用户名: 密码: 验证码:
柴达木地区主要树种抗旱耐盐生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以柴达木地区乡土树种柽柳(Tamarix hohenackeri Bge.)、梭梭(H.ammodendron)、合头草(Sympegma regelii Bge.)、白刺(Nitraria tangutorum Bobr.)、金露梅(Potentilla fruticosa)、圆柏(Sabina chinensis (Linn.)Ant.)为试验材料,通过对不同干旱胁迫、盐胁迫条件下树种的生长形态、叶片水分和光合生理变化的研究,分析这些植物的耐旱耐盐机理,为该区干旱、盐碱环境下抗盐、抗旱植物的选择提供参考。
     本文主要得出以下结论:
     (1)柴达木地区主要造林树种抗旱特性
     干旱胁迫对梭梭、柽柳、合头草、白刺、金露梅及圆柏六种幼苗的株高生长、比叶重均产生了显著抑制,且干旱胁迫程度越高,抑制越严重。
     由干旱胁迫下叶片含水量及叶片水分饱和亏缺的变化得出,梭梭、白刺耐旱性较强,合头草其次,柽柳、金露梅、圆柏相对较弱。
     从净光合速率日平均值来看,干旱胁迫对合头草净光合速率的影响最大,对白刺和柽柳的影响次之,对梭梭净光合速率的影响最小。
     通过对柽柳(Tamarix hohenackeri Bge.)、梭梭(H. ammodendron)、合头草(Sympegma regelii Bge.)、白束(?)(Nitraria tangutorum Bobr.)、金露梅(Potentilla fruticosa)等植物的净光合速率-光响应模型的比较分析,得到直角双曲线修正模型的模拟效果最好。
     六种植物在相同水分条件下(充分供水),梭梭叶水势最低,白刺其次,合头草、柽柳居中,圆柏、金露梅较高,说明梭梭最耐旱,白刺其次,圆柏、金露梅耐旱能力相对较差。
     (2)柴达木地区主要造林树种耐旱机理判别
     六种植物萎蔫系数由大到小的排序为:圆柏>金露梅>合头草>柽柳>白刺>梭梭,说明梭梭、白刺较其他植物更能忍受在低水分条件下生存。六种植物的土壤水分利用率由大到小依次为:梭梭>白刺>柽柳>合头草>金露梅>圆柏。六种植物的耐旱性大小为:梭梭>白刺>柽柳>合头草>金露梅>圆柏。
     根据植物耐旱判别模型确定柴达木地区六种植物的耐旱机理,基于叶水势与土壤水分的判别模型得出的结论是梭梭、白刺、合头草、柽柳及金露梅均为低水势下忍耐脱水的抗旱植物,圆柏为亚低水势忍耐脱水耐旱树种;基于叶水势与土壤水势的判别模型得出的结论是六种植物均为低水势忍耐脱水耐旱树种。
     (3)柴达木地区主要造林树种耐盐生理
     在盐分土壤环境的植物,生长发育状况均受到了盐胁迫的严重影响。金露梅和梭梭在重度盐胁迫条件下早在15天时就已受到盐害,白刺和柽柳叶片受到盐分影响的时间比较晚,且程度比较轻。同种植物由于盐胁迫的加剧地径和株高生长的抑制现象也更加显著,同种处理下金露梅的生长受到抑制的现象最显著。白刺、柽柳和梭梭叶片的比叶重在盐胁迫后与对照的差异不显著,金露梅呈大幅度下降趋势,反映出金露梅叶片对盐环境的适应能力较低。白刺、柽柳耐盐能力较强,梭梭其次,金露梅相对最弱。
     盐胁迫在不同程度上影响了植物的光合作用。各种植物在不同程度的盐胁迫条件下净光合速率全部呈下降趋势。从时间进程上看,随着盐浓度的增加这种下降趋势愈加明显。
     白刺幼苗的净光合速率在盐胁迫初期下降缓慢,后期变化幅度减小并趋于平缓,说明白刺叶片从最初的受到胁迫逐渐变得适应盐分环境。柽柳幼苗在各盐浓度胁迫下的净光合速率曲线整体变化都比较平缓,下降幅度较同浓度其他树种相比最小。金露梅幼苗净光合速率都显著低于对照,且在胁迫初期显著下降,下降幅度最大。梭梭幼苗在100mmol·L-1NaCl浓度下光合值下降相对缓慢,在600mmol·L-1NaCl浓度下显著下降。因此,综合各树种在盐胁迫下的反应得知,柽柳耐盐性最强,然后为白刺、梭梭,金露梅耐盐性最差。
With main plantation tree species in Qaidam region:Tamarix hohenackeri Bge., H. ammodendron, Sympegma regelii Bge., Nitraria tangutorum Bobr., Potentilla fruticosa and Sabina chinensis (Linn.) Ant. as test materials, this paper comprehensively studied the physiological responses of plant growth, leaf water relations and photosynthetic characteristics to drought and salt stress, as well as the laws of water consumption of these tree species.The drought and salinity resistant physiology and water consumption characteristics of the six main plantation tree species were deeply analyzed in order to pave the way for screening and cultivation of adverse-resistant plants during vegetation recovery period in different site conditions and also to provide a scientific theoretical foundation for the ecological environment construction and returning farmland to forests or grassland project. By means of research, main conclusions are elicited as follows:
     (1) Drought resistant characters of the six main plantation tree species in Qaidam region
     Drought stress significantly decreased stem height and specific leaf weight of Tamarix hohenackeri Bge., H. ammodendron, Sympegma regelii Bge., Nitraria tangutorum Bobr., Potentilla fruticosa and Sabina chinensis (Linn.) Ant. seedlings and the decrement were greater under higher drought stress.
     Drought tolerances of Nitraria tangutorum Bobr.and H. ammodendron were higher than those of Sympegma regelii Bge, and Tamarix hohenackeri Bge., Potentilla fruticosa and Sabina chinensis (Linn.)Ant. were the lowest.
     The impact of drought stresses on net photosynthetic rate of Sympegma regelii Bge.was the strongest, followed by the impact of Nitraria tangutorum Bobr.and Tamarix hohenackeri Bge., and the impact of H, ammodendron was the weakest.
     Through the net photosynthetic rate—light response model comparison analysis of Tamarix hohenackeri Bge., H. ammodendron, Sympegma regelii Bge., Nitraria tangutorum Bobr. and Potentilla fruticosa, simulation rectangular hyperbolic correction model worked best.
     When six plants species were in the same water conditions (full of water), the leaf water potential of H. ammodendron was the lowest, followed by that of Nitraria tangutorum Bobr. The leaf water potentials of Sympegma regelii Bge.and Tamarix hohenackeri Bge.were in the medium, and those of Sabina chinensis (Linn.)Ant. and Potentilla fruticosa were the highest.
     (2) Discrimination results of drought tolerant mechanism of the six tree species
     According to the wilting index the decreasing order of six plants species in decreasing order was Sabina chinensis (Linn.)Ant.>Potentilla fruticosa>Sympegma regelii Bge.>Tamarix hohenackeri Bge.> Nitraria tangutorum Bobr.>H. ammodendron, which indicated the stronger drought tolerance of Nitraria tangutorum Bobr.than other plants. According to the water use efficiency the decreasing order of six plants species was H. ammodendron>Nitraria tangutorum Bobr.>Tamarix hohenackeri Bge.> Sympegma regelii Bge.> Potentilla fruticosa> Sabina chinensis (Linn.)Ant. According to the drought resistant charaeters in decreasing order was H. ammodendron>Nitraria tangutorum Bobr.>Tamarix hohenackeri Bge.>Sympegma regelii Bge.>Potentilla fruticosa>Sabina chinensis (Linn.)Ant.
     According to the discrimination results of leaf water potential and soil relative water of the six tree species, H. Ammodendron, Nitraria tangutorum Bobr., Sympegma regelii Bge., Tamarix hohenackeri Bge.and Potentilla fruticosa were all patience dehydration drought-resistant plants under low water potential, and Sabina chinensis (Linn.)Ant.was patience dehydration drought-resistant plants under sub-low water potential. According to the discrimination results of leaf water potential and soil water potential, the six tree species were all patience dehydration drought-resistant plants under low water potential.
