用户名: 密码: 验证码:
甘蓝型油菜隐性细胞核雄性不育上位抑制基因的精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隐性核不育由于具有不育性彻底且稳定、恢复源广和细胞质来源丰富等优点,在油菜杂种优势利用中具有很大的潜力。然而,由于不能获得高效而经济的核不育系保持方法,大部分的隐性核不育不能广泛应用于油菜杂交种生产。幸运的是,隐性上位互作核不育系9012AB的发现克服了传统隐性核不育在杂种优势应用上的困难。遗传分析表明,9012AB的育性受两对重叠隐性不育基因(ms3和ms4)和一对隐性上位抑制基因(esp)互作控制,两对隐性不育基因纯合时导致雄性不育,但任何一个不育基因为显性或隐性上位抑制基因纯合时育性恢复。根据这一遗传模型,将纯合不育系和临保系杂交就可以获得100%不育群体,避免了传统隐性核不育系在杂交种生产过程中拔去母本行50%可育株的麻烦。在中国,这种隐性核不育系的保持途径已经成功应用于甘蓝型油菜杂交种的生产。值得注意的是,通过传统的育种方法选育不育系及其临保系是一项繁琐、低效的工作,因此,为了加快育种进程,必须开发与ms3、ms4和esp紧密连锁的分子标记。本研究以甘蓝型油菜隐性上位互作核不育系9012AB、GosAB及其临保系T45为研究材料,构建了两个BC1定位群体,并开发与esp基因紧密连锁的分子标记,进而实现esp基因的精细定位,取得的主要结果如下:
     1.esp基因连锁分子标记的开发。本研究采用以下3种策略开发与esp基因紧密连锁的分子标记。第一、BSA法结合AFLP技术。通过筛选2,816对AFLP引物组合,获得了17个与esp基因连锁的AFLP标记,其中10个AFLP标记在包含143个单株的群体Ⅰ中跟esp基因是共分离的。为了方便大群体分析,将其中7个共分离的AFLP标记转化成显性的SCAR标记。第二、遗传图谱整合。根据esp基因在甘蓝型油菜N7连锁群上的相对位置,从芸薹属A7连锁群相对应的区间挑选PCR标记对含有188个单株的群体Ⅱ进行分析,结果表明,总共有11个PCR标记,包括1个SCAR标记、7个SSR标记和3个IP标记,跟esp基因是连锁的。另外,3个基于白菜BAC序列的SSR标记在群体Ⅱ也是跟esp基因连锁的。第三、比较作图。通过对上述两个定位群体中部分标记序列的BLASTN分析并结合前人的研究结果,发现甘蓝型油菜N7连锁群esp基因及其邻近区间由G、H、F和B等4个保守区段组成,其中F保守区段将esp基因包含在内。随后,F保守区段中的拟南芥基因被用于IP标记的开发。IP引物设计在与拟南芥基因外显子高度同源的芸薹属EST和GSS序列上,总共设计122对引物。亲本多态性检测和群体分析表明,一共有14个IP标记在两个BC1定位群体中都是与esp基因紧密连锁的。
     2.esp基因的精细定位。将与esp基因紧密连锁的PCR标记进一步分析3,878个单株的群体Ⅰ和3,484个单株的群体Ⅱ。为了提高大群体的分析效率,采用侧翼分子标记分析策略。在群体Ⅰ中,esp基因被定位在SCAR标记WSC6和IP标记IP5-3之间,其遗传距离分别为0.206cM和0.129cM。在群体Ⅱ中,esp基因被定位在IP标记IP36和IP2-3之间,其遗传距离分别为0.057cM和0.057cM。整合两个群体的定位结果,esp基因被IP标记IP36和IP5-3所限定在一个很小的遗传区间。虽然一共分析包含7,362个单株的两个BC1定位群体,仍然有6个SCAR标记和3个IP标记在两个群体中都是与esp基因共分离。
     3.甘蓝型油菜和拟南芥在esp区间的微观共线性分析。利用来源于拟南芥的IP标记精细定位esp基因为分析甘蓝型油菜和拟南芥之间的微观共线性提供了便利。甘蓝型油菜和拟南芥在esp区间的完美共线性被染色体片段的倒位和基因的插入所打断。由于倒位的发生,导致了由esp两侧最近的标记IP36和IP5-3所限定的拟南芥候选区间从一个变成为两个。第一个拟南芥候选区间是由标记IP5-3和IP9-4界定,区间大小为54kb,包含12个预测基因。第二个拟南芥候选区间是由标记At3G24315和IP36界定,区间大小为40kb,包含8个预测基因。遗憾的是,在这20个拟南芥预测基因中,没有鉴定出esp的候选基因。
It is widely accepted that recessive genic male sterility (RGMS) systems have great potential in rapeseed heterosis utilization because of their stable and complete sterility, extensive distribution of restorers and diverse cytoplasmic sources. However, for most of them, their potential application for the commercial production of rapeseed hybrids is limited by the inability to maintain the male-sterile female parent line in an efficient and cost-effective way. About 50% male fertile plants must be removed during hybrid seed production, which increases the cost of hybrid seeds and limits its wide application. Fortunately, this difficulty can be overcome when a novel RGMS line,9012AB, is involved. Genetic analysis indicated that the sterility of 9012AB is controlled by two recessive genes (ms3 and ms4) interacting with one recessive epistatic suppressor gene (esp). Homozygous recessive sterile gene at both loci can result in male sterility, but the fertility can