声功率相同辐照时间下,双频HIFU产生的毁损灶显著大于单频模式所致毁损灶。双频共焦HIFU比传统单频HIFU形成更大毁损灶的可能解释就是增强了介质内的空化效应。空化阈值随声波的频率而降低,双频模式下存在的差频声场作为低频声波可以极大的增强空化效应。
Total acoustic output power is a key parameter for high intensity focused ultrasound (HIFU) systems. Typically, HIFU systems generate ultrasound fields that are very intense and strongly focused: these features introduce problems when measuring output power. This article begins with the summery of various methods of acoustic power measurement, including radiation force balance, the method of reciprocity, the calorimetric method, the acousto-optic diffraction method, the method using calibrated hydrophone to scan the acoustic field, the holography method. The principle, characteristics and applications of different ultrasound power measurement methods were compared. However it can be difficult or inaccurate to apply many of the measurement methods to HIFU fields, either due to physical principle limits or to practical measurement problems.
     HIFU transducer output power was measured using radiation force balance method with absorbing target based on national standard. The results show that acoustic power has good linearity with the drive voltage squared of focusing transducer. Measurement error and problems were analyzed: nonlinear effects of the focused ultrasound field on the target, such as streaming and cavitation; water heating even explosive vapour in focus of HIFU field; force dependence on field geometry and target distance to the transducer; shielding by bubbles; limited accurate of balance in practical operation. According the practices measurement, also give some reasonable suggestion on using radiation force balance method to calibrate HIFU output power.
     A novel design of power measuring system based on calorimetric method for HIFU transducer was introduced. The system using parallelled copper constantan thermocouple as temperature sensor. The principle and uncertainty of parallelled thermocouple for mean temperature measurement was analyzed. The basic principle, the practical application, and the error of the HIFU output power measurement system were discussed. According to the characteristic of focused ultrasound field, the system improved the traditional calorimetric ultrasound power measurement setup. Small container, small acoustic window,cone shaped bottom, oil filling/discharge pipe, spatial average thermocouple placement were used in the system. HIFU transducer output power was measured with the system, and the result was compared with radiation force balance. The power measured by the system has good linearity with the drive voltage squared of HIFU transducer, and similar to the result measured by the radiation force balance method, and the measurement uncertainty less than±6.5%in the power range of 87-399W. Finally proposes some improvements of the system. The method offers several important advantages, such as simplicity, economy, practicality and its good accuracy and steadiness. It is suitable for measuring HIFU output power.
     The volume of the lesion created by conventional single-frequency HIFU is small, which lead to long treatment duration. A confocal dual-frequency HIFU technique was introduced. The lesions induced by confocal dual-frequency HIFU in optically transparent tissue mimicking phantom were investigated and compared with the lesions induced by conventional single-frequency HIFU. The results have shown that using different exposure time resulted in lesions of different sizes in both dual-frequency and single-frequency HIFU modes at the same acoustic power, but the dimensions of lesions in dual-frequency mode were significantly larger than those in single-frequency mode. Difference frequency acoustic field exist in the confocal region of dual-frequency HIFU may be the reason for the lesions dimensions enlargement. The dual-frequency HIFU mode may represents a new technique of improving the ablation efficiency of HIFU.
引文
1. Lynn JG, Putnam TJ. Histology of cerebral lesions produced by focused ultrasound. Am J Pathol. 1944;20:637-649.
    2. Ballantine HT,Bell E, Manlapaz J. Progress and problems in the neurological application of focused ultrasound. J Neurosurg. 1960;17:858-876.
    3. Feng R,Zhang Q,Li F, et al. Relationship between the exposure dose of high intensity focused ultrasound and the heated necrosis element. Progress in Natural Science. 2004;14(8):710-712.
    4. ter Haar GR, Robertson D. Tissue destruction with focused ultrasound in vivo. Eur Urol. 1993;23 Suppl 1:8-11.
