用户名: 密码: 验证码:
系统性红斑狼疮干细胞的基础和临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分系统性红斑狼疮患者骨髓CD34~+细胞表面标志及与病情活动的相关性分析
     目的:研究系统性红斑狼疮(SLE)患者骨髓CD34~+细胞表面标志的变化,了解SLE患者造血干细胞是否存在异常。
     方法:应用流式细胞术CD45/SSC设门分析10例SLE患者和10例正常人骨髓CD34~+细胞CD90、CD117、CD123、CD164、CD166、CD95(FAS)、FAS-L、HLA-DR等表面分子的表达及其与病情活动指标的相关性。
     结果:活动期SLE患者骨髓CD34~+细胞比例(1.48±0.41%,n=7)明显低于正常人(2.31±0.75%,P<0.01,n=10),非活动期患者(2.04±0.44%,n=3)与正常人相比差异无显著性。SLE患者CD34~+CD95~+的表达明显高于正常人(48.31±10.59%vs24.33±11.1%,P<0.05),患者CD123和CD166也明显高于正常人(44.9±21.5%vs19.5±4.4%,P<0.05;30.9±19.54%vs 10.7±5.5%,P<0.05)。其余表面标志的表达与正常人相比无明显差异。CD123表达率与患者外周血白细胞计数负相关(r=-0.700,P<0.05),与SLE疾病活动指数(SLEDAI)评分无相关性。CD166表达与SLEDAI(r=+0.472,P<0.05),血清C3(r=-0.712,P<0.01),24小时尿蛋白(r=+0.558,P<0.05)显著相关。
     结论:SLE患者骨髓CD34~+细胞CD95、CD123、CD166的表达率增加,CD123的表达率与外周血白细胞计数显著负相关;CD166的表达率与SLEDAI评分、24小时尿蛋白显著正相关,与血清C3显著负相关,CD166可能是一个新的SLE疾病活动性标志。
     第二部分人骨髓间充质干细胞移植治疗MRL/Ipr狼疮鼠的疗效和机制
     目的:探讨人骨髓间充质干细胞(MSC)移植对MRL/lpr狼疮鼠的疗效及作用机制。
     方法:体外分离、培养、扩增正常人MSC。MRL/lpr鼠随机分为对照组、环磷酰胺(CTX)治疗组、MSC治疗组和MSC+CTX治疗组。16周龄时,CTX组和MSC+CTX组给予CTX 100mg/kg×2d腹腔注射,24h后MSC组和MSC+CTX组经尾静脉输入人MSC。考马斯亮蓝法检测24h尿蛋白含量,间接免疫荧光检测血清抗核抗体(ANA)、抗双链DNA(ds-DNA)抗体滴度,流式细胞仪检测外周血T细胞亚群,RT-PCR检测脾脏B淋巴细胞活化因子(BAFF)mRNA表达水平,免疫组化检测肾脏转化生长因子β(TGF-β),纤维连接蛋白(FN),血管内皮生长因子(VEGF)的表达,免疫荧光检测肾小球补体C3沉积。
     结果:①24、28、32周24h尿蛋白定量MSC组(4.3±0.8mg,5.4±0.8mg,5.8±0.8mg)和MSC+CTX组(2.8±1.0mg,3.9±0.4mg,4.5±1.0mg)均显著低于对照组(9.0±1.3mg,9.3±0.6mg,10.0±1.6mg)(P<0.05);MSC+CTX组(2.8±1.0mg,3.9±0.4mg,4.5±1.0mg)显著低于CTX组(5.1±1.0mg,7.7±1.1mg,9.6±1.9mg)(P<0.05)。②28周龄时抗ds-DNA抗体滴度MSC+CTX组(2.7±0.8)显著低于对照组(4.6±0.9)(P<0.05)。③32周龄时体重MSC组(38.6±3.3g)和MSC+CTX组(35.8±3.7g)显著高于对照组(32.8±3.0g)(P<0.05)。④32周龄时,血清肌酐MSC组(13.5±2.2μmol/L)和MSC+CTX组(12.7±4.2μmol/L)均显著低于对照组(20.8±5.1μmol/L)(P<0.05)。⑤32周龄时CD4~+T细胞和Th2亚群MSC组(76.4%±1.9%,58.4%±1.8%)和MSC+CTX组(73.9%±3.2%,57.6%±3.2%)均显著低于对照组(82.7%±2.9%,64.2%±2.8%)(P<0.05)。⑥治疗组脾脏BAFF mRNA表达显著降低。⑦治疗组肾组织TGF-β、FN、VEGF表达降低,肾小球中C3的沉积显著减少,肾脏组织学病变改善。
     结论:人MSC移植治疗MRL/lpr鼠有效,调节Th1/Th2平衡,降低脾脏BAFFmRNA表达,抑制B细胞抗体产生,抑制TGF-β、FN、VEGF表达,减轻肾小球硬化,可能是MSC移植治疗MRL/lpr鼠有效的机制之一。
Part 1 Abnormal surface markers expression on bone marrow CD34~+ cells and correlation with disease activity in patients with systemic lupus erythematosus
     Objective: To explore the phenotypic characteristics of bone marrow (BM) CD34+ cells in patients with SLE and its relationship with SLE disease activity.