be restored when the esp gene is in recessive homozygosity or either of the sterile genes is not recessively homozygous. Based on this genetic model, a 100% male-sterile population could be produced by crossing a homozygous male-sterile line with a temporary maintainer line. This strategy is used successfully for the commercial production of canola hybrids (Brassica napus) in China. Care needs to be taken that the breeding of elite RGMS lines and their temporary maintainers by conventional methods is very laborious and time-consuming. It is therefore highly desirable to develop molecular marker tightly linked to the genes (ms3, ms4 and esp), which will greatly accelerate these breeding process. The purposes of this investigation are to develop molecular markers tightly linked to the esp gene, using two BC1 mapping populations derived from recessive epistatic genic male sterility line (9012A and GosA) and their temporary maintainer (T45), and then to construct a high-resolution map surrounding the esp gene. The main results were as follows:
     1. Development of molecular markers linked to the esp gene. Several strategies were used to develop molecular markers associated with the target gene. Firstly, AFLP technology combined with bulked segregant analysis (BSA). From the survey of 2,816 AFLP primer combinations, seventeen tightly linked AFLP markers were obtained. Among them, ten AFLP makers co-segregated with the target gene in the populationⅠof 143 individuals. Given that AFLP has limitations in large-scale population analysis, seven co-segregated AFLP markers were converted to dominant SCAR makers. Secondly, genetic map integration. Considering the esp gene was mapped on linkage group N7 of Brassica napus, PCR markers surrounding corresponding region were selected from linkage group A7 to analyze the populationⅡof 188 plants. Results indicated that 14 PCR markers including 1 SCAR marker,7 SSR markers,2 IP markers and 3 BAC sequence-based markers were assicated with the esp gene. Thirdly, comparative mapping. Sequences of the esp-linked PCR markers were submitted to NCBI for BLASTN analysis. Combined with previous reports on comparative analysis, we found that the esp region in Brassica napus linkage group N7 is constituted of blocks G-H-F-B. The Arabidopsis genes of block F encompassing the esp gene were employed for the development of Intron Polymorphism (IP) markers. IP primers were designed from exon sequences which showed strong nucleotide conservation between Arabidopsis and the corresponding EST or GSS sequences described for any Brassica species, and 122 primer pairs were designed. After the polymorphism survey in parents and mapping population,14 IP markers were found to be tightly linked to the esp gene in both populationⅠand populationⅡ.