    5. Illing RO,Kennedy JE,Wu F, et al. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer. 2005;93(8):890-895.
    6. Uchida T,Ohkusa H,Yamashita H, et al. Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer. Int J Urol. 2006;13(3):228-233.
    7. Wu F,Wang ZB,Zhu H, et al. Extracorporeal high intensity focused ultrasound treatment for patients with breast cancer. Breast Cancer Res Treat. 2005;92(1):51-60.
    8. Wu F,Wang ZB,Chen WZ, et al. Extracorporeal focused ultrasound surgery for treatment of human solid carcinomas: early Chinese clinical experience. Ultrasound Med Biol. 2004;30(2):245-260.
    9. Wu F,Wang ZB,Cao YD, et al. Expression of Tumor Antigens and Heat-Shock Protein 70 in Breast Cancer Cells After High-Intensity Focused Ultrasound Ablation. Ann Surg Oncol. 2006.
    10. Burgess S,Zderic V, Vaezy S. Image-guided acoustic hemostasis for hemorrhage in the posterior liver. Ultrasound Med Biol. 2007;33(1):113-119.
    11. Frenkel V,Etherington A,Greene M, et al. Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol. 2006;13(4):469-479.
    12. Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005;5(4):321-327.
    13. Adam S. How to Measure HIFU Output Power Properly. AIP Conference Proceedings. 2006;829(1):628-632.
    14. 寿文德,王一抗,钱德初, 等. 聚焦超声的辐射力计算与高强度聚焦超声功率测量实验. 声学技术. 1998;17(4):145-147.
    15. 霍彦明,吴敏,宋文章, 等. HIFU 聚焦探头声场功率测量的凹锥面反射靶设计分析. 声学技术. 2003;22(1):11-13.
    16. 寿文德,夏荣民,黄小唯,等.GB/T 19890-2005 声学 高强度聚焦超声(HIFU)声功率和声场特性的测量.
    17. Subha M,Gerald RH,Bruce AH, et al. Analysis of a Protocol for Measuring Ultrasonic Power from Focused Therapeutic Ultrasound Transducers Using Radiation Force. AIP Conference Proceedings. 2006;829(1):623-627.
    18. Fan X, Hynynen K. Ultrasound surgery using multiple sonications--treatment time considerations. Ultrasound Med Biol. 1996;22(4):471-482.
    19. ter Haar G. Intervention and therapy. Ultrasound Med Biol. 2000;26 Suppl 1:S51-54.
    20. Kaneko Y,Maruyama T,Takegami K, et al. Use of a microbubble agent to increase the effects of high intensity focused ultrasound on liver tissue. Eur Radiol. 2005;15(7):1415-1420.
    21. Tran BC,Seo J,Hall TL, et al. Microbubble-enhanced cavitation for noninvasive ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50(10):1296-1304.
    22. Umemura SI,Kawabata KI, Sasaki K. In vivo acceleration of ultrasonic tissue heating by microbubble agent. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2005;52(10):1690-1698.
    23. Tung YS,Liu HL,Wu CC, et al. Contrast-agent-enhanced ultrasound thermal ablation. Ultrasound Med Biol. 2006;32(7):1103-1110.
    24. Chen WS,Lafon C,Matula TJ, et al. Mechanisms of lesion formation in high intensity focused ultrasound therapy. Acoustic Research Letters Online. 2003;4:41-46.
    25. Flynn HG. Generation of transient cavities in liquids by microsecond pulses of ultrasound. Journal of the Acoustical Society of America. 1982;72(6):1926-1932.
    26. Kennedy JE,Ter Haar GR, Cranston D. High intensity focused ultrasound:surgery of the future? Br J Radiol. 2003;76(909):590-599.
    27. Hill CR,Rivens I,Vaughan MG, et al. Lesion development in focused ultrasound surgery: a general model. Ultrasound Med Biol. 1994;20(3):259-269.
    28. Feng R. Ultrasonic cavitation and ultrasonic therapy. J. Nature. 2003;25:311-314.
    1. Kennedy JE,Ter Haar GR, Cranston D. High intensity focused ultrasound: surgery of the future? Br J Radiol. 2003;76(909):590-599.