     Methods: 10 SLE patients and 10 healthy subjects were recruited, their BM CD34+ cells were analyzed by flow cytometric analysis with CD45/SSC gating for the expression of CD90, CD95, CD117, CD123, CD164, CD166, FAS-L and HLA-DR.
     Results: The percentage of BM CD34+ cells was significantly decreased in active SLE patients (1.48±0.41%, n=7) compared to healthy controls (2.31±0.75%, n=10, p<0.01), but no significant difference was found between the inactive patients (2.04±0.44%, n=3) and the controls. The expression of CD95, CD123 and CD166 on BM CD34+ cells were significantly increased in SLE patients (48.31±10.59%, 44.9±21.5%, 30.9±19.54%, n=10) when compared with control subjects (24.33±11.1%, 19.5±4.4%, 10.7±5.5%, respectively, n=10, p<0.05). The increased CD123 expression was negatively correlated with the number of peripheral white blood cells (r=-0.700, p<0.05, n=10). The percentage of CD166 expression was found significantly correlated with the index of SLE disease activity (r=0.472, p<0.05, n=10), and 24 hour proteinuria (r=0.558, p<0.05, n=10), but negatively with serum C3 level (r=-0.712, p<0.01, n=10).
     Conclusion: The expression percentage of CD95, CD123 and CD166 on BM CD34+ cells were significantly increased in patients. This supports the hypothesis that there are abnormalities of hematopoietic stem cell (HSC) in SLE. Since CD166 and CD123 correlated with the overall lupus activity, their role as a biomarker of inflammatory disease activity also requires further study.
     Part 2 The therapeutic effect and mechanism of human bone marrow mesenchymal stem cells transplantation in MRL/lpr mice
     Objective: To investigate the therapeutic effects and mechanism of human bone marrow mesenchymal stem cells(MSC) transplantation in MRL/lpr mice.
     Methods: Human MSCs were expanded ex vivo. MRL/lpr mice were divided into cyclophosphamide (CTX) group, MSC group, CTX+MSC group, and control group. At the age of 16 weeks, the mice in CTX group and MSC+CTX group received intraperitoneal injection of CTX 100mg/kg×2d. 24 hours after injection, the MSCs were transplanted in MSC group and CTX+MSC group through tail vein. The 24-hour proteinuria was detected with Coomassi brilliant blue method. Indirect immunofluorescence was used to detect the antinuclear antibody (ANA) and anti-double-stranded DNA (ds-DNA) antibody. Flow cytometry was used to detect the changes of CD4~+ T cells and Thl/Th2 subpopulation. The expression of BAFF mRNA was analyzed by RT-PCR. The expression of fibronectin (FN), transforming growth factor-β(TGF-β), vascular endothelial growth factor (VEGF), complement C3 of the murine kidney was estimated by immunohistochemistry and immunofluorescence.
     Results:①At 24, 28, 32 weeks, the 24 hours proteinuria in MSC group (4.3±0.8mg, 5.4±0.8 mg, 5.8±0.8 mg) and MSC+CTX group (2.8±1.0mg, 3.9±0.4mg, 4.5±1.0mg) were significantly decreased than in control group (9.0±1.3mg, 9.3±0.6mg, 10.0±1.6mg) (P<0.05), and they were also significantly decreased in MSC+CTX group (2.8±1.0mg, 3.9±0.4mg, 4.5±1.0mg) than in CTX group (5.1±1.0mg, 7.7±1.1mg, 9.6±1.9mg) (P<0.05).②At 28 weeks, the anti ds-DNA antibodies were significantly decreased in MSC+CTX group (2.7±0.8) than in control group (4.6±0.9) (P<0.05).③At 32 weeks, the bodyweight of MSC group (38.6±3.3g) and MSC+CTX (35.8±3.7g) group increased significantly than the control group (32.8±3.0g) (P<0.05).④At 32 weeks, serum creatinine decreased significantly in MSC group (13.5±2.2μmol/L) and MSC+CTX (12.7±4.2μmol/L) group than in control group (20.8±5.1μmol/L) (P<0.05).⑤The number of CD4~+ T cells and Th2 subpopulation decreased significantly in MSC group (76.4%±1.9%, 58.4%±1.8%) and MSC+CTX group (73.9%±3.2%, 57.6%±3.2%) than in control group (82.7%±2.9%, 64.2%±2.8%) (P<0.05).⑥The expression of BAFF mRaNA in spleen was significantly decreased in MSC and MSC+CTX group.⑦The expression of TGF-β, FN, VEGF and the deposition of complement C3 in renal tissue were decreased significantly in MSC and MSC+CTX treated group.
     Conclusion: human MSC transplantation is effective treatment for MRL/lpr mice. The regulation of Th1/Th2 balance and inhibition the antibodies of B cells, mediated by human MSCs may be the mechanisms of effective treatment with MSC transplantation. The decrement of glomerulosclerosis probably due to its suppressive effect on the expression of local TGF-β, FN, VEGF and ameliorated the renal histological injury.
引文
1. Morton JI, Siegel BV. Transplantation of autoimmune potential. I. Development of antinuclear antibodies in H-2 histocompatible recipients of bone marrow from New Zealand Black mice. Proc Natl Acad Sci USA, 1974, 71:2162-2165.
    