     2. Fine mapping of the esp gene. The esp-linked PCR markers described above were used to tested on 3,878 plants from populationⅠand 3,484 plants from populationⅡ. We employed the flanking marker approach to improve the efficiency of large population analysis. In the populationⅠ, the esp gene was then genetically restricted to a region of 0.335 cM,0.206 cM from SCAR marker WSC6 and 0.129 cM from IP marker IP5-3. In the populationⅡ, the target gene was mapped between IP marker IP36 and IP marker IP02-3 with the distance of 0.057 cM and 0.057 cM, respectively. Integrating the mapping results from two larger populations, the esp was fine-mapped to the interval between IP markers IP36 and IP05-3. Despite of 7,362 plants from two mapping population were analyzed, six SCAR makers and three IP makers were still co-segregated with the esp gene.
     3. Microcollinearity between Brassica napus and Arabidopsis at the esp locus region. The presence of many Arabidopsis-derived IP markers in the local high-resolution map allowed us to study the collinearity between Brassica napus and Arabidopsis at the esp locus region. Microcollinearity was found between the region on N7 carrying the esp gene and Arabidopsis chromosome 3, interrupted by chromosome segment inversion and gene inserts. Due to the inversion directly flanking the map position of esp, extending the search for candidate genes to an area delimited by the flanking markers, IP36 and IP5-3, identifies two regions on Arabidopsis chromosome 3. The first is a collinear region between IP markers IP5-3 and IP9-4 covering an interval of 54kb and containing 12 annotated genes. The second candidate region which locate between IP markers At3G24315 and IP36 cover an interval of 40kb and include 8 annotated genes. Unfortunately, no obvious candidate gene for esp was identified among 20 annotated genes in two Arabidopsis collinear region.
引文
1. 于澄宇,胡胜武.中国利用两系杂交油菜杂种优势的方法与进展(英文).第十二届国际油菜大会论文集,2007
    2. 马磊.油菜隐性细胞核雄性不育基因区段的比较分析与特异标记的开发.[硕士学位论文].武汉:华中农业大学,2009
    3. 王贵春.甘蓝型油菜隐性细胞核雄性不育两型系9012AB雄性不育基因的分子标记开发.[博士学位论文].武汉:华中农业大学,2007
    4. 毛正轩,黄观武,孙贞,苟云高,杨泽湖,江卫,毛素珍.棉花核雄性不育性完全保持的遗传分析.中国科学(B辑),1994,24:724-729
    5. 龙艳.甘蓝型油菜基因组中开花期QTL的检测和分析.[博士学位论文].武汉:华中农业大学,2007
    6. 白书农.植物发育生物学.北京:北京大学出版社,2003,128-130
    7.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25:317-321
    8. 刘俊.甘蓝型油菜显性细胞核雄性不育基因与恢复基因的精细定位.[博士学位论文].武汉:华中农业大学,2008
    9. 许绍斌,陶玉芬,杨昭庆,褚嘉佑.简单快速的DNA银染和胶保存方法.遗传,2002,24:335-336
    10.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.隐性核不育油菜两型系20118AB的遗传与利用.上海农业学报,2004,20:30-32
    11.李树林,周志疆,周熙荣.甘蓝型油菜隐性核不育系S45AB的遗传.上海农业学报,1993,94:1-7
    12.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1:1-12
    13.杨光圣,瞿波,傅廷栋.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学研究.华中农业大学学报,1999,18:520-523
    14.肖麓.新型甘蓝型油菜核不育系的选育及隐性上位基因BnRf的定位.[博士学位论文].武汉:华中农业大学,2008
    15.何俊平.甘蓝型油菜隐性细胞核雄性不育基因ms3的精细定位.[博士学位论文].武汉:华中农业大学,2008
    16.张天真,冯福祯.一个有芽黄标记性状的棉花雄性不育系的遗传鉴定.中国农业科学,1989,22:17-21
    17.张玉华.分子标记辅助选育甘蓝型油菜隐性细胞核雄性不育系及其临保系.[硕士学位论文]. 武汉:华中农业大学,2009
    18.张璞, 田建华,李殿荣.甘蓝型油菜隐性核不育的遗传与应用研究.西北农业学报,2004,13:16-19
    19.陈凤祥,周立人,李展.植物细胞核雄性不育保持途径研究进展(综述).安徽农业大学学报,1997,24:45-49
    20.陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24:431-438
    21.陈凤祥,胡宝成,李强生,吴新杰,侯树敏,费维新,江莹芬.中国甘蓝型油菜隐性上位互作核不育研究与利用.第十二届国际油菜大会论文集,2007
    22.陈凤祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报,1993,2:20-25