    2. ter Haar GR. High intensity focused ultrasound for the treatment of tumors. Echocardiography. 2001;18(4):317-322.
    3. Swamy KM, Keil FJ. Ultrasonic power measurements in the milliwatt region by the radiation force float method. Ultrason Sonochem. 2002;9(6):305-310.
    4. Zeqiri B. Metrology for ultrasonic applications. Prog Biophys Mol Biol. 2007;93(1-3):138-152.
    5. Maruvada S,Harris GR,Herman BA, et al. Acoustic power calibration of high-intensity focused ultrasound transducers using a radiation force technique. Journal of the Acoustical Society of America. 2007;121(3):1434-1439.
    6. Shaw A, Hodnett M. Calibration and measurement issues for therapeutic ultrasound. Ultrasonics. 2008(article in press).
    7. Yvonne S,Karne M, Stephen P. An ultrasound mini-balance for measurement of therapy level ultrasound. Physics in Medicine and Biology. 2006;(14):3397.
    8. 寿文德,夏荣民,黄小唯, 等., GB/T 19890- 2005,声学 高强度聚焦超声(HIFU)声功率和声场特性的测量.
    9. 黄小唯,基于辐射力法的超声功率测量的研究与分析,[学位论文],上海交通大学,2004
    10. 冯若. 超声手册. 南京,南京大学出版社, 1999,990-991.
    11. Khmelev VN,Tsyganok SN,Barsukov RV, et al. A system of a automatic measurement of acoustic power of the ultrasonic equipment, In Electron Devices and Materials, 2004. Proceedings. 5th Annual. 2004 International Siberian Workshop on, 2004.
    12. Margulis I, Margulis M. Measurement of acoustic power in studying cavitation processes. Acoustical Physics. 2005;51(6):695-704.
    13. Mancier V, Leclercq D. New flowmetric measurement methods of power dissipated by an ultrasonic generator in an aqueous medium. Ultrason Sonochem. 2007;14(2):99-106.
    14. Margulis MA, Margulis IM. Calorimetric method for measurement of acoustic power absorbed in a volume of a liquid. Ultrason Sonochem. 2003;10(6):343-345.
    15. Margulis MA, Margulis IM. Measurements of radiated and absorbed acoustic power during ultrasonic cavitation using the comparative calorimetric method. Russian Journal of Physical Chemistry. 2003;77(7):1183-1190.
    16. Torr GR, Watmough DJ. A constant-flow calorimeter for the measurement of acoustic power at megahertz frequencies. Physics in Medicine and Biology. 1977;22(3):444.
    17. 冯若等. 超声诊断设备原理与设计. 北京,中国医药科技出版社, 1993,1023-1036.
    18. 寿文德. 一种基于互易原理的超声功率新测量方法. 应用声学. 1995;15(4):6-10.
    19. 段世梅,寿文德, 何培忠. 平面波超声功率测量的互易法与辐射力法实验比较研究. 声学技术. 2004;23(4):237-239.
    1. Lynn JG,Zwemer RL,Chick AJ, et al. A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol. 1942;26(2):179-193.
    2. Fry FJ, Johnson LK. Tumor irradiation with intense ultrasound. ultrasound Med Biol. 1978;4(4):337-341.
    3. Thomas Ballantine H, Jr. The production of focal tissue destruction by focused ultrasound. Bull Soc Int Chir. 1956;15(4):355-361.
    4. Ballantine HT,Bell E, Manlapaz J. Progress and problems in the neurological application of focused ultrasound. J Neurosurg. 1960;17:858-876.
    5. Corry PM,Jabboury K,Armour EP, et al. Human cancer treatment with ultrasound. IEEE transactions on sonics and ultrasonics. 1984;SU-31(5):444-456.
    6. Lele PP. Effects of ultrasound on solid mammalian tissues and tumors in vivo. Ultrasound: Medical Applications, Biological Effects and Hazard Potential. 1987:275-306.