    2. Nakamura T, Ikehara S, Good RA, et al. Abnormal stem cells in autoimmune-prone mice are responsible for premature thymic involution. Thymus, 1985, 7: 151-160.
    
    3. Jayne D. Stem cell transplantation in systemic lupus erythematosus. Best Pract Res Clin Haematol, 2004, 17:291-304.
    
    4. Snowden JA, Kearney P, Kearney A, et al. Long-term outcome of autoimmune disease following allogeneic bone marrow transplantation. Arthritis Rheum, 1998, 41:453-459.
    
    5. Papadaki HA, Boumpas DT, Gibson FM, et al. Increased apoptosis of bone marrow CD34(+) cells and impaired function of bone marrow stromal cells in patients with systemic lupus erythematosus. Br J Haematol, 2001, 115: 167-174.
    
    6 Sotiropoulou PA, Perez SA, Gritzapis AD, et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 2006, 24:1:74-85.
    
    7 Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, 2005, 106:756-763.
    
    8 Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol, 2002, 174:11-20.
    
    9 Zhang J, Li Y, Chen J, et al. Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol, 2005, 195:16-26.
    
    10 Togel F, Hu Z, Weiss K, et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol, 2005, 289:F31-F42.
    
    11 Kunter U, Rong S, Djuric Z, et al. Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol, 2006, 17:2202-2212.
    
    12 El-Badri NS, Maheshwari A, Sanberg PR. Et al. Mesenchymal stem cells in autoimmune disease. Stem Cells Dev, 2004, 13:463-472.
    13 Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 2002, 99:3838-3843.
    14 Ikehara S. A novel strategy for allogeneic stem cell transplantation: perfusion method plus intra-bone marrow injection of stem cells. Exp Hematol, 2003, 31:1142-1146.
    15 Deng GM, Zheng L, Chan FK, et al. Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nat Med, 2005, 11:1066-1072.
    16 Kushida T, Inaba M, Hisha H, et al. Intra-bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr mice. Blood, 2001, 97:3Z92-3299.
    17. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum, 1997, 40: 1725.
    18. Bombardier C, Gladman DD, Urowitz MB, et al. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum, 1992, 35: 630-640.
    19. Marmont AM. Perspective Immune ablation with stem-cell rescue: A possible cure for systemic lupus erythematosus? Lupus, 1993, 2:151-156.
    20. Marmont AM, van Lint MT, Gualandi F et al. Autologous marrow stem cell transplantation for severe systemic lupus erythematosus of long duration. Lupus, 1997, 6:545-548.
    21. Burt RK, Traynor A, Ramsey-Goldman R. Hematopoietic stem-cell transplantation for systemic lupus erythematosus. N Engl J Med, 1997, 337:1777-1778.
    22.孙凌云,欧阳建,杨永公等.自体骨髓干细胞移植治疗SLE的临床研究.中华风湿病学杂志,1999,3:145-147
    23. Papadaki HA, Boumpas DT, Gibson FM, et al. Increased apoptosis of bone marrow CD34(+) cells and impaired function of bone marrow stromal cells in patients with systemic lupus erythematosus. Br J Haematol, 2001, 115: 167-174.
    24. Rusten LS, Jacobsen SE. Tumor necrosis factor(TNF) - alpha directly inhinits human erythropoiesis in vitro: role of p55 and p75 TNF receptors. Blood, 1995, 85: 989-996.
    25. Dall' era MC, Cardarelli PM, Preston BT, et al. Type I interferon correlates with serological and clinical manifestations of SLE. Ann Rheum Dis, 2005, 64:1692-1697.
    26 Jabs DA, Burek CL, Hu Q, et al. Anti-CD4 monoclonal antibody therapy suppresses autoimmune disease in MRL/Mp-lpr/lpr mice. Cell Immunol, 1992, 141:496-507.
    27 Mackay F, Ambrose C. The TNF family members BAFF and APRIL: the growing complexity. Cytokine Growth Factor Rev, 2003, 14:311-324.
    
    28 Ju ZL, Shi GY, Zuo JX, et al. Unexpected development of autoimmunity in BAFF-R-mutant MRL-lpr mice. Immunology, 2007, 120:281-289.
    
    29 Tsai CY, Wu TH, Huang SF, et al. Abnormal splenic and thymic IL-4 and TNF-alpha expression in MRL-1pr/pr mice. Scand J Immunol, 1995, 41:157-163.
    
    30 Prud' homme GJ, Kono DH, Theofilopoulos AN. Quantitative polymerase chain reaction analysis reveals marked overexpression of interleukin-1 beta, interleukin-1 and interferon-gamma mRNA in the lymph nodes of lupus-prone mice. Mol Immunol, 1995, 32:495-503.
    
    31 Peng SL, Moslehi J, Craft J. Roles of interferon-gamma and interleukin-4 in murine lupus. J Clin Invest, 1997, 99:1936-1946.
    
    32 Nicoletti F, Meroni P, Dimarco R, et al. In vivo treatment with a monoclonal antibody to interferongamma neither affects the survival nor the incidence of lupusnephritis in the MRL-lpr/lpr mouse. Immunopharmacology, 1992, 24:11-16.
    
    33 Schwarting A, Moore K, Wada T, et al. IFN-gamma limits macrophage expansion in MRL-Fas(lpr) autoimmune interstitial nephritis: a negative regulatory pathway. J Immunol, 1998, 160(8): 4074-4081.
    
    34 Jabs DA, Lee B, Whittum-Hudson JA, et al. Th1 versus Th2 immune responses in autoimmune lacrimal gland disease in MRL/Mp mice. Invest Ophthalmol Vis Sci, 2000, 41:826-831.
    
    35 Shimizu S, Sugiyama N, Masutani K, et al. Membranous glomerulonephritis development with Th2-type immune deviations in MRL/1pr mice deficient for IL-27 receptor (WSX-1). J Immunol, 2005, 175:7185-7192.
    