    23.易斌.甘蓝型油菜隐性核不育基因Bnms1的精细定位和克隆.[博士学位论文].武汉:华中农业大学图书馆,2007
    24.赵向前,吴为人.水稻ILP标记遗传图谱的构建.遗传,2008,30:225-230
    25.柯丽萍.甘蓝型油菜隐性细胞核雄性不育的基因定位.[博士学位论文].武汉:华中农业大学,2005
    26.侯国佐,王华,张瑞茂.甘蓝型油菜细胞核雄性不育材料117A的遗传研究.中国油料,1990,2:7-10
    27.侯国佐.油菜隐性核不育研究与利用.北京:科学科技文献出版社,2009,240-277
    28.洪登峰.甘蓝型油菜显性细胞核雄性不育基因Ms/Mf的定位.[博士学位论文].武汉:华中农业大学图书馆,2006
    29.涂金星,易斌,雷绍林,曾芳琴,傅廷栋,马朝芝,沈金雄,文静,李新华.油菜隐性核不育恢复基因BnCYP 7o4B1及应用.中国专利,CN 101525630.2009-4-8
    30.涂金星,傅廷栋,郑用琏.甘蓝型油菜核不育材料育性基因的RAPD标记.华中农业大学学报,1997,16:112-117
    31.黄观武, 苟云高, 张东铭,江卫,张相琼.棉花核不育保持系的选育.中国农业科学,1989,22:13-17
    32.黄镇.分子标记辅助选择培育新型甘蓝型油菜隐性细胞核雄性不育系.[博士学位论文].武汉:华中农业大学,2008
    33.傅廷栋.油菜杂种优势研究利用的现状与思考.中国油料作物学报,2008,30:1-5
    34.傅廷栋.杂交油菜的育种与利用(第二版).武汉:湖北科学技术出版社,2000,1-3
    35.雷绍林.甘蓝型油菜隐性核不育恢复基因BnMS2的精细定位与候选基因鉴定.[博士学位论文].武汉:华中农业大学,2009
    36. Adams M D, Kelley J M, Gocayne J D, Dubnick M, Polymeropoulos M H, Polymeropoulos H, Xiao C R., Merril A, Wu B, Olde R F, Moreno A R, Kerlavage W R, McCombie W R, Venter J C. Complementary DNA sequencing:expressed sequence tags and human genome project. Science,1991,252:1651-1656
    37. Al-Ahmad H, Gressel J. Transgene containment using cytokinin-reversible male sterility in constitutive, gibberellic acid-insensitive (Δgai) transgenic tobacco. J Plant Growth Regul,2005,24:19-27
    38. Andersen J R, Liibberstedt T. Functional markers in plants. Trends Plant Sci,2003,8: 554-560
    39. Arondel V, Lemieux B, Hwang I, Gibson S, Goodman H M, Somerville C R. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science,1992,258:1353-1355
    40. Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J Z, Matsumoto T, Ono K, Yano M. Two Adjacent Nucleotide-Binding Site-Leucine-Rich Repeat Class Genes Are Required to Confer Pikm-Specific Rice Blast Resistance. Genetics,2008,180: 2267-2276
    41. Atanassova B. Functional male sterility (ps2) in tomato(Lycopersicon esculentum Mill.) and its application in breeding and hybrid seed production. Euphytica,1999, 107:13-21
    42. Bassam B J, Caetano A G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem,1991,196:80-83
    43. Batzoglou S, Pachter L, Mesirov J P, Berger B, Lander E S. Human and mouse gene structure:comparative analysis and application to exon prediction. Genome Res, 2000,10:950-958
    44. Bentolila S, Hanson M R. Identification of a BIBAC clone that co-segregates with the petunia restorer of fertility (Rf) gene. Mol Genet Genomics,2001,266:223-230
    45. Bortiri E, Jackson D, Hake S. Advances in maize genomics:the emergence of positional cloning. Curr Opin Plant Biol,2006,9:164-171
    46. Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet,1980,32: 314-331
    47. Bradeen J M, Simon P W. Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, co-dominant, PCR based marker form. Theor Appl Genet,1998,97: 960-967
    48. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A. The barley stem rust-resistance gene Rpgl is a novel disease resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA,2002, 99:9328-9333
    49. Brugmans B, van der Hulst R G, Visser R G, Lindhout P, van Eck H J. A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Res,2003,31:e55
    50. Brunel D, Froger N, Pelletier G. Development of amplified consensus genetic markers (ACGMs) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome,1999,42:387-402