    7. 张樯,李发琪,冯若, 等. 高强度聚焦超声"切除”肿瘤的剂量学研究. 中国超声医学杂志. 2002;18(8):561-564.
    8. Hacker A,Kohrmann KU,Knoll T, et al. High-intensity focused ultrasound for ex vivo kidney tissue ablation: influence of generator power and pulse duration. J Endourol. 2004;18(9):917-924.
    9. Lee KI, Yoon SW. Prediction of the size of a thermal lesion in soft tissue during HIFU treatment. Journal of the Korean Physical Society. 2005;47(4):640-645.
    10. Feng R,Zhang Q,Li F, et al. Relationship between the exposure dose of high intensity focused ultrasound and the heated necrosis element. Progress in Natural Science. 2004;14(8):710-712.
    11. Wu F,Wang ZB,Chen WZ, et al. Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview. Ultrason Sonochem. 2004;11(3-4):149-154.
    12. Chaussy C,Thuroff S,Rebillard X, et al. Technology insight: High-intensity focused ultrasound for urologic cancers. Nat Clin Pract Urol. 2005;2(4):191-198.
    13. Aus G. Current status of HIFU and cryotherapy in prostate cancer--a review. Eur Urol. 2006;50(5):927-934; discussion 934.
    14. Chan AH,Fujimoto VY,Moore DE, et al. An image-guided high intensity focused ultrasound device for uterine fibroids treatment. Med Phys. 2002;29(11):2611-2620.
    15. Engel DJ,Muratore R,Hirata K, et al. Myocardial lesion formation using high-intensity focused ultrasound. J Am Soc Echocardiogr. 2006;19(7):932-937.
    16. Zou YH,Ye X, Yang XY. Effect of high intensity focused ultrasound on T-lymphocyte subsets and natural killer cells in patients with primaryhepatocellular carcinoma. Chinese Journal of Clinical Rehabilitation. 2005;9(2):168-169.
    17. Wu F,Wang ZB,Cao YD, et al. Expression of Tumor Antigens and Heat-Shock Protein 70 in Breast Cancer Cells After High-Intensity Focused Ultrasound Ablation. Ann Surg Oncol. 2006.
    18. Burgess S,Zderic V, Vaezy S. Image-guided acoustic hemostasis for hemorrhage in the posterior liver. Ultrasound Med Biol. 2007;33(1):113-119.
    19. Ichihara M,Sasaki K,Umemura SI, et al. Blood flow occlusion via ultrasound image-guided high-intensity focused ultrasound and its effect on tissue perfusion. Ultrasound Med Biol. 2007.
    20. Zderic V,Keshavarzi A,Noble ML, et al. Hemorrhage control in arteries using high-intensity focused ultrasound: a survival study. Ultrasonics. 2006;44(1):46-53.
    21. Frenkel V,Etherington A,Greene M, et al. Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol. 2006;13(4):469-479.
    22. Frenkel V, Li KC. Potential role of pulsed-high intensity focused ultrasound in gene therapy. Future Oncol. 2006;2(1):111-119.
    23. Liu Y,Kon T,Li C, et al. High intensity focused ultrasound-induced gene activation in solid tumors. J Acoust Soc Am. 2006;120(1):492-501.
    24. Paparel P,Curiel L,Chesnais S, et al. Synergistic inhibitory effect ofhigh-intensity focused ultrasound combined with chemotherapy on Dunning adenocarcinoma. BJU Int. 2005;95(6):881-885.
    25. Huber PE,Mann MJ,Melo LG, et al. Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery. Gene Ther. 2003;10(18):1600-1607.
    26. Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005;5(4):321-327.
    27. Lynn JG, Putnam TJ. Histology of cerebral lesions produced by focused ultrasound. Am J Pathol. 1944;20:637-649.
    28. ter Haar GR, Robertson D. Tissue destruction with focused ultrasound in vivo. Eur Urol. 1993;23 Suppl 1:8-11.