    36 Schnaper HW, Hayashida T, Hubchak SC, et al. TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol, 2003, 284:F243~252.
    
    37 Krag S, Danielsen CC, Carmeliet P, et al. Plasminogen activator inhibitor-1 gene deficiency attenuates TGF-beta1-induced kidney disease. Kidney Int, 2005, 68:2651-2666.
    
    38 Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int, 1999, 56:794-814.
    
    39 Unemori EN, Ferrara N, Bauer EA, et al. Vascular endothelial growth factor induces interstitial, collagenase expression in human endothelial cells. J Cell Physiol, 1992, 153:557-562.
    
    40 Roberts WG, Palade GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res, 1997, 57:765-772.
    
    41 Olander JV, Connolly DT, DeLarco JE. Specific binding of vascular permeability factor to endothelial cells. Biochem Biophys Res Commun, 1991, 175:68-76.
    1 杨德森,陈汇,曾繁典,等.雷公藤双层片对系统性红斑狼疮治疗作用及机制的实验研究.时珍国医国药,2003,14(7):387-389
    2 许晨,吴兆龙,张志刚.雷公藤红素对狼疮鼠肾组织型胶原和层粘素的影响.肾脏病与透析肾移植杂志,2002,11(2):106-109
    3 许晨,吴兆龙,张志刚,等.雷公藤红素对狼疮鼠肾小球和型胶原的影响.中华风湿病学杂志,2002,6(4):235-238
    4 Xu NM, Zhang LX, Cheng ZH, et al. Inhibitory effect of tripterine on activities of IL-1, IL-2 and release of PGE2. Yao Hsueh Hsueh Pao, 1991, 26(9):641-645.
    5 Maekawa K, Yoshikawa N, DuJ, et al. The molecular mechanism of inhibition of intefleukin-1 beta2 induced cyclooxygenase-2 expression in human synovial cells by Tripterygium wilfordii Hook f. extract. Inflamm Res, 1999, 48(11):575-581.
    6 Chang DM, Kuo SY, Lai JH, et al. Effects of anti-rheumatic herbal medicines on cellular adhesion molecules. Ann Rheum Dis, 1999, 58(6):366-371.
    7 Tao X, Schulze-Koops H, Ma L, et al. Effects of Tripterygium wilfordii Hook f. extracts on induction of cyclooxygenase2 activity and pro staglandin E2 pro duction. Arthritis Rheum, 1998, 41 (1): 130-138.
    8 Border WA, Okuda S, Languino L, et al. Suppression of experimental glomerulo nephritis by anti serum against transforming growth factor beta 1. Nature, 1990, 346(6282):371-374.
    9 Tamaki K, Okuda S, Ando T, et al. TGF-β1 in glomerulosclerosis and interstitial fibrosis of adriamycin nephropathy. KidneyInt, 1994, 45(2):525-536.
    10 Border WA, Noble NA. TGF-beta in kidney fibrosis: a target for gene therapy. Kidney Int, 1997, 51(5):1388-1394.
    11 彭学标,王娜,曾抗.雷公藤对系统性红斑狼疮外周血单个核细胞NF-kB活性的影响.中国皮肤性病学杂志,2006,20(6):336-337