     (3) Salt resistant physiology of the six main plantation tree species in Qaidam region
     The status of plant growth and development were all affected seriously by the salt soil environment. H. Ammodendron and Potentilla fruticosa were both salt damaged under severe salt stress in15days. The impact of salt stress on Nitraria tangutorum Bobr.and Tamarix hohenackeri Bge.were small. The inhibition on diameter and height growth in the same plant is more significant due to the severer salt stress. The inhibition of growth in Potentilla fruticosa is the most significant under the same treatment. The impact of salt stress on specific leaf weight in Nitraria tangutorum Bobr., H. Ammodendron and Tamarix hohenackeri Bge.were not significant. However, the specific leaf weight of Potentilla fruticosa declined significantly, which suggested the low salt tolerance. The salt tolerance of Nitraria tangutorum Bobr.and Tamarix hohenackeri Bge.were greater than that of H. Ammodendron.
     The photosynthesis of plants was affected by the salt stress. The net photosynthetic rate of four plants was all declined significantly under salt stress. The net photosynthetic rate of Nitraria tangutorum Bobr.declined slowly, and then stay steadily, which indicated that Nitraria tangutorum Bobr.seedlings adapted the salty environment gradually. The curve of net photosynthetic rate in Tamarix hohenackeri Bge. seedlings changed gently under different salt stress, and the decreases were the smallest compared with other plant seedlings. The net photosynthetic rate of Potentilla fruticosa declined dramatically, and the decreases were the greatest. The net photosynthetic rate of H. ammodendron declined significantly at600mmol·L-1NaCl compare with the reduction at100mmol·L-1NaCl. To sum up the changes of all parameters in different plant species, the salt tolence capacity of Tamarix hohenackeri Bge.was the best, followed by Nitraria tangutorum Bobr.. The Potentilla fruticosa was of the worst salt tolence capacity.
引文
[1]安玉艳,梁宗锁,韩蕊莲.黄土高原3种乡土灌木的水分利用与抗旱适应性[J].林业科学,2011,47(10):8-15.
    [2]白瑞琴,孙丽华,吕占江,等.不同砧木苹果树水势日变化的研究[J].内蒙古农业大学学报,2000,21(1):63-68.
    [3]曹雪丹,李文华,鲁周民,等.北缘地区枇杷春季光合特性研究[J].西北林学院学报2008,23(6):33-37.
    [4]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报,2003,21(2):177-182.
    [5]程维新,胡朝炳,张兴权.农田蒸发与作物耗水量研究[M].北京:气象出版杜,1994:42-73.
    [6]陈少瑜,郎南军,李吉跃,等.干旱胁迫下3树种苗木叶片相对含水量、质膜相对透性和脯氨酸含量的变化[J].西部林业科技,2004,33(3):30-33.
    [7]陈静,秦景,贺康宁,等.水分胁迫对银水牛果生长及光合气体交换参数的影响[J].西北植物学报,2009,29(8):1649-1655.
    [8]程林梅,李占林,高洪文.水分胁迫对白羊草光合生理特性的影响[J].中国农学通报,2004,20(6):231-233.
    [9]程林梅,张原根,阎继耀,等.干旱和复水对棉花叶片几种生理指标的影响[J].华北农学报,1995,10(4):82-85.
    [10]党宏忠,周泽福,赵雨森.祁连山水源区主要树种耐旱性研究[J].应用生态学报,2005,16(12):2241-2247.
    [11]董梅,秦景,贺康宁,等.银水牛果和沙棘幼苗在不同土壤水分条件下的光响应研究[J].水土保持通报,2011,31(1):81-86.
    [12]董学军,陈仲新,陈锦正.毛乌素沙地油松的水分关系参数随不同土壤基质的变化[J].植物生态学报,1999,23(5):385-392.
    [13]段爱国,张建国.光合作用光响应曲线模型选择及低光强属性界定[J].林业科学研究,2009,22(6):765-771.
    [14]段爱国,张建国,何彩云,等.干旱胁迫下金沙江干热河谷主要造林树种盆植苗的蒸腾耗水特性[J].林业科学研究,2008,21(4):436-445.
    [15]段爱旺,肖俊夫,张寄阳,等.控制交替沟灌中灌水控制下限对玉米叶片水分利用效率的影响[J].作物学报,1999,25(6):766-771.
    [16]方连玉,刘桂丰,王军,等.盐胁迫对盐松两种源光合日变化的影响[A]2010 First International Conference on Cellular, Molecular Biology, Biophysics and Bioengineering[C],2010, 129-133.
    [17]方良俊.海蓬子种子的发芽特性与贮存方法研究[J].种子,2005,24(5):33-35.
    [18]房玉林,惠竹梅,高邦牢,等.盐胁迫下葡萄光合特性的研究[J].土壤通报,2006,37(5):881-884.
    [19]冯岑,陈建华,吴际友,等.4个台湾桤木无性系光合特性研究[J].中国农学通报,2009,25(12):75-78.
    [20]付凤玲,李晚枕,潘光堂.模糊隶属法对玉米苗期耐旱性的拟合分析[J].干旱地区农业研究,2003(1):83-85.
    [21]高海峰.柽柳属植物水分状况的研究[J].植物生理学通讯,1988,2:20-24.
    [22]高涵,吴伟,刘秀萍,等.水分胁迫下几种冷季型草坪草抗旱机理研究[J].水土保持研究,2006,13(3):126-128.
    [23]高松,苏培玺,严巧娣.荒漠植物梭梭群体和叶片水平气体交换对不同土壤水分的响应[J].中国科学:生命科学,2011,41(3):226-237.
    [24]高照全,冯社章,王小伟.不同土壤类型下桃树水分运转动态的数学模拟[J].天津农业科学,2010,16(4):1-4.
    [25]葛体达,吕银燕,周广胜.玉米根、叶质膜透性和叶片水分对土壤干旱胁迫的反应[J].西北植物学报,2005,25(3):507-512.
    [26]龚元石,陆锦文, Huwe B华北平原主要农作物灌溉需水量的估算[J].北京农业大学学报,1993,19:82-91.
    [27]巩玉霞,贺康宁,朱艳艳,等.黄土半干旱区元宝枫叶片气体交换参数对土壤水分的响应[J].水土保持研究,2007,14(1):242-245.
    [28]郭慧,吕长平,郑智,等.园林植物抗旱性研究进展[J].安徽农学通报,2009,15(7):53-55.
    [29]郭连生,田有亮.运用PV技术对华北常见造林树种耐旱性评价的研究[J].内蒙古林学院学报,1998,20(3):1-8.
    [30]郭孟霞,毕华兴,刘鑫,等.树木蒸腾耗水研究进展[J].中国水土保持科学,2006,4(4):114-120.
    [31]郭书奎,赵可夫NaCl胁迫抑制幼苗光合作用的可能机理[J].植物学通报,2001,27(6):461-466.
    [32]郭志华,张宏达,李志安,等.鹅掌楸苗期光合特性的研究[J].生态学报,1999,19(2):164-169.
    [33]顾慰连,戴俊英,沈秀瑛,等.玉米不同生育时期的抗旱性[J].植物生理学通讯,1989(3):18-21.
    [34]顾振瑜,胡景江,文建雷,等.元宝枫对干旱适应性的研究[J].西北林学院学报,1999,14(2):1-6.
    [35]韩德儒,杨文斌,杨茂仁.干旱半干旱区沙地灌(乔)木种水分动态关系及其应用[M].北京:中国科学技术出报社,1996,1-7.
    [36]韩建秋,王秀峰,张志国.表土干旱对白三叶根系分布和根活力的影响[J].中国农学通报, 2007,23(3):458-461.
    [37]韩蕊莲,梁宗锁,邹厚远.在土壤不同干旱条件下沙棘耗水特性的初步研究[J].沙棘,1991,4:33-38.
    [38]韩亚琦,唐宇丹,张少英,等.盐胁迫抑制槲栎2变种光合作用的机理研究[J].西北植物学报,2007,27(3):583-587.
    [39]韩永伟,拓学森,高馨婷,等.阿拉善荒漠草原梭梭与白刺光合特征比较研究[J].草地学报,2010,18(3):314-319.
    [40]韩永伟,王堃,张汝民,等.吉兰泰地区退化梭梭蒸腾生态生理学特性[J].草地学报,2002,10(1):40-44.
    [41]贺庆棠,刘柞昌.森林的热量平衡[J].林业科学,1980,6(1):24-33.
    [42]何炎红,田有亮,叶冬梅,等.白刺地上生物量关系模型及其与叶面积关系的研究[J].中国沙漠,2005,25(4):541-546.
    [43]户桂敏,王文天,彭少麟.不同氮磷比下入侵种五爪金龙和本地种鸭脚木的竞争表现[J].生态环境学报,2009,18(4):1449-1454.
    [44]胡月楠,贺康宁,巩玉霞,等.内蒙古库布齐沙地白刺水势研究[J].水土保持研究,2007,14(4):100-104.