    51. Burgess D G, Ralston E J, Hanson W G, Heckert M, Ho M, Jenq T, Palys J M, Tang K, Gutterson N. A novel, two-component system for cell lethality and its use in engineering nuclear male-sterility in plants. Plant J,2002,31:113-125
    52. Butruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics,1999,153:949-964
    53. Casselman A L, Vrebalov J, Conner J A, Singhal A, Giovannoni J, Nasrallah M E, Nasrallah J B. Determining the physical limits of the Brassica S locus by recombinational analysis. Plant Cell,2000,12:23-33
    54. Cavell A C, Lydiate D J, Parkin I A, Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome,1998,41:62-69
    55. Chen Y, Lei S, Zhou Z, Zeng F, Yi B, Wen J, Shen J, Ma C,Tu J, Fu, T. Analysis of gene expression profile in pollen development of recessive genie male sterile Brassica napus L. line S45A. Plant Cell Rep,2009,28:1363-1372
    56. Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet,2009,118:1121-1131
    57. Cheung F, Trick M, Drou N, Lim Y P, Park J Y, Kwon S J, Kim J A, Scott R, Pires J C, Paterson A H, Town C, Bancroft I. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell,2009,21:1912-1928
    58. Chi X F, Lou X Y, Shu Q Y. Combining DNA pooling with selective recombinant genotyping for increased efficiency in fine mapping. Theor Appl Genet,2010,120: 775-783
    59. Chi X F, Lou X Y, Shu Q Y. Progressive fine mapping in experimental populations: an improved strategy toward positional cloning. J Theor Biol,2008,253:817-823
    60. Choi H K, Kim D, Uhm T, Limpens E, Lim H, Kalo P, Penmetsa R V, Seres A, Kulikova O, Bisseling T, Kiss G B, Cook D R. A sequence-based genetic map of Medicago truncatula and comparison of marker co-linearity with Medicago sativa. Genetics,2004,166:1463-502
    61. Choi S R, Teakle G R, Plaha P, Kim J H, Allender C J, Beynon E, Piao Z Y, Soengas P, Han T H, King G J, Barker G C, Hand P, Lydiate D J, Batley J, Edwards D, Koo D H, Bang J W, Park B S, Lim Y P. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet,2007, 115:777-792
    62. Chuck G, Meeley R, Irish E, Sakai H, Hake S. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6l indeterminate spikeletl. Nat Genet,2007,39:1517-1521
    63. Churchill G A, Giovannoni J J, Tanksley S D. Pooled-sampling makes high-resolution mapping practical with DNA markers. Proc Natl Acad Sci USA,1993,90: 16-20
    64. Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep,2003,4:588-594
    65. Dinka S J, Campbell M A, Demers T, Raizada M N. Predicting the size of the progeny mapping population required to positionally clone a gene. Genetics,2007, 176:2035-2054
    66. Dixon M S, Jones D A, Hatzixanthis K, Ganal M W, Tanksley S D, Jones J D G. High resolution mapping of the physical location of the tomato Cf-2 gene. Mol Plant-Microbe Interact,1995,8:200-206
    67. Dobritsa A A, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Moller B L, Preuss, D. CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol,2009,151:574-589
    68. Dong N V, Subudhi P K,Luong P N, Quang V D, Quy T D, Zheng H G, Wang B, Nguyen H T. Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques. Theor Appl Genet,2000,100: 727-734
    69. Driscoll C J. Modified XYZ system of producing hybrid wheat. Crop Sci,1985,25: 115-116
    70. Driscoll C J. XYZ system of producing hybrid wheat. Crop Sci,1972,12:516-517