    29. Barnard JW,Fry WJ,Fry FJ, et al. Small localized ultrasonic lesions in the white and gray matter of the cat brain. AMA Arch Neurol Psychiatry. 1956;75(1):15-35.
    30. Gignoux BM,Scoazec JY,Curiel L, et al. High intensity focused ultrasonic destruction of hepatic parenchyma. Ann Chir. 2003;128(1):18-25.
    31. Chen W-S,Lafon C,Matula TJ, et al. Mechanisms of lesion formation in high intensity focused ultrasound therapy, Munich, Germany, Institute of Electrical and Electronics Engineers Inc., 2002.
    32. Chen H,Li X,Wan M, et al. High-speed observation of cavitation bubble cloud structures in the focal region of a 1.2MHz high-intensity focused ultrasound transducer. Ultrason Sonochem. 2007;14(3):291-297.
    33. Wu F,Chen WZ,Bai J, et al. Tumor vessel destruction resulting from high-intensity focused ultrasound in patients with solid malignancies. Ultrasound Med Biol. 2002;28(4):535-542.
    34. Clarke RL, ter Haar GR. Temperature rise recorded during lesion formation by high-intensity focused ultrasound. Ultrasound Med Biol. 1997;23(2):299-306.
    35. 张唯力,乔天愚,刘川, 等. 高强度聚焦超声对膀胱癌细胞及兔移植性肾肿瘤的实验研究. 临床超声医学杂志. 2000;2(4):193-195.
    36. Miller MW,Everbach EC,Cox C, et al. A comparison of the hemolytic potential of Optison and Albunex in whole human blood in vitro: acoustic pressure, ultrasound frequency, donor and passive cavitation detection considerations. Ultrasound Med Biol. 2001;27(5):709-721.
    37. Snytko AY. Calibration of ultrasonic radiators by the method of acoustical radiometers. Measurement Techniques. 1966;9(10):1323-1327.
    38. Fick SE. Ultrasonic continuous wave beam-power measurements: 1978-1980 international comparison. Metrologia. 1999;36(4):321-325.
    39. IEC 1161: 1992, Ultrasonic power measurement in liquids in the frequency range 0,5 MHz. to 25 MHz. .
    40. Beissner K. RADIATION FORCE CALCULATIONS. Acustica. 1987;62(4):255-263.
    41. 寿文德,夏荣民,黄小唯, 等, GB/T 19890- 2005,声学 高强度聚焦超声(HIFU)声功率和声场特性的测量.
    42. 寿文德,王一抗,钱德初, 等. 高强度聚焦超声终止早孕机声场的辐射力计算与声功率测量. 中国超声医学杂志. 2000;16(8):561-563.
    43. Shou W,Huang X,Duan S, et al. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force. Ultrasonics. 2006;44S:e17-e20.
    44. 黄小唯,基于辐射力法的超声功率测量的研究与分析,[学位论文],上海交通大学,2004
    1. Leslie TA, Kennedy JE. High-intensity focused ultrasound principles, current uses, and potential for the future. Ultrasound Q. 2006;22(4):263-272.
    2. 寿文德. 用于肿瘤治疗的高强度聚焦超声(HIFU)技术. 中国医疗器械杂志. 2002;26(05):313-315.
    3. Shou WD,Wang YK,Qian DC, et al. Radiation force calculation of focused ultrasound and its experiment in high intensity focused ultrasound. Technical Acoustics 2006;25(6):665-668.
    4. 冯若等. 超声诊断设备原理与设计. 中国医药科技出版社, 1993.
    5. 顾欣, 寿文德. 一种基于量热法的平面换能器声功率测量的方法. 声学技术. 2007;26(1):56-61.
    6. Delchar TA, Melvin RJ. A calorimeter for ultrasound total power measurements. Measurement Science and Technology. 1994;5(12):1533.
    7. 寿文德 . 一种基于互易原理的超声功率新测量方法 . 应用声学 . 1995;15(4):6-10.