    [45]华春,周泉澄,王小平,等.外源GA3对盐胁迫下北美海蓬子种子萌发及幼苗生长的影响[J].南京师范大学学报,2007,30(1):82-87.
    [46]黄广远.盐胁迫对臭椿生长和生理的影响[D].南京林业大学,2012.
    [47]黄华,梁宗锁,韩蕊莲,等.干旱胁迫条件下油松幼苗生长及抗旱性的研究[J].西北林学院学报,2004,19(2):1-4.
    [48]黄丽华,陈训,崔炳芝.黄褐毛忍冬光合特征和水分利用效率日变化研究[J].贵州科学,2007,25(1):54-58.
    [49]惠红霞,许兴,李守明.盐胁迫抑制枸杞光合作用的可能机理[J].生态学杂志,2004,(1):59.
    [50]惠红霞,许兴,李守明.宁夏干旱地区盐胁迫下枸杞光合生理特性及耐盐性研究[J].中国农学通报,2002,5(18):29-34.
    [51]冀宪领,盖英萍,牟志美,等.干旱胁迫对桑树生理生化特性的影响[J].蚕业科学,2004,30(2):117-122.
    [52]贾彩凤,李艾莲.药用植物金荞麦的光合特性研究[J].中国中药杂志,2008,33(2):129-132.
    [53]贾桂梅NaCI胁迫下杨树3个无性系幼苗的生理生态特性研究[D].东北林业大学,2011.
    [54]蒋海月.八种灌木耐盐性研究和盐胁迫对三裂叶漆(Rhus trilobata)群体遗传结构的影响[D].河北:河北农业大学硕士论文,2010.
    [55]蒋进,王永增.几种旱生植物盆栽苗木的水分关系和抗旱性排序[J].干旱区造林与水分平衡的关系》课题论文选,1992,9(4):31-38.
    [56]姜晓丹,郭军战.不同果桑品种在干旱胁迫下的光合生理变化[J].蚕业科学,2012,38(1):18-24.
    [57]金红喜.西北干旱沙区四种主要造林灌木的蒸腾耗水研究[D].西北师范大学,2005.
    [58]巨关升,刘奉觉,郑世锴,等.稳态气孔计与其它3种方法蒸腾测值的比较研究[J].林业科学研究,2000,13(4):360-365.
    [59]巨关升,刘奉觉,郑世锴.选择树木蒸腾耗水测定方法的研究[J].林业科技通讯,1998,10:12-14.
    [60]鞠强,贡路,杨金龙,等.梭梭光合生理生态过程与干旱环境的相互关系[J].干旱区资源与环境,2005,19(4):201-204.
    [61]Kramer PJ著,汪振儒等译.树木生理专题讲演集.北京:中国林业出版社,1982,1-130.
    [62]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [63]冷平生,杨晓红,胡悦,等.5种园林树木的光合和蒸腾特性的研究[J].北京农学院学报,2000,15(4):13-18.
    [64]李翠芳,刘连涛,孙红春,等.外源NO对NaCl胁迫下棉苗主要形态和相关生理性状的影响[J].中国农业科学,2012,45(9):1864-1872.
    [65]李国泰.种园林树种光合作用特征与水分利用效率比较[J].林业科学研究,2002,15(3)291-296.
    [66]李海涛,陈灵芝.用于测定树干木质部蒸腾液流的热脉冲技术研究概况[J].植物学通报,1997,14(4):24-29.
    [67]李丽霞,梁宗锁,韩蕊莲.土壤干旱对沙棘苗木生长及水分利用的影响[J].西北植物学报,2002,22(2):296-302.
    [68]李吉跃.植物耐旱性及其机理.北京林业大学学报,1991,13(3):92-100
    [69]李吉跃,张建国.北方主要造林树种耐旱机理及其分类模型的研究(Ⅰ):苗木叶水势与土壤含水量的关系及分类[J].北京林业大学学报,1993,15(3):1-11.
    [70]李吉跃,周平,招礼军.干旱胁迫对苗木蒸腾耗水的影响[J].生态学报,2002,22(9):1380-1386.
    [71]李良厚,李吉跃,付祥建,等.黑樱桃与山樱桃幼苗光合作用的比较研究[J].林业科学研究,2007,20(1):130-134.
    [72]李清河,江泽平.白刺研究[M].北京:中国林业出版社,2011,47-53.
    [73]李书义.浅析水分代谢对树木生长和生理代谢的影响[J].内蒙古农业科技,2009(6):74-75.
    [74]李伟成,王树东,钟哲科,等.几种经验模型在丛生竹光响应曲线拟合中的应用[J].竹子研究汇刊,2009,28(3):20-24.
    [75]李卫国,杨吉华,冀宪领,等.不同桑树品种水分生理特性的研究[J].蚕业科学,2003,29(1):24-27.
    [76]李文华,刘广权,马松涛,等.干旱胁迫对苗木蒸腾耗水和生长的影响[J].西北农林科技大 学学报(自然科学版),2004,32(1):61-65.
    [77]李熙萌,卢之遥,马帅,等.沙生植物差巴嘎蒿光合特性及其模拟研究[J].草叶学报,2011,20(6):293-298.
    [78]李小刚,张仁陟.甘肃陇东粘黑垆土区冬小麦土壤水分利用特征[J].土壤通报,2000,31(1):17-20.
    [79]李小磊,张光灿,周泽福,等.黄土丘陵区不同土壤水分下核桃叶片水分利用效率的光响应[J].中国水土保持科学,2005,3(1):43-47.
    [80]李晓燕,宋占午,董志贤.植物的盐胁迫生理[J].西北师范大学学报:自然科学版,2004,40(3):106-111.
    [81]李玉花,任坚毅,刘晓,等.独叶草的光合生理生态特性[J].生态学杂志,2007,26(7):1038-1042.
    [82]梁超,王超,杨秀风,等.‘德抗961’小麦耐盐生理特性研究[J].西北植物学报,2006,26(10):2075-2082.
    [83]廖建雄,史红文,鲍大川,等.武汉市51种园林植物的气体交换特性[J].植物生态学报,2010,34(9):1058-1065.
    [84]林栖风.耐盐植物研究[M].北京科学出版社,2004.
    [85]刘春华,张文淑.六十九个苜蓿品种耐盐性及其两个耐盐生理指标的研究[J].草业科学,1993,10(6):16-22.
    [86]刘奉觉,Edwards WRN.杨树树干液流时空动态研究[J].林业科学研究,1993,6(4):368372.
    [87]刘奉觉,郑世锴,巨关升.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997,33(2):117-126
    [88]刘奉觉,郑世锴,巨关升,等.树木蒸腾耗水测算技术的比较研究[J].林业科学,2007,33(2):117-126.
    [89]刘奉觉,郑世锴,臧道群.杨树人工幼林的蒸腾变异与蒸腾耗水量估算方法的研究.林业科学,1987,23(营林专辑):35-44.
    [90]刘广全,赵士洞,王浩,等.锐齿栎林个体光合器官生长与营养季节动态[J].生态学报,2001,21(6):883-889.
    [91]刘家栋,翟兴礼,王东平.植物抗盐机理的研究[J].农业与技术,2001,21(1):26-29.
    [92]刘金祥,王铭铭.淹水胁迫对香根草生长及光合生理的影响[J].草业科学,2005,22(7):7173.
    [93]刘静.黄土高寒区三种灌木树种基于SPAC系统的耐旱性研究[D].北京:北京林业大学,2010.
    [94]刘建锋,史胜青,江泽平.几种引进柏树的抗旱性评价[J].西北林学院学报,2011,26(1):13-17.
    [95]刘建立,程丽莉,余新晓.乔木蒸腾耗水的影响因素及研究进展[J].世界林业研究,2009,22(4):34-40.
    [96]刘贤德,李晓辉,李文华,等.玉米自交系苗期耐旱性差异分析[J].玉米科学,2004,12(3):63-65.
    [97]刘兴亮.盐碱胁迫对白刺生理生化特性研究[D].黑龙江:东北农业大学硕士论文,2010.
    [98]刘寅,贾黎明,张博,等.滨海盐碱地绿化植物筛选及耐盐性评价研究进展[J].西南林业大学学报,2011,31(3):80-85.
    [99]刘玉燕,王艳荣,杨迎春.半干旱地区草坪草和主要杂草水势日变化特征分析[J].内蒙古大学学报(自然科学版),2003,34(3):308-311.
    [100]陆佩玲,于强,罗毅,等.冬小麦光合作用的光响应曲线的拟合[J].中国农业气象,2011,22(2),12-14.