    71. Drouaud J, Camilleri C, Bourguignon P Y, Canaguier A, Berard A, Vezon D, Giancola S, Brunel D, Colot V, Prum B, Quesneville H, Mezard C. Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination "hot spots". Genome Res,2006,16:106-114
    72. Drouaut J, Mercier R, Chelysheva L, Berard A, Falque M, Martin O, Zanni V, Brunel D, Mezard C. Sex-specific crossover distributions and variations in interference level along Arabidopsis thaliana chromosome 4. PLoS Genet,2007,3:1096-1107
    73. Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet,2006,112: 1164-1171
    74. Fan C C, Yu S B, Wang C R, Xing Y Z. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet,2009,118:465-472
    75. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA,2003,100:15253-15258
    76. Formanova N, Li X Q, Ferrie A M, Depauw M, Keller W A, Landry B, Brown G G. Towards positional cloning in Brassica napus:generation and analysis of doubled haploid B. rapa possessing the B. napus pol CMS and Rfp nuclear restorer gene. Plant Mol Biol,2006,61:269-281
    77. Formanova N, Stollar R, Geddy R, Mahe L, Laforest M, Landry B S, Brown G G. High-resolution mapping of the Brassica napus Rfp restorer locus using Arabidopsis-derived molecular markers. Theor Appl Genet,2010,120:843-851
    78. Frewen B E, Chen T H H, Howe G T, Davis J, Rohde A, Boerjan W, Bradshaw H D. Quantitative trait loci and candidate gene mapping of bud set and budflush in Populus. Genetics,2000,154:837-845
    79. Galinat W C. Use of male sterile 1 gene to eliminate detasseling in production of hybrid seed of bicolor sweet corn. J Hered,1975,66:387-388
    80. Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt R J, McSteen P. sparse inflorescence 1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci U S A,2008, 105:15196-15201
    81. Ganal M W, Altmann T, Roder M S. SNP identification in crop plants. Curr Opin Plant Biol,2009,12:211-217
    82. Gaut B S, Wright S I, Rizzon C, Dvorak J, Anderson L K. Recombination:an underappreciated factor in the evolution of plant genomes. Nat Rev Genet,2007,8: 77-84
    83. Gill K.S, Lubbers E L, Gill B S, Raupp W J, Cox T S. A genetic-linkage map of Triticum tauschii and its relationship to the D-genome of bread wheat (AABBDD). Genome,1991,34:362-374
    84. Gils M, Marillonnet S, Werner S, Grutzner R, Giritch A, Engler C, Schachschneider R, Klimyuk V, Gleba Y A novel hybrid seed system for plants. Plant Biotechnol J, 2008,6:226-235
    85. Giraudat J, Hauge B M, Valon C, Smalle J, Parcy F, Goodman H M. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell,1992,10:1251-1261
    86. Gorguet B, Schipper D, van Heusden A W, Lindhout P. High-resolution fine mapping of ps-2, a mutated gene conferring functional male sterility in tomato due to non-dehiscent anthers. Theor Appl Genet,2006,113:1437-1448
    87. Gorguet B, Schipper D,van Lammeren A, Visser R G, van Heusden A W. ps-2, the gene responsible for functional sterility in tomato, due to non-dehiscent anthers, is the result of a mutation in a novel polygalacturonase gene. Theor Appl Genet,2009, 118:1199-1209
    88. Han F, Kilian A, Chen J P, Kudrna D, Steffenson B, Yamamoto K, Matsumoto T, Sasaki T, Kleinhofs A. Sequence analysis of a rice BAC covering the syntenous barley Rpgl region. Genome,1999,42:1071-1076