    8. 段世梅,寿文德, 何培忠. 平面波超声功率测量的互易法与辐射力法实验比较研究. 声学技术. 2004;23(4):237-239.
    9. 寿文德,夏荣民,黄小唯,等. GB/T 19890-2005 声学 高强度聚焦超声(HIFU)声功率和声场特性的测量.
    10. Shaw A, Haar Gt, NPL REPORT DQL AC 015 Requirements forMeasurement Standards in High Intensity Focused Ultrasound (HIFU) Fields.
    11. 寿文德,王一抗,钱德初, 等. 聚焦超声的辐射力计算与高强度聚焦超声功率测量实验. 声学技术. 1998;17(4):145-147.
    12. 霍彦明,吴敏,宋文章, 等. HIFU 聚焦探头声场功率测量的凹锥面反射靶设计分析. 声学技术. 2003;22(1):11-13.
    13. Subha M,Gerald RH,Bruce AH, et al. Analysis of a Protocol for Measuring Ultrasonic Power from Focused Therapeutic Ultrasound Transducers Using Radiation Force. AIP Conference Proceedings. 2006;829(1):623-627.
    14. Adam S. How to Measure HIFU Output Power Properly. AIP Conference Proceedings. 2006;829(1):628-632.
    15. Wilkens V. Thermoacoustic ultrasound power measurement using evaluation of transient temperature profiles, In Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, 2002.
    16. Torr GR, Watmough DJ. A constant-flow calorimeter for the measurement of acoustic power at megahertz frequencies. Physics in Medicine and Biology. 1977;22(3):444.
    17. Mancier V, Leclercq D. New flowmetric measurement methods of power dissipated by an ultrasonic generator in an aqueous medium. Ultrason Sonochem. 2007;14(2):99-106.
    18. 林开华. 热电偶的测温原理和基本定则. 氮肥设计. 1995;33(2):23-27.
    19. 刘祖应. 热电偶测温原理中的基本定律. 化工时刊. 2001;(4):46-48.
    20. 黄长征 . 热电偶测温结果的校准 . 韶关大学学报 ( 自然科学版 ).1998;19(3):16-20.
    21. 徐爱钧. 智能化测量控制仪表原理与设计. 北京航空航天大学出版社, 1995.
    22. 毛福山. 热电偶串并联使用的测量特性. 工业计量. 1997;7(2):40-41.
    23. 顾欣,一种基于量热法的超声功率测量方法的研究,[学位论文],上海交通大学,2006
    24. 饭田修一. 物理学常用数表. 北京,科学出版社, 1981,90.
    25. Anhalt DP,Hynynen K, Cetas TC. Calorimetry as a quality tool in hyperthermia, In Proceedings of the Annual International Conference of the IEEE 1988.
    1. Lynn JG, Putnam TJ. Histology of cerebral lesions produced by focused ultrasound. Am J Pathol. 1944;20:637-649.
    2. Ballantine HT,Bell E, Manlapaz J. Progress and problems in the neurological application of focused ultrasound. J Neurosurg. 1960;17:858-876.
    3. Corry PM,Jabboury K,Armour EP, et al. Human cancer treatment with ultrasound. IEEE transactions on sonics and ultrasonics. 1984;SU-31(5):444-456.
    4. Fry FJ, Johnson LK. Tumor irradiation with intense ultrasound. ultrasound Med Biol. 1978;4(4):337-341.
    5. Goss SA, Fry FJ. Nonlinear acoustic behavior in focused ultrasonic fields: Observations of intensity dependent absorption in biological tissue. IEEE Transactions on Sonics and Ultrasonics. 1981;28(1):21-26.
    6. Linke CA,Carstensen EL,Frizzell LA, et al. Localized tissue destruction by high-intensity focused ultrasound. Arch Surg. 1973;107(6):887-891.
    7. ter Haar G,Rivens I,Chen L, et al. High intensity focused ultrasound for the treatment of rat tumours. Phys Med Biol. 1991;36(11):1495-1501.