    12 王济东,赵春荣,郑少同,等.雷公藤多甙对狼疮性肾炎患者血浆IL-13含量的影响.现代中西医结合杂志,2004,13(22):2952-2953.
    13 彭学标.雷公藤对系统性红斑狼疮外周血单一核细胞CD40配体mRNA表达的影响.中国麻风皮肤病杂志,2004,20(6):550-551
    14 徐瑞宏,张堂德,詹青松,等.雷公藤内酯醇对系统性红斑狼疮病人B细胞表达CD86分子的影响.中华风湿病学杂志,2003,7(5):275-277
    15 蒋炜,黎磊石,唐政,等.狼疮性肾炎中西医结合治疗研究.中华肾脏病杂志,1992,8(3):137
    16 陈源根,李二仁,张新春.血浆置换配合雷公藤等治疗重症狼疮性肾炎25例报告.实用内科杂志.1992,12(5):251
    17 Kao NL, Richmond GW, Moy JN. Resolution of severe lupus nephritis associated with Tripterygium wilfordii hook F ingestion. Arthritisrheum, 1993, 36(12): 1751
    18 陈华,高玉祥.青蒿琥酯免疫作用机制的探讨.蚌埠医学院学报,1990,23(3):250
    19 林培英,张丹,肖柳英,等.青蒿素、青蒿琥酯及蒿甲醚对抑制性T细胞的作用.广州医药,1998,29(1):39-40
    20 周平,高玉祥.青蒿琥酯对NK细胞活性及ADCC活性的影响.蚌埠医学院学报,1995,20(6):363-364
    21 王俐,高玉祥.青蒿琥酯对小鼠变应性接触性皮炎及白细胞介素1的影响.中华皮肤科杂志,1992,25(3):165-167
    22 孙秀珍,谢蜀生,龙振洲等.青蒿素及其衍生物免疫抑制作用的实验研究.中西医结合杂志,1991,11(1):37-38
    23 周平,高玉祥.青蒿琥酯对小鼠免疫功能的影响.蚌埠医学院学报,1996,21(1):5-6
    24 钱瑞生,李柱良,谢名荣,等.青蒿素对小鼠干扰素的诱生作用.解放军医学杂志,1985.10(5):355-357
    25 梁爱华,薛宝云,王金华,等.青蒿琥酯对内毒素诱导的炎性因子合成抑制作用的研究.中国中西医结合急救杂志,2001,8(5):262-265
    26 梁爱华,薛宝云,李春英,等.青蒿琥酯对内毒素诱导的一氧化氮合成的抑制作用.中国中药杂志,2001,26(11):770-772
    27 Ittarat W, Udomsangpetch R, Chotivanich KT, et al. The effect of quinine and artesunate treatment on plasma tumor necrosis factor levels in malari-infected patients. Southeast Asian J Trop Med Public Health, 1999,30 (1):7-10.
    28 余其斌,金慧玲.青蒿琥酯治疗系统性红斑狼疮30例临床观察.蚌埠医学院学报,1996,21(3):173-174
    29 朱卫星,顾军.青蒿琥酯对狼疮样小鼠血清白细胞介素-6和转化生长因子-β的影响.中国麻风皮肤病杂志,2004,20(4):318-319.
    30 徐丽敏,陈学荣,屠呦呦等.双氢青蒿素对狼疮性BXSB小鼠的作用.中国中西医结合皮肤性病学杂志,2002,1(1):19-20.
    31 张剑勇,钟嘉熙,戴馨仪,等.苓丹片、青蒿琥酯对SLE小鼠T淋巴细胞亚群的影响.中药药理与临床,1998,14(1):37-38.
    32 赵会芳,钟嘉熙,彭胜权,等.青蒿复方对SLE模型小鼠作用的研究.中国中医药信息杂志,1998,5(1):18-19.
    33 董妍君,李卫东,屠呦呦,等.双氢青蒿素对BXSB狼疮小鼠自身抗体产生、TNF-α分泌及狼疮性肾炎病理改变的影响.中国中西医结合杂志,2003,23(9):676-679.
    34 董妍君,李卫东,屠呦呦,等.双氢青篙素对BXSB小鼠狼疮肾炎的作用及机制研究.中国药理学通报,2003,19(10):1125-1128.
    35 张剑勇,钟嘉熙,彭胜权等.苓丹片、青蒿琥酯对系统性红斑狼疮患者IL-2与sIL-2R影响的研究.河南中医学院学报,2003,3(2):38-39.
    36 周海钧.中国民族药志.北京:人民卫生出版社,1984:136-140.
    37 昆明医学院附一院皮肤科.THH治疗红斑狼疮29例临床效果观察.皮肤病防治研究通讯,1978,7(1):5.
    38 秦万章,先光斗,王使生.THH治疗25例系统性红斑狼疮的观察.中草药,1982,3(2):12
    39 闫承菊,王凯,祝玉范.火把花根片六味地黄丸并用治疗狼疮性肾炎16例.实用中医内科杂志,2003,17(3):217-218
    40 许德清.中西药四联疗法治疗狼疮肾炎探索.中国皮肤性病学杂志,2005,19(11):676-677
    41 王淑美,李荣亨,张文亮等.滋肾活血凉斑方加火把花根片对活动期系统性红斑狼疮患者生化指标的影响.中国临床康复,2006,10(7):90-92