    [101]罗青红,李志军.树木水分生理生态特性及抗旱性研究进展[J].塔里木大学学报,2005,17(2):29-33.
    [102]罗树伟,郭春会,张国庆,等.沙地植物长柄扁桃光合特性研究[J].2010,55(1):125-132.
    [103]罗树伟,郭春会,张国庆.神木与杨凌地区长柄扁桃光合与生物学特性比较[J].干旱地区农业研究,2009,28(5):196-202.
    [104]吕建林,陈如凯,张木清,等.甘蔗净光合速率、叶绿素和比叶重的季节变化[J].福建农业大学学报,1998,27(3):285-290.
    [105]马履一,王华田.油松边材液流时空变化及其影响因子的研究[J].北京林业大学学报,2002,23(4):23-37.
    [106]马履一,王华田,林平.北京地区几个树种耗水性比较的研究[J].北京林业大学学报,2003,25(2):1-7.
    [107]马琳.NaC1胁迫对牧草种子萌发与幼苗生理生化的影响及耐盐性评价[D].山东:山东农业大学硕士论文,2010.
    [108]马玲,赵平,饶兴权,等.乔木蒸腾作用的主要测定方法[J].生态学杂志,2005,24(1):8896.
    [109]马健,王凯,刘庆华.NaCl胁迫对葛藤生长和生理指标的影响[J].江苏农业科学,2009,(2):167-169.
    [110]马文月.植物抗盐性研究进展[J].农业与技术,2004,24(4):95-99.
    [111]马小英,焦根林.2种木莲光合生理特性研究及光响应校正模型的应用[J].安徽农业科学,2009,50(29):14488-14491.
    [112]满荣洲,董世仁,郭景唐.华北油松人工林蒸腾的研究[J].北京林业大学学报,1986,8(2):1-7.
    [113]莫兴国,刘苏峡,于沪宁,等.冬小麦能量平衡及蒸散分配的季节变化分析[J].地理学报,1997,52(6):536-542.
    [114]木合塔尔·扎热,齐曼·尤努斯,如鲜·木沙.水分胁迫对尖果沙枣幼苗生物量及某些生理特性的影响[J].新疆农业大学学报,2009,32(2):14-18.
    [115]宁虎森,吉小敏,高明月,等.梭梭和多花柽柳幼苗光合特性对不同水分梯度的响应[J].安徽农业科学,2011,39(13):7744-7747.
    [116]潘洪杰,王晓燕,许革华,等.水分胁迫对树木生长和生理代谢的影响[J].内蒙古农业科技,2008,(4):66-67.
    [117]潘瑞炽.植物生理学[M].6版.北京:高等教育出版社,2008.
    [118]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1997.
    [119]裴英杰,郑家玲,庾红,等.用于玉米品种抗旱性鉴定的生理生化指标[J].华北农学报,1992,7(1):31-35.
    [120]祁云枝,杜勇军.干旱胁迫下黄瓜及蚕豆叶片膜透性改变及其机理的初步研究[J].陕西农业科学,1997(4):6-7.
    [121]秦景.西部黄土高寒区主要造林树种抗旱耐盐生理及耗水特性研究[D].北京:北京林业大学,2011.
    [122]秦景,贺康宁,朱艳艳.库布齐沙漠几种常见灌木光合生理特征与土壤含水量的关系[J].北京林业大学学报,2009a,31(1):37-43.
    [123]秦景,董雯怡,贺康宁,等.盐胁迫对沙棘幼苗生长与光合生理特征的影响[J].生态环境学报,2009b,18(3):1031-1036.
    [124]秦景,贺康宁,谭国栋,等.NaCl胁迫对沙棘和银水牛果幼苗生长及光合特性的影响[J].应用生态学报,2009c,20(4):791-797.
    [125]任安芝,高玉葆,粱宇,等.白草和赖草无性系生长对干旱胁迫的反应[J].中国沙漠,1999(19):31-34.
    [126]任丽花,王义祥,翁伯琦,等.土壤水分胁迫对圆叶决明叶片含水量和光合特性的影响[J].厦门大学学报(自然科学版),2005,44(增刊:29-31.
    [127]山仑,邹绮,王学臣.作物高产高效生理学研究进展[M].科学出版社,1996,258-268.
    [128]时丽冉,赵炳春,白丽荣.地被菊抗盐性研究[J].中国农学通报,2010,26(12):139-142.
    [129]石建宁,郭玉琴,邵锋,等.4种旱生植物幼苗萎蔫系数的研究[J].宁夏农林科技,2012,53(7):13-14.
    [130]孙方行,孙明高.盐胁迫对臭椿的生长与光合的影响[J].内蒙古农业科技,2009,(5):3536.
    [131]苏俊,姚延梼.干旱胁迫对毛白杨幼苗的生理影响[J].天津农业科学,2011,17(3):18-20.
    [132]孙建,饶月亮,乐美旺,等.干旱胁迫对芝麻生长与产量性状的影响及其抗旱性综合评价[J].中国油料作物学报,2010,32(4):525-533.
    [133]苏建平,康博文.我国树木蒸腾耗水研究进展[J].水土保持研究,2004,11(2):177-186.
    [134]孙景波,孙广玉,刘晓东.盐胁迫对桑树幼苗生长、叶片水分状况和离子分布的影响[J].应用生态学报,2009,720(3):543-548.
    [135]孙龙,王传宽,杨国亭,等.应用热扩散技术对红松人工林树干液流通量的研究[J].林业科学,2007,43(11):8-14.
    [136]孙鹏森,马履一.水源保护树种耗水特性研究与应用[M].北京:中国环境科学出版社,2002:4-16:68-93.
    [137]孙鹏森,马李一,马履一.油松、刺槐林潜在耗水量的预测及其与造林密度的关系[J].北京林业大学学报,2001,23(2):1-6.
    [138]孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1-6.
    [139]孙明亮,石诰来.山东青石山区主要经济树种的抗旱性[J].山东农业大学学报,1999,30(4):336-344.
    [140]田晶会.黄土半干旱区水土保持林主要树种耗水特性研究[D].北京:北京林业大学,2005:1-34.
    [141]田晶会,贺康宁,王百田,等.黄土半干旱区侧柏气体交换和水分利用效率日变化研究[J].北京林业大学学报,2005,27(1):42-46.
    [142]王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策.1997,14(增刊):25-30.
    [143]王翠,王传宽,孙慧珍.移栽自不同纬度的兴安落叶松的树干液流特征[J].生态学报,2008,28(1):136-144.
    [144]王俊杰,云锦凤,吕世杰.黄花苜蓿耐盐生理特性的初步研究[J].干旱区资源与环境,2008,22(12):158-163.
    [145]王克勤,王斌瑞.土壤水分对金矮生苹果光合速率的影响[J].生态学报,2002,22(2):206214.
    [146]王海珍,梁宗锁,韩蕊莲,等.土壤干旱对黄土高原乡土树种水分代谢与渗透调节物质的影响[J].西北植物学报,2004,24(10):1822-1827.
    [147]王华田.北京市水源保护林区主要树种耗水性的研究[D].北京林业大学博士论文.2002.
    [148]王华田.林木耗水性研究综述[J].世界林业研究,2003,16(2):23-27.
    [149]王进鑫,黄宝龙,王明春,等.不同供水条件下侧柏和刺槐幼树的蒸腾耗水与土壤水分应力订正[J].应用生态学报,2005,16(3):419-425.
    [150]王荣荣,夏江宝,杨吉华,等.贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较[J].植物生态学报,2013,37(2):111-121.
    [151]王瑞辉,马履一.北京15种园林树木耗水性的比较研究[J].中南林业科技大学学报,2009,29(4):16-20.
    [152]王素平,郭世荣,李璟,等.盐胁迫对不同基因型黄瓜幼苗生长的影响[J].江苏农业科学, 2006,(2):76-79.
    [153]王万里.植物对水分胁迫的生理响应[J].植物生理学通讯,1981,(5):31-40.
    [154]王霞,侯平,尹林克,等.水分胁迫对柽柳组织含水量和膜透性的影响[J].干旱区研究,1999,16(2):12-15.
    [155]王玉涛,李吉跃,张雪海,等.干旱胁迫对不同种源沙柳苗木水势和水分利用效率的影响[J].广东林业科技,2008,24(1):26-32.
    [156]王翼龙,张硕新,雷瑞德,等.秦岭火地塘林区锐齿栎光合、蒸腾特性[J].西北林学院学报,2003,18(4):9-12.