    8. Sibille A,Prat F,Chapelon JY, et al. Characterization of extracorporeal ablation of normal and tumor-bearing liver tissue by high intensity focused ultrasound. Ultrasound Med Biol. 1993;19(9):803-813.
    9. ter Haar GR, Robertson D. Tissue destruction with focused ultrasound in vivo. Eur Urol. 1993;23 Suppl 1:8-11.
    10. Chen L,ter Haar G,Hill CR, et al. Effect of blood perfusion on the ablation of liver parenchyma with high-intensity focused ultrasound. Phys Med Biol. 1993;38(11):1661-1673.
    11. Illing RO,Kennedy JE,Wu F, et al. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer. 2005;93(8):890-895.
    12. Kennedy JE,Wu F,ter Haar GR, et al. High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics. 2004;42(1-9):931-935.
    13. Uchida T,Ohkusa H,Yamashita H, et al. Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer. Int J Urol. 2006;13(3):228-233.
    14. Wu F,Wang ZB,Chen WZ, et al. Extracorporeal focused ultrasound surgery for treatment of human solid carcinomas: early Chinese clinical experience. Ultrasound Med Biol. 2004;30(2):245-260.
    15. Wu F,Wang ZB,Zhu H, et al. Extracorporeal high intensity focused ultrasound treatment for patients with breast cancer. Breast Cancer Res Treat. 2005;92(1):51-60.
    16. Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005;5(4):321-327.
    17. Liu HL,Chen WS,Chen JS, et al. Cavitation-enhanced ultrasound thermal therapy by combined low- and high-frequency ultrasound exposure. Ultrasound Med Biol. 2006;32(5):759-767.
    18. Michael RB,Adam DM,Justin AR, et al. Dual frequency high intensity focused ultrasound to accelerate hemostasis. The Journal of the Acoustical Society of America. 2004;116(4):2560.
    19. 李发琪,龚小波,胡凯, 等. 声通道上的肋骨对高强度聚焦超声在羊肝内形成凝固性坏死的影响. 中华超声影像学杂志. 2006;15(12):943-945.
    20. 沙卫红,李瑜元,聂玉强, 等. 高强度聚焦超声联用超声造影剂对治疗兔肝焦域效应的影响. 中华超声影像学杂志. 2004;13(4):299-302.
    21. 肖雁冰,肖子文,刘丽萍, 等. 碘油乳剂联合高强度聚焦超声损伤正常兔肝脏组织的实验研究. 重庆医科大学学报. 2005;30(4):544-547.
    22. Kaneko Y,Maruyama T,Takegami K, et al. Use of a microbubble agent to increase the effects of high intensity focused ultrasound on liver tissue. Eur Radiol. 2005;15(7):1415-1420.
    23. Tran BC,Seo J,Hall TL, et al. Microbubble-enhanced cavitation for noninvasive ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50(10):1296-1304.
    24. Umemura SI,Kawabata KI, Sasaki K. In vivo acceleration of ultrasonic tissue heating by microbubble agent. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2005;52(10):1690-1698.
    25. Tung YS,Liu HL,Wu CC, et al. Contrast-agent-enhanced ultrasound thermal ablation. Ultrasound Med Biol. 2006;32(7):1103-1110.
    26. Chen WS,Lafon C,Matula TJ, et al. Mechanisms of lesion formation in high intensity focused ultrasound therapy. Acoustic Research Letters Online.2003;4:41-46.
    27. Ter Haar GR,Clarke RL,Vaughan MG, et al. Trackless surgery using focused ultrasound: Technique and case report. Minimally Invasive Therapy. 1992;1(1):13-19.
    28. Hill CR, ter Haar GR. Review article: high intensity focused ultrasound--potential for cancer treatment. Br J Radiol. 1995;68(816):1296-1303.
    29. Flynn HG. Generation of transient cavities in liquids by microsecond pulses of ultrasound. Journal of the Acoustical Society of America. 1982;72(6):1926-1932.