    89. Havey M. The use of cytoplasmic male sterility for hybrid seed production. In: Daniell H, Chase C D eds., Molecular biology and biotechnology of plant organelles. Berlin Heidelberg New York:Springer,2004,623-634
    90. He C, Sayed-Tabatabaei B E, Komatsuda T. AFLP targeting of the 1-cM region conferring the vrsl gene for six-rowed spike in barley, Hordeum vulgare L. Genome, 2004,47:1122-1129
    91. He J, Ke L, Hong D, Xie Y, Wang G, Liu P, Yang G. Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP-and Arabidopsis-derived PCR markers. Theor Appl Genet,2008,117:11-18
    92. He Y Q, Yang J, Xu C G, Zhang Z G, Zhang Q. Genetic bases of instability of male sterility and fertility reversibility in photoperiod-sensitive genic male-sterile rice. Theor Appl Genet,1999,99:683-693
    93. He Y, Amasino R M. Role of chromatin modification in flowering-time control. Trends Plant Sci,2005,10:30-35
    94. Hong C P, Plaha P, Koo D H, Yang T J, Choi S R, Lee Y K, Uhm T, Bang J W, Edwards D, Bancroft I, Park B S, Lee J, Lim Y P. A survey of the Brassica rapa genome by BAC-end sequence analysis and comparison with Arabidopsis thaliana. Mol Cells,2006,22:300-307
    95. Huang L, Brooks S A, Li W, Fellers J P, Trick H N, Gill B S. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics,2003,164:655-664
    96. Huang S, Cerny R E, Qi Y, Bhat D, Aydt C M, Hanson D D, Malloy K P, Ness L A. Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol,2003,131:1270-1282
    97. Huang Z, Chen Y,Yi B, Xiao L, Ma C, Tu J, Fu T. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet,2007,115: 113-118
    98. Imai R, Koizuka N, Fujimoto H, Hayakawa T, Sakai T, Imamura J. Delimitation of the fertility restorer locus Rfkl to a 43-kb contig in Kosena radish(Raphanus sativus L.). Mol Genet Genomics,2003,269:388-394
    99. Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M. An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci U S A,2007, 104:13833-13838
    100.Ishimaru K, Ono K, Kashiwagi T. Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta,2004,218:388-395
    101.Jander G, Norris S R, Rounsley S D, Bush D F, Levin I M, Last R L. Arabidopsis map-based cloning in the post-genome era. Plant Physiol,2002,129:440-450
    102. Jean M, Brown G G, Landry B S. Genetic mapping of nuclear fertility restorer genes for the'Polima'cytoplasmic male sterility of canola(Brassica napus L.) using DNA markers. Theor Appl Genet,1997,95:321-328
    103.Kaczmarek M, Koczyk G, Ziolkowski P A, Babula-Skowronska D, Sadowski J. Comparative analysis of the Brassica oleracea genetic map and the Arabidopsis thaliana genome. Genome,2009,52:620-633
    104.Kaul M L H. Male sterility in higher plants. Berlin Heidelberg New York:Springer, 1988,4-9
    105. Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S. Identification of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus. Plant Breed,2005,124:367-370
    106. Ke L P, Sun Y Q, Liu P W, Yang G S. Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed(Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica,2004,138: 163-168
    107. Keller B, Feuillet C, Yahiaoui N. Map-based isolation of disease resistance genes from bread wheat:cloning in a supersize genome. Genet Res,2005,85:93-100
    108. Kim H, Choi S R, Bae J, Hong C P, Lee S Y, Hossain M J, Nguyen D V, Jin M, Park B S, Bang J W, Bancroft I, Lim Y P. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics,2009,10:432