    42 耿长山,刑善田,周金黄.黄芪多糖对去T细胞小鼠促进抗体产生机理的探讨.上海免疫学杂 志,1995;5(2):69-70.
    43 梁华平,张艳.黄芪多糖调节创伤小鼠白介素2及白介素2受体基因表达的实验研究.中医药学报,1995;3(1):27-29.
    44 张晓明.白细胞介素2和黄芪多糖对小鼠NK细胞活性和增殖及形态的影响.北京医科大学学报,1991;23(3):1762178.
    45 夏英,李家琪,阎佩君,等.黄芪多糖免疫作用的实验研究.上海中医药杂志,1994;11(1):42-43.
    46 李先荣,康永,程霞,等.注射用黄芪多糖药理作用的研究3:对血糖及其肝糖含量的影响.中成药,1989;11(9):32-33.
    47 陈香美,朱宁,中内启光.雷公藤、黄芪对小鼠淋巴细胞表面标志及细胞因子的影响.中华微生物学和免疫学杂志,1991,11(5):387-389.
    48 苏励,茅建春,顾军花.环磷酰胺联合大剂量黄芪注射液静脉滴注治疗狼疮性肾炎 中西医结合学报,2007,3(3):272-275
    49 王慧娟,王晋平,张佳红.联合黄芪注射液治疗系统性红斑狼疮白细胞减少症的临床观察,兰州大学学报(医学版)2007,33(1):76-78
    50 蔡小燕,许艳丽,林小军等.黄芪对红斑狼疮细胞凋亡和T淋巴细胞亚群的影响.实用医学杂志,2006,22(9):1077-1078
    51 王晓琴,赵玉铭,王雅坤,等.黄芪多糖对红斑狼疮小鼠6种抗磷脂抗体的影响,中国免疫学杂志,2004,20(8):558-560
    52 潘复初,李嘉猷,陈美娟,等.大剂量黄芪治疗系统性红斑狼疮疗效观察.临床医学杂志,1985,1(2):34-36
    53 陈香美,于力方,卢英杰等.自发狼疮肾炎鼠细胞间粘附分子的变化及黄芪的作用.中华医学杂志.1995,75(4):204-206
    54 刘品.黄芪桂枝五物汤治疗红斑狼疮肢端坏死症2例.中国中医急症,1995,4(3):143
    55 牛云飞,陈晓雯,郑彩霞.参麦注射液治疗系统性红斑狼疮心脏损害疗效观察.中国中西医结合急救杂志,1998,5(12):551-553
    56 夏育民,徐世正.大黄素对狼疮样BXSB小鼠的影响.华中医学杂志,2003,27(2):63-64
    57 夏育民,徐世正,熊腊元,等.大黄素对BXSB狼疮样小鼠肾脏病变的影响及其机制中国麻风皮肤病杂志,2003,19(1):1-3
    58 刘冠贤,叶任高,谭志明,等.大黄素对狼疮性肾炎成纤维细胞生物学行为的影响中国中西医结合杂志,2000,20(3):196-198
    59 赵国庆.大黄和黄芪水提醇沉液注射治疗BXSB狼疮鼠的实验研究.中华风湿病杂志,2001,5(3):175-177
    1. Spain LM, Guerriero A, Kunjibettu S, et al. 1999. T cell development in PU.1-deficient mice. J. Immunol. 163:2681 87
    2. Tsai FY, Orkin SH. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood, 1997, 89:3636-3643.
    3. Antonchuk J, Sauvageau G, Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell, 2002, 109: 39-45.
    4. Bhardwaj G, Murdoch B, Wu D, et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol, 2001, 2:172-180.
    5. Varnum-Finney B, Xu L, Brashem-Stein C, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notchl signaling. Nat Med, 2000, 6: 1278-1281.
    6. Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 2003, 423:409-414.
    7. Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 2003, 423:448-452.
    8. Stier S, Cheng T, Dombkowski D, et al. Notchl activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood, 2002, 99:2369-2378.
    9. Krosl J, Austin P, Beslu N, et al. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med, 2003, 9:1428-1432.
    10. Duncan AW, Rattis FM, DiMascio LN. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol, 2005,6:314-22.
    