    [157]王颖.林木蒸腾耗水研究综述[J].河北林果研究,2007,22(1):39-43.
    [158]王英,金秀兰.水分胁迫与果树的生理生化变化[J].黄冈职业技术学院学报,2004,6(1):67-70.
    [159]王英姿,洪伟,吴承祯,等.灵石山米槠林优势种群不同叶龄叶属性的研究[J].福建林学院学报,2009,29(3):203-209.
    [160]王安志,裴铁璠.森林蒸散测算方法研究进展与展望[J].应用生态学报,2001,12(6):933-937.
    [161]魏天兴,朱金兆,张学培.林分蒸散耗水量测定方法述评[J].北京林业大学学报,1999,(3):85-91.
    [162]韦小丽.喀斯特地区3个榆科树种整体抗旱性研究[D].南京林业大学2005届博士学位论文.2008.
    [163]肖春旺,董鸣,周广胜,等.鄂尔多斯高原沙柳幼苗对模拟降水量变化的响应[J].生态学报,2001,21(1):171-176.
    [164]肖春旺,周广胜,赵景柱.不同水分条件对毛乌素沙地油蒿幼苗生长和形态的影响[J].生态学报,2001,21(12):2136-2140.
    [165]肖文发,徐德应,刘世荣,等.杉木人工林针叶光合与蒸腾作用的时空特征[J].林业科学,2002,38(5):38-46.
    [166]谢贤群,吴凯.麦田蒸腾需水量的计算模式[J].地理学报,1997,52(6):528-535.
    [167]熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应[J].林业科学,2003,39(2):1-7.
    [168]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    [169]许大全.光合作用效率[M].上海:上海科学技术出版社,2002:2-53.
    [170]徐德应.森林的蒸散:方法与实践[A].中国林学会主编森林水文学术讨论会文集[C].北京:测绘出版社,1989:177-182.
    [171]许皓,李彦.3种荒漠灌木的用水策略及相关的叶片生理表现[J].西北植物学报,2005,25(7):1309-1316.
    [172]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4): 379-387.
    [173]严昌荣,Dow ney A,韩兴国,等.北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究[J].生态学报,1999,19(6):793-797.
    [174]杨凤云.土壤水分胁迫对梨树生理特性的影响.安徽农业,2004,(6):11-12.
    [175]杨建伟,韩蕊莲,魏宇昆,等.不同土壤水分状况对杨树、沙棘水分关系及生长的影响[J].西北植物学报,2002,22(3):579-586.
    [176]杨建伟,梁宗锁,韩蕊莲,等.不同土壤水分下刺槐和油松的生理特征[J].植物资源与环境学报,2004,13(3):12-17.
    [177]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845.
    [178]杨丽涛,陈超军,李杨璐,等.甘蔗叶片气体交换及对光的响应和水势的日变化[J].甘蔗,2002,9(2):1-9.
    [179]杨敏生,裴保华,张树常.树木抗旱性研究进展[J].河北林果研究,1997,12(2):87-93.
    [180]杨素铀.干旱的生理影响[J].甘肃农业科技,1982,(7):11-13.
    [181]杨鑫光,傅华,张洪荣,等.水分胁迫对霸王苗期叶水势和生物量的影响[J].草叶学报,2006,15(2):37-41.
    [182]杨燕,刘庆,林波,等.不同施水量对云杉幼苗生长和生理生态特征的影响[J].生态学报,2005,25(9):2152-2158.
    [183]杨永清,张学江.不同生态型喜旱莲子草对干旱的生理生态反应[J].湖北农业科学,2010,49(8):1890-1893.
    [184]杨振兴,周怀平,关春林,等.作物对水分胁迫的生理响应研究进展[J].山西农业科学,2011,39(11):1220-1222,1238.
    [185]叶子飘.光响应模型在超级杂交稻组合-Ⅱ优86中的应用[J].生态学杂志,2007,26(8):1323-1326.
    [186]叶子飘,高峻.丹参羧化效率在其CO2补偿点附近的变化[J].西北农林科技大学学报:自然科学版,2008,36(5):160-164.
    [187]叶子飘,高峻.光响应和CO2响应新模型在丹参中的应用[J].西北农林科技大学学报:自然科学版,2009,37(1):129-134.
    [188]叶子飘,李进省.光合作用对光响应的直角双曲线修正模型和非直角双曲线模型的对比研究[J].井冈山大学学报:自然科学版,2010,31(3):38-44.
    [189]叶子飘,王健林.植物光合-光响应模型的比较分析[J].井冈山学院学报:自然科学版,2009,30(4):9-13.
    [190]叶子飘,于强.光合作用光响应模型的比较[J].植物生态学报,2008,32(6):1356-1361.
    [191]叶子飘,于强.一个光合作用光响应新模型与传统模型的比较.沈阳农业大学学报,2007,38(6):771-775.
    [192]余玲,王彦荣,Garnett Trevor,等.紫花苜蓿不同品种对干旱胁迫的生理响应[J].草业学 报,2006,15(3):75-85.
    [193]余书文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998,366-389.
    [194]于艳梅,徐俊增,彭世彰,等.不同水分条件下水稻光合作用的光响应模型的比较[J].节水灌溉,2012,(10):30-33.
    [195]于占辉,陈云明,杜盛.乔木蒸腾耗水量研究方法评述与展望[J].水土保持研究,2009,16(3):281-285.
    [196]曾小美,袁琳,沈允钢.拟南芥连体和离体叶片光合作用的光响应[J].植物生理学通讯,2002,38(1):25-26.
    [197]占东霞,庄丽,王仲科,等.准噶尔盆地南缘干旱条件下胡杨、梭梭和柽柳水势对比研究[J].新疆农业科学,2011,48(3):544-550
    [198]张川红,尹伟伦,沈漫.盐胁迫对国槐和中林46杨幼苗膜类脂的影响[J].北京林业大学学报,2002,24(5/6):89-95.
    [199]张国军.盐胁迫对4种景天幼苗水势、荧光效率、丙二醛的影响[J].农业科技与装备,2012,7:3-6.
    [200]张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究[M].北京:中国林业出版社,2000:12-26.
    [201]张剑锋,张旭东.盐分胁迫对杨树苗期生长和土壤酶活性的影响[J].应用生态学报,2005,16(3):426-430.
    [202]张立斌.盐生植物的耐盐能力及其对滨海盐渍土的改良效果研究[D].山东农业大学,2005.
    [203]张力功,刘国栋,刘更另.植物营养与作物抗旱性[J].植物学通报,2001,18(1):64-69.
    [204]张林,罗天祥.植物叶寿命及其相关叶性状的生态学研究进展[J].植物生态学,2004,28(6):844-852.
    [205]张梅花,张建生,李云霞.干旱胁迫下5种园林地被植物叶片保水力、质膜相对透性和脯氨酸含量的变化[J].甘肃科技,2010,26(10):145-148.
    [206]张弥,吴家兵,关德新,等.长白山阔叶红松林主要树种光合作用的光响应曲线[J].应用生态学报,2006,17(9):1575-1578.
    [207]张淑勇,周泽福,夏江宝,等.不同土壤水分条件下小叶扶芳藤叶片光合作用对光的响应[J].西北植物学报,2007,27(12):2514-2521.
    [208]张维强,沈秀瑛.水分胁迫和复水对玉米光合速率的影响[J].华北农学报,1994,9(3):44-47.
    [209]张卫强,贺康宁,邓军涛,等.稳态气孔计法和整株称重法测定蒸腾速率的比较研究[J].水土保持研究,2007,14(6):192-194.
    [210]张卫强,贺康宁,田晶会,等.不同土壤水分下侧柏苗木光合特性和水分利用效率的研究[J].土保持研究,2006,13(6):44-47.
    [211]张小全,徐德应.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化[J].林业科学,2000,36(3):19-26.
    [212]张笑颜,朱立新,贾克功.5种核果类果树的耐盐性与抗盐性分析[J].北京农学院学报,2008,23(2):19-23.
    [213]张益源,贺康宁,董梅,等.水分胁迫对银水牛果和沙棘叶水势日过程及水分利用效率的影响[J].中国水土保持,2011,(6):22-25.
    [214]张云吉,隆惠敏,谢恒星.应用热平衡技术测量龙爪槐液流的试验研究[J].安徽农业科学,2006,34(17):4229-4232.
    [215]张志山,张小由,谭会娟,等.热平衡技术与气孔计法测定沙生植物蒸腾[J].北京林业大学学报,2007,29(1):61-66.