    30. Kennedy JE,Ter Haar GR, Cranston D. High intensity focused ultrasound: surgery of the future? Br J Radiol. 2003;76(909):590-599.
    31. Hill CR,Rivens I,Vaughan MG, et al. Lesion development in focused ultrasound surgery: a general model. Ultrasound Med Biol. 1994;20(3):259-269.
    32. Feng R. Ultrasonic cavitation and ultrasonic therapy. J. Nature. 2003;25:311-314.
    33. Fan X, Hynynen K. Ultrasound surgery using multiple sonications--treatment time considerations. Ultrasound Med Biol. 1996;22(4):471-482.
    34. ter Haar G. Intervention and therapy. Ultrasound Med Biol. 2000;26 Suppl 1:S51-54.
    35. Lafon C,Zderic V,Noble ML, et al. Gel phantom for use in high-intensity focused ultrasound dosimetry. Ultrasound Med Biol. 2005;31(10):1383-1389.
    36. Takegami K,Kaneko Y,Watanabe T, et al. Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound. Ultrasound Med Biol. 2004;30(10):1419-1422.
    37. Lafon C,Kaczkowski PJ,Vaezy S, et al. Development and characterization of an innovative synthetic tissue-mimicking material for high intensity focused ultrasound (HIFU) exposures, In Proceedings of the IEEE Ultrasonics Symposium, 2001.
    38. Shou WD,Wang YK,Qian DC, et al. Radiation force calculation of focused ultrasound and its experiment in high intensity focused ultrasound. Technical Acoustics 2006;25(6):665-668.
    39. Bailey MR,Couret LN,Sapozhnikov OA, et al. Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro. Ultrasound Med Biol. 2001;27(5):695-708.
    40. Rabkin BA,Zderic V, Vaezy S. Hyperecho in ultrasound images of HIFU therapy: involvement of cavitation. Ultrasound Med Biol. 2005;31(7):947-956.
    41. Ikeda T,Yoshizawa S,Tosaki M, et al. Cloud cavitation control for lithotripsy using high intensity focused ultrasound. Ultrasound Med Biol. 2006;32(9):1383-1397.
    42. 朱昌平,冯若,何世传, 等. 用三种方法研究双频超声空化增强效应. 南京大学学报(自然科学). 2005;41(1):66-70.
    43. Fatemi M, Greenleaf JF. Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission. Proc Natl Acad Sci U S A. 1999;96(12):6603-6608.
    44. Calle S,Remenieras JP,Bou Matar O, et al. Presence of nonlinear interference effects as a source of low frequency excitation force in vibro-acoustography.Ultrasonics. 2002;40(1-8):873-878.
    45. Fatemi M, Greenleaf JF. Ultrasound-stimulated vibro-acoustic spectrography. Science. 1998;280(5360):82-85.
    46. Fatemi M, Greenleaf JF. Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound. Phys Med Biol. 2000;45(6):1449-1464.
    47. Chen L,Rivens I,ter Haar G, et al. Histological changes in rat liver tumours treated with high-intensity focused ultrasound. Ultrasound Med Biol. 1993;19(1):67-74.
    48. Feng R,Zhao Y,Zhu C, et al. Enhancement of ultrasonic cavitation yield by multi-frequency sonication. Ultrason Sonochem. 2002;9(5):231-236.
    49. Lernetti G,Ciuti P,Dezhkunov NV, et al. Enhancement of high-frequency acoustic cavitation effects by a low-frequency stimulation. Ultrason Sonochem. 1997;4(3):263-268.
    50. Giesecke T, Hynynen K. Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro. Ultrasound Med Biol. 2003;29(9):1359-1365.
    51. Hynynen K. The threshold for thermally significant cavitation in dog's thigh muscle in vivo. Ultrasound Med Biol. 1991;17(2):157-169.
    52. Konofagou E,Thierman J, Hynynen K. A focused ultrasound method for simultaneous diagnostic and therapeutic applications--a simulation study. Phys Med Biol. 2001;46(11):2967-2984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700