    11. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003, 425:836-841.
    
    12. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003, 425:841-846.
    
    13. Chadwick K, Wang L, Li L, et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood, 2003, 102:906-915.
    
    14. Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-l signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 2004,118:149-161.
    
    15. Schwarz BA, Bhandoola A. Circulating hematopoietic progenitors with T lineage potential. Nat Immunol, 2004, 9:953 960
    
    16. Allman D, Sambandam A, Kim S, et al. 2003. Thymopoiesis independent of common lymphoid progenitors. Nat Immunol, 2004,4:168 174
    
    17. Radtke F, Wilson A, Stark G, et al. Deficient T cell fate specification in mice with an induced inactivation of Notchl. Immunity, 1999,10:547-558.
    
    18. Harman BC, Jenkinson EJ, Anderson G. Entry into the thymic microenvironment triggers notchactivation in the earliest migrant T cell progenitors. J Immunol, 2003, 170:1299-303.
    
    19. Borowski C, Martin C, Gounari F, et al. On the brink of becoming a T cell. Curr Opin Immunol, 2002,14:200-206.
    
    20. Reizis B, Leder P. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev, 2002, 16:295-300.
    
    21. Wolfer A, Wilson A, Nemir M, et al. Inactivation of Notchl impairs VDJ-beta rearrangement and allows pre-TCR-independent survival of early alpha beta lineage thymocytes. Immunity, 2002, 16:869-879.
    
    22. Staal FJ, Meeldijk J, Moerer P, et al. Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol, 2001, 31 : 285-293.
    
    23. Bender TP, Kremer CS, Kraus M, et al. Critical functions for c-Myb at three checkpoints during thymocyte development. Nat Immunol, 2004, 5:721 729
    
    24. Pai SY, Truitt ML, Ting CN, et al. Critical roles for transcription factorGATA-3 in thymocyte development. Immunity,2003, 19:863 875.
    
    25. Robey E, Chang D, Itano A, et al. An activated form of Notch influences the choice between CD4 and CD8 T2cell lineages. Cell, 1996, 8:483-492.
    
    26. Fowlkes BJ ,Robey EA. A reassessment of the effect of activated Notchl on CD4 and CD8 T cell development. J Immunol, 2002,169:1817-1821.
    
    27. Nawijn MC, Ferreira R, Dingjan GM, et al. Enforced expression of GATA-3 during T cell development inhibits maturation of CD8 single-positive cells and induces thymic lymphoma in transgenic mice. J Immunol, 2001,167:715 723.
    
    28. Nawijn MC, Dingjan GM, Ferreira R, et al. Enforced expression of GATA-3 in transgenic mice inhibits Thl differentiation and induces the formation of a Tl/ST2-expressing Th2-committed T cell compartment in vivo. J Immunol, 2001, 167:724 732.
    
    29. Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol, 2005, 6:331-337.
    
    30. Maekawa Y, Tsukumo S, Chiba S, et al. Delta1-Notch3 interactions bias the functional differentiation of activated CD4 + T cells. Immunity, 2003,19:549-559.
    
    31. Zlobin A, Jang M, Miele L. Toward the rational design of cell fate modifiers: notch signaling as a target for novel biopharmaceuticals. Curr Pharm Biotechnol. 2000, 1(1):83-106.
    
    32. Yoh K, Shibuya K, Morito N, et al. Transgenic overexpression of GATA-3 in T lymphocytes improves autoimmune glomerulonephritis in mice with a BXSB/MpJ-Yaa genetic background. J Am Soc Nephrol. 2003, 14:2494-2502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700