    [216]张中峰,黄玉清,莫凌,等.岩溶区4种石山植物光合作用的光响应[J].西北农学院学报,2009,24(1):44-48.
    [217]曾凡江,李向义,张希明,等.策勒绿洲多枝柽柳灌溉前后水分生理指标变化的初步研究[J].应用生态学报,2002b,13(7):849-853.
    [218]曾凡江,张希明,李小明.柽柳的水分生理特性研究进展[J].应用生态学报,2002a,13(5):611-614.
    [219]赵丹华.盐胁迫下盐芥和拟南芥生理响应的研究[D].中央民族大学,2008.
    [220]招礼军,李吉跃,于界芬,等.干旱胁迫对苗木蒸腾耗水日变化的影响[J].北京林业大学学报,2003,25(3):42-47.
    [221]赵可夫等.对小麦幼苗降低盐害效应的研究[J].植物学报,1993,35(1):51-56.
    [222]赵可夫,李军.盐浓度对3种单子叶盐生植物渗透调节以及在渗透调节中的影响[J].植物学报,1999,41(12):1287-1291.
    [223]赵萍.宁夏毛乌素沙地SPAC系统水分运移特征的研究[D].北京:北京林业大学,2004:25-39.
    [224]赵雅静,翁伯琦,王义祥,等.植物对干旱胁迫的生理生态响应及其研究进展[J].福建稻麦科技,2009,27(2):45-50.
    [225]郑怀舟,朱锦懋,魏霞,等.5种热动力学方法在树干液流研究中的应用评述[J].福建师范大学学报(自然科学版),2007,23(4):119-123.
    [226]郑青松,刘兆普,刘友良,等.盐和水分胁迫对海蓬子、芦荟、向日葵幼苗生长及其离子吸收分配的效应[J].南京农业大学学报,2004,27(2):16-20.
    [227]郑婷婷,李生宇,靳正忠,等.4种固沙植物在塔克拉玛干沙漠腹地的水势特征[J].西北林学院学报.2011,26(3):21-25.
    [228]周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报,2002,24(5):50-55.
    [229]周晓新,张建军,李轶涛.黄土高原主要水土保持树种的蒸腾特性[J].中国水土保持科学,2009,7(4):44-48.
    [230]朱俊凤.西部大开发生态环境建设的重大举措—谈退耕还林(草)和以粮换林换草[C].中国 生态经济学会第五届会员代表大会暨全国生态建设研讨会论文集,2000.
    [231]朱新广,张其德.NaCl对光合作用影响的研究进展[J].植物学通报,1999,16(4):332-338.
    [232]朱艳艳,贺康宁,唐道锋,等.不同土壤水分条件下白榆的光响应研究[J].水土保持研究,2007,14(2):92-94.
    [233]朱永宁,张玉书,纪瑞鹏,等.干旱胁迫下3种玉米光响应曲线模型的比较[J].沈阳农业大学学报,2012,43(1):3-7.
    [234]朱振贤.几种主要造林树种盐胁迫响应及耐盐机理研究[D].南京:南京林业大学硕士论文,2007.
    [235]翟学昌,彭丽.植物水分胁迫研究进展[J].科技信息,2008,36:351-352.
    [236]Alshammary S F, Qian Y L, Wallner S J. Growth response of four turfgrass species to salinity[J]. Agric. Water Manage,2004,66:97-111.
    [237]Anfdillo. Applications of a thermal imaging technique in the study of the ascent of sap in woody species. Plant Cell and Environment,1993,16:997-1001
    [238]Baker J M, Vanbavel C H M. Measurement of mass flow of water in the stems of herbaceous plants [J]. Plant cell and environment,1987,10(9):777-782.
    [239]Barathi P, Sundar D, Ramachandra Reddy A. Changes in mulberry leaf metabolism in response to water stress [J]. Biologia Plantarum,2001,44(1):83-87.
    [240]Bastias E I, Gonzalez-Moro M B, Gonzalez-Murua, et al. amylacea from the Lluta Valley (Arica-Chile) tolerates salinity stress when high levels of boron are available [J]. Plant Soil.,2004 267:73-84.
    [241]Bernstein N, Silk W K, Lauchli A. Growth and development of sorghum leaves under conditions of NaCl stress [J]. Planta,1993,191:433-439.
    [242]Bergmann I, Geiss-Brunschweiger U, Hagemann M, et al. Salinity tolerance of the chlorophyll b-synthesizing cyanobacterium Prochlorothrix hollandica strain SAG 10.89[J]. Microb. Ecol,2008, 55:685-696.
    [243]Blackburn W H, Knight R W, Schuster J L. Saltcedar influence on sedimentation in the Brazos River [J]. J Soil Water Conserv,1982,37:298-301.
    [244]Busch D.E., Smith S D. Effects of fire on water and salinity relations of riparian woody taxa [J]. Oecologia,1993,94:186-194.
    [245]Boast C W, Robertson T M. A"micro-lysimeter" method for determining evaporation from bare soil:description and laboratory evaluation [J]. Soil Science of American Journal,1982,46:689-696.
    [246]Boast C.W. Evaporation from bare soil measured with high spatial resolution [J]. Agronomy, 1986,9(1):899-900.
    [247]Boucher J F, Munson A D, Bernier P Y. Foliar absorption of dew influences shoot water potential and root growth in Pinusst robus seedlings[J]. Tree Physiol,1995,15:819-823.
    [248]Boyer J S. Plant productivity and environment [J]. Science,1982,218:443-448.
    [249]Breda N, Huc R, Granier A, et al. Temperate forest trees and stands under severe drought:a review of ecophysiological responses, adaptation processes and long-term consequences [J]. Ann For Sci.,2006,63:625-644.
    [250]Brugnoli E, Bjorkman O. Growth of cotton under continuous salinity stress:influence on allocation patem, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy [J]. Planta,1992,187:335-345.
    [251]Cermak J, Kucera J, Nadezhdina N. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands [J]. Trees-structure and function,2004,18(5):529-546.
    [252]Chaves M M, Pereira J S, Maroco J, et al. How plants cope with water stress in the field [J]. Photosynthesis and growth. Ann Bot.,2002,89:907-916.
    [253]Chen Z Y, Peng Z S, Yang J, et al. A mathematical model for describing light-response curves in Nicotiana tabacum L.[J]. Photosynthetica,2011,49:467-471.
    [254]Denmead O T, Dunin F X, Wong S C, et al. Measuring water use efficiency of eucalypt trees with chambers and micrometeorological techniques [J]. Journal Hydrology,1993,150:649-664.
    [255]Diawara A, Loustau D, Berbigier P. Comparison of two methds for estimating the evaporation of a Pinus pi naster (Ait) stand:Sap flow and energy balance with sensible heat flux measurements by an eddy covariance method. A gric For Meteorol,1991,54:49-66.
    [256]Dionisio-Sese M L, Tobita S. Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance [J]. Journal of Plant Physiology,2000,157:54-58.
    [257]Dorothea B. Drought and salt tolerance in plants [J]. Critical Reviews in Plant Sciences,2005,24: 23-58.
    [258]Donovana L A. Predawn disequilibrium between plant and soil water potentials in two cold2desert shrubs[J]. Oecologia,1999,120:209-217.
    [259]Donovan L A, Grise D J, West J B, et al. Predawn disequilibrium between plant and soil water potentials in two cold desert Shrubs [J]. Oecologia,1999,120:209-217.
    [260]Edwards W R N, Becker P, e ermak J. A unified nomenclature for sap flow measurements [J]. Tree Physiology,1996,17(1):65-67.
    [261]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Ann. Rev. Physiol, 1982,33:317-345.
    [262]Farquhar G D, Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species [J]. Planta,1980,149(1):78-90.
    [263]Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants:stomatal and non-stomatal limitations revisited [J]. Ann Bot,2002,89:183-189.
    [264]Flexas J, Ribas-Carbo M, Bota J, et al.Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration [J]. New Phytol,2006,172:73-82.
    [265]Flowers T J, Yeo A R. Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.) varieties [J]. New Phytologist,1981,88:363-373.
    [266]Fritschen L J, Cox L, Kinerson R. A 28-meter Douglas-fir in a weighing lysimeter [J]. For. Sci, 1973,19:256-261.
    [267]Fu A H, Chen Y N, Li W H, et al. Research advances on plant water potential under drought and salt stress [J]. Journal of Desert Research,2005,25(5):744-749.
    [268]Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurement [J]. Tree Physiology,1987,3:309-319
    [269]Granier A, Anfodillo T, Sabat ti M, et al. Axial and radial water flow in the trunks of oak trees:a quantitative and qualitative analysis [J]. Tree Physiology,1994,14(12):1383-1396.