    109. Kim J S, Chung T Y, King G J, Jin M, Yang T J, Jin Y M, Kim H I, Park B S. A sequence-tagged linkage map of Brassica rapa. Genetics,2006,174:29-39
    110.Klein R R, Klein P E, Mullet J E, Minx P, Rooney W L, Schertz K F. Fertility restorer locus Rf1 of sorghum(Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet,2005,111:994-1012
    111.Koch M A, Kiefer M. Genome evolution among cruciferous plants:a lecture from the comparison of the genetic maps of three diploid species—Capsella rubella, Arabidopsis lyrata subsp. petraea, and A. thaliana. Am J Bot,2005,92:761-767
    112. Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N,Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T,Yano M. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper Ⅰ-class homeobox gene. Proc Natl Acad Sci USA,2007,104:1424-1429
    113. Konieczny A, Ausubel F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J,1993,4,403-410
    114.Koo D H, Plaha P, Lim Y P, Hur Y and Bang J W. A high resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor Appl Genet,2004,109:1346-1352
    115.Kosambi D D. The estimation of map distances from recombination values. Ann Eugen,1944,12:172-175
    116.Lagercrantz U, Putterill J, Coupland G, Lydiate D. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J,1996,9:13-20
    117.Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics,1998,150:1217-1228
    118. Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1:174-181
    119. Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. Rice P/5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics,2009,181:1627-1638
    120. Lei S, Yao X, Yi B, Chen W, Ma C, Tu J, Fu T. Towards map-based cloning:fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet,2007,115:643-651
    121. Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M. . Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol,2006,57: 405-430
    122.Levesque H, Vedel F, Mathieu C, de Courcel A G L.Identification of a short rDNA spacer sequence highly specific for a tomato line containing a Tm-1 gene introgressed from Lycopersicon hirsutum. Theor Appl Genet,1990,80:602-608
    123. Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science,2006,311: 1936-1939
    124. Li F, Kitashiba H, Inaba K, Nishio T. A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res,2009,16:311-323
    125. Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y, Liang W, Zhang D. Cytochrome P450 Family Member CYP704B2 Catalyzes the{omega}-Hydroxylation of Fatty Acids and Is Required for Anther Cutin Biosynthesis and Pollen Exine Formation in Rice. Plant Cell,2010, 22:173-190
    126. Lim K B, de Jong H, Yang T J, Park J Y, Kwon S J, Kim J S, Lim M H, Kim J A, Jin M, Jin Y M, Kim S H, Lim Y P, Bang J W, Kim H I, Park B S. Characterization of rDNA and tendom repeats in the heterochromatin of Brassica rapa. Mol Cells,2005, 19:436-444
    127. Lin H, Zhu W, Silva J C, Gu X, Buell C R. Intron gain and loss in segmentally duplicated genes in rice. Genome Biol,2006,7:R41
    128. Lincoln S, Daly M, Lander E. Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report,3rd ed.,1992, Whitehead Technical Institute, Cambridge, Mass
    129. Liu X Q, Wang L, Chen S, Lin F, Pan Q H. Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