    [270]Granier A. A new method of sap flow measurement in tree stems [J]. Annales des Sciences Forestieres,1985,42(2):193-200.
    [271]Gamier E. Growth analysis of cogeneric annual and perennial grass species [J]. Journal of Ecology,1992,80:665-675.
    [272]Grassi G, Magnani F. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ., 2005,28:834-849.
    [273]Gratani L, Crescente M F, Fabrini G, et al. Growth pattern of Bidens cernua L.:relationships between relative growth rate and its physiological and morphological components [J]. Photosynthetica,2008,46:179-184.
    [274]Grebet P, Cuenca R H. History of lysimeter design and effects of environmental disturbancesfC]. Allen R G, Howell T A, Pruitt W O, et al. Proceeding of the International Symposium on Lysimetry, July 23-25, Honolulu, Hawaiian Island, USA:New York,1991:10-18.
    [275]Greenwood E A N, Beresford J D. Evaporation from vegetation in landscapes developing secondary salinity using the ventilated-chamber technique:I. Comparative transpiration from juvenile Eucalyptus above saline groundwater seeps [J]. Journal of Hydrology,1979,42(3-4):369-382.
    [276]Gummuluru S, Hobbs S L A, Jana S. Physiological responses of drought tolerant and drought susceptible durum wheat genotypes [J]. Photosynthetica,1998,23:479-485.
    [277]Guo W H, Li B, Huang Y M, et al. Effeets of different water stress on ecological characteristics of Hippophae rhamnoides seedlings [J]. Acta Bot Sin,2003,45(10):1238-1244.
    [278]Hardikar S A, Pandey A N. Growth,water status, and nutrient accumulation of seedlings of Tamarindus indica Linn, in response to soil salinity [J]. Communications in Soil Science and Plant Analysis,2011,42:1675-1691.
    [279]Heidari-Sharifabada H, Mirzaie-Nodoushan, H.:Salinity-induced growth and some metabolic changes in three Salsola species[J]. J. Arid Environ,2006,67:715-720.
    [280]Hsiao T C. Plant responses to water stress. A nn Rev Plant Physiol,1973,24:519-570.
    [281]Huber B. Observation and measurements of sap flow in plant [J]. Berichte der Deutscher Gesellschaft,1932,50:89-109.
    [282]Huber B, Schmidt E. A compensation method for thermoelectric measurement of slow sap flow [J]. Berichte der Deutschen Gesellschaft,1937,55:514-529.
    [283]Ibarra C J, Villaneueva V C, Molino G J, et al. Proline accumulation as a symptom of drought stress in maize:A tissue differentiation requirement [J]. Exp Bot.,1988,39:889-897.
    [284]Janacek J. Stomat allimit ation of photosyn thes is as affected by water stressand CO2 concent rat ion [J].Photos ynthet ica,1997,34(3):473-476.
    [285]Jiang G M, He W M. A quick new method for determining light response curves of photosynthesis under field light conditions [J]. Chinese Bulletin of Botany,1999,16(6):712-718.
    [286]Jones M M, N G Turner & C B Osmond. The physiology and biochenistry of drought resistance in plants (Paleg, L G & D. Aspinall eds.) Sydney:Academic Press,1981,15-37.
    [287]Jordan C F, Kline J R. Transpiration of trees in a tropical rainforest. J. Appl. Ecol.,1977,14:853-860.
    [288]Katerji N, van Hoorn J W, Hamdy A, et al. Effect of salinity on water stress, growth, and yield of maize and sunflower [J]. Agricultural Water Management,1996,30(3):237-249.
    [289]Khan M A, Ungar I A, Showalter A M. The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk [J]. J. Arid Environ, 2000,1:73-84.
    [290]Khasa P D, Hambling B, Kernaghan G, et al. Genetic variability in salt tolerance of selected boreal woody seedlings [J]. Forest Ecology and Management,2002,165:257-269.
    [291]Kline J R, Mantin J R, Jordan C F, et al. Measurement of transpiration in tropical trees using tritiated water. Ecology,1970,51:1039-1073.
    [292]Kline J R, Reed K L, Waring R H, et al. Field measurement of transpiration in Douglas-fir[J]. Journal of Applied Ecology,1976,13(1):273-283.
    [293]Knight D H, Fahey T J, Running S W, et al. Transpiration from 100-year-old lodgepole pine forests estimated with whole-tree potometers [J]. Ecology,1981,62(3):717-726.
    [294]Kozlowski T T, Pallardy S G. Physiology of woody plants [M]. New York:Academic Press.1997.
    [295]Kramer PJ. Water relations among plant [M]. New York:Academic Press,1982:6-9.
    [296]Ladefoged K. A method for measuring the water consumption of larger intact trees [J]. Physiologia Plantarum,1960,13(4):648-658.
    [297]Lambers H, Poorter H. Inherent variation in growth rate between higher plants:a search for physiological causes and ecological consequences [J]. A dvances in Ecological Research,1992,23: 187-261.
    [298]Larcher W. Physiological plant ecology 2nded [J]. New York:Spinger-verlag,1980:303-304.
    [299]Laroher W.Physiological plant ecology [M]. Springer-Verlag, Berlin and New York,1980,330.
    [300]Lawlor D W. Limitation to photosynthesis in water stress leaves stomatavs metaboblism and the role of ATP[J].A I IBa,2002,89:1-15.
    [301]Lee G, Carrow R N, Dunca R R. Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes [J]. Plant Sci,2004,166:1417-1425.
    [302]Leverenz J W, Jarvis P G. Photosynthesis in Sitka spruce VI. The effects of light flux density and direction on the rate of net photosynthesis and the stomata conductance of needles [J]. Journal of Applied Ecology,1979,16:919-932.
    [303]Lewis J D, Olszyk D, Tingey D T. Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO2 and temperature [J]. Tree Physiology, 1996,19:243-252.
    [304]Leyton L. Continuous recording of sap flow rates in tree stems[R]. Iufro Meetings,1967, 240-249.
    [305]Liu J G, He Y Q, Chen C Q, et al. Comparisons of water potential among four kind crops of spring and summer in the uplandred soil [J]. Chinese Journal of Soil Science,2007,38(5):863-866.
    [306]Li C, Berninger F, Koskela J, et al. Drought responses of Eucalyptus microtheca provenances depend on seasonality of rainfall in their place of origin [J]. Aust Plant Physiol,2000,27:231-238.
    [307]Longstreth D J, Nobel P S. Salinity effects on leaf anatomy [J]. Plant Physiology,1979,63:700-703.
    [308]Loustau D, Granier A. E nvironmental control of water flux through Marritime pine(Pinus pinaster). In water transport in plants under climate stress. Eds. M. Borghetti, J. Grace and A Ras chi [M]. Cambrige:Cambrige University Press,1993:205-218.
    [309]Lu K X, Cao B H, Feng X P, et al. Photosynthetic response of salt-tolerant and sensitive soybean varieties[J]. Photosynthetica,2009,47:381-387.
    [310]Lu K X, Yang Y, He Y, et al. Induction of cyclic electron flow around photosystem 1 and state transition are correlated with salt tolerance in soybean [J]. Photosynthetica,2008,46:10-16.
    [311]Lu P, Urban L, Zhao P. Granier's thermal dissipation Probe (TDP) method for measuring sap flow in trees:Theor y and Pr act ice[J]. Acta Botnica Sinica,2004,46(6):631-646.
    [312]Marshall B, Biscoe P V. A model for C3 leaves describing the dependence of net photosynthesis on irradiance [J]. Journal of Experimental Botany,1980,31(1):29-39.
    [313]Marshall D C. Measurement of sap flow in conifers by heat transport [J]. Plant Physiology,1958, 33(6):385-396.
    [314]Marshall J, Rutledge R, Blumwald E, et al. Reduction in turgid water volumein jack pine, white spruce and black spruce in response to drought and paclobutrazol [J]. Tree Physiol.2000, (20):701-707.
    [315]Martin J R, Jordan C F, Koranda S S, et al. Radio ecological studies of tritium movement in a tropical rain forest. Bio. Med. Div. Lawrence Radiat Lab, Univ. Calif., Livermore,1970, UCRL-7225B,20p.
    [316]Meziane D, Shipley B. Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange-Effects of irradiance and nutrient supply. Annuals of Botany,2001,88:915-927.
    [317]Miller B J, Clinton P W. Trans pirationrates and canopy conductance of Pinus radiata growing with different pasture under stories in agro-forestry systems [J].Tree physiology.1998, (18):575-582.
    [318]Mikou F K, Graham D F. Investigation of the CO2 dependence of quantum yield and respiration in eucalyptus pauciflora [J]. Plant Physiology,1987,83(4):1032-1036.
    [319]Morgan J A, Lecain D R. Leaf gas exchange and related leaf traits among 15 winter wheat genotypes [J]. Crop Science,1991,31:443-448.
    [320]Mrema A M, Granhall U. Sennerby Forest plant growth, leaf water potential, nitrogenase activity and nodule anatomy in Leucaena leucocephala as affected by water stress and nitrogen availability [J]. Trees Structure and Function,1997,12 (1):42-48.
    [321]Mudalige R G, Longstreth D J. Effects of salinity on photosynthetic characteristics in photomixotrophic cellsuspension cultures from Alternanthera philoxeroides [J]. Plant Cell Tissue Organ Cult,2006,84:301-308.
    [322]Munns R, Tester M. Mechanisms of salinity tolerance [J]. Annu. Rev. Plant Biol.2008,59:651-681,
    [323]Munns R. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses [J]. Plant Cell Environ,1993,16:15-24.
    [324]Navarro J M, Garrido C, Martinez V, Carvajal M. Water relations and xylem transport of nutrients in pepper plants grown under two different salts stress regimes [J]. Plant Growth Regul, 2003,3:237-245.
    [325]Neto ADA, Prisco J T, Eneas-Filho J, et al. Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes [J]. Brazilian Journal of Plant Phy, 2004,1:31-38.
    [326]Nuccio M L, Rhodes D, McNeil S D, Hanson A D. Metabolic engineering of plants for osmotic stress resistance.Curr [J]. Opin. Plant Biol.,1999,2:128-134.
    [327]Parker J.The cut-leaf method and estimat ions of diurnal trends in transpiration from different height s and sides of an oak and a pine [J]. Bot Gaz,1957,119(2):93-101.
    [328]Parto R, Timothy F. The ionic effects of NaCl on physiology and gene expression in rice gentypes differing in salt tolerance [J]. Plant Soil,2009,315:135-147.
    [329]Pastur G M, Lencinas M V, Peri P L, et al. Photosynthetic plasticity of Nothofagus pumilio seedlings to light intensity and soil moisture [JJ.Forest Ecology and Management,2007,243(2-3): 274-282.
    [330]Patel A D, Pandey A N. Effect of soil salinity on growth, water status and nutrient accumulation in seedlings of Cassia montana (Fabaceae) [J]. Journal of Arid Environments,2007,70:174-182.
    [331]Prioul J L, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation:a critical analysis of the methods used[J]. Annals of Botany,1977,41(4):789-800.
    [332]Poorter H, Evans J R. Photosynthetic nitrogen use efficiency of species that differ inherently in specific area [J]. Oecologia,1998,116:26-37.
    [333]Qin J, Dong W Y, He K N, et al. NaCl salinity-induced changes in water status, ion contents and photosynthetic properties of Shepherdia argentea (Pursh) Nutt. Seedlings [J]. Plant Soil Environ. 2010,56(7):1-8.
    [334]Rumbaugh M D. Germination inhibition of alfalfa by two component saltmixture [J]. Crop Sci. 1993, (33):1046-1050.
    [335]Rutter A J. Studies in the water relations of Pinus sylvestris in plantat ion condit ions.4. Direct observations on the rat es of transpiration, evaporation of intercept ed water, and evaporation from the soil surface [J]. J Ecol,1966, (3):393-405.
    [336]Salehi R. Micro-lysimeter and thermometric measurements of soil evaporation near a point source emitter [D]. Dept. of Soils, Water and Engineering, University of Arizona, Tucson,1984.
    [337]Saliendra N Z, Sperry J S, et al. Influence of leaf water status on stom at al responsesto humidity, hydraulic conductance and soil drought in Batula occidentalis [J]. Plant,1995, (196):357-366.
    [338]Saugier B, Granier A, Pontailler J Y, et al. Transpirat ion of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods[J].Tree Physiology,1997,17(4):511-519.
    [339]Splittlehouse D L, Black T A. Evalution of the Bowen ration energy balance method for determing forest evapotranspiration. Atmosphere-ocean,1980,18:98-116.
    [340]Smith D M, Allen S J. Measurement of sap flow in plant stems [J]. Journal of Experimental Botany,1996,47(305):1833-1844.
    [341]Steinberg S L, van Bavel C H M, McFarland M J. A gauge to measure mass-flow rate of sap in stems and trunks of woody-plants [J].Journal of the American society for horticultural science,1989, 114(3):466-472.
    [342]Stepieri P, Klbus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress [J]. Biol. Plantarum,2006,4:610-616.
    [343]Sun C X, Cao H X, Shao H B, et al. Growth and physiological responses to water and nutrient stress in oil palm [J]. African Journal of Biotechnology,2011,10(51):10465-10471.
    [344]Swanson R H, Whitfield D W A. A num erical and experimental analys is of implanted-probe heat puls e theory. J Exp Bot,1981,32:221-239.
    [345]SZE H. H+translocating ATPases:advances usingmembrane vesicles [J]. Annual Review of Plant Physiology,1985,36:175-208.
    [346]Takashima T, Hikosake K, Hirose T. Photosynthesis or persistence:nitrogen allocation in leaves of evergreen and deciduous Quercus species [J]. Plant Cell and Environment,2004,27:1047-1054.
    [347]Takemura T, Hanagata N, Sugihara K, et al. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza[J]. Aquat. Bot.,2000,68:15-28.
    [348]Tartachnyk I I, Blanke M M. Effect of delayed fruit harvest on photosynthesis, transpiration and nutrient remobilization of apple leaves[J]. New Phytologist,2004,164:441-450.
    [349]Thomas J H, Stepen J M, Peter H R. Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method:measurement errors and sampling strategies [J]. Tree Physiology,1995,15(2):219-227.
    [350]Thornley J H M. Mathematical Models in Plant Physiology. Academic Press, London,1976,86-110.
    [351]Thornley J H M. Dynamic model of leaf photosynthesis with acclimation to light and nitrogen [J]. Annals of Botany,1998,81:431-430.
    [352]Villalobos A E, Pelaez D V. Influence of temperature and water stress on germination and establishment of prosopis caldenia burk [J].Journal of Arid Environment,2001,49:321-328.
    [353]Walker G.K. Measurement of evaporation from soil beneath crop canopies [J]. Can. J. Soil Sci. 1983,63:137-141.
    [354]Wang Z, Zhang G, Wang X M, Gao H W. Growth, ion content and photosynthetic responses of two Elytrigia Desv. species seedlings to salinity stress [J]. Afr. J. Biotechnol,2011,38:7390-7396.
    [355]Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economicss pectrum [J]. Nature, 2004,428:821-827.
    [356]Wilson P, Thompson K, Hodgson J. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies [J]. New Phytologist,1999,143:155-162.
    [357]Wullschleger S, Meinzer F C, Vertessy R A. A review of whole-plant water use studies in trees [J]. Tree Physiol.,1998,18:499-512.
    [358]Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants:challenges and opportunities [J]. Trends Plant Sci,2005,12:615-620.
    [359]Ye Z P, Zhao Z H. A modif/ed rectangular hyperbola to describe the light-response curve of photosynthesis of Bidens pilosa L. grown under low and high light conditions [J]. Frontiers of Agriculture in China,2010,4(1):50-55.
    [360]Yeo A R, Capron S J M, Flowers T J. The effect of salinity upon photosynthesis in rice (Oryza sativa L.). Gas exchange by individual leaves relation to their salt content [J]. J. exp.Bot.,198536: 1240-1248.
    [361]Zhang Z J, Shi L, Zhang J Z, et al. Photosynthesis and growth responses of Parthenocissus quinquefolia (L.) planch to soil water availability [J]. Photosynthetica,2004,42(1):87-92.
    [362]Zidan L, Azaizeh H, Neumman P M. Does salinity reduce growth in maize root epidermal cells by inhibit in the incapacity for cellwall acidification [J]. Plant Phy soil,1990,93:7-10.
    [363]Ziska J H, Seemann J, DeJong T M. Salinity induced limitations on photosynthesis in Primus salicina, adeciduous tree species [J]. Plant Physiology,1990,93:864-870.
    [364]Zheng L, Shannon M C, Lesch S M. Timing of salinity stress affecting rice growth and yield components [J]. Agriculture and Water Management,2001,48:191-206.
    [365]Zhu J K. Plant salt tolerance [J]. Trends in plant science,2001,6(2):66-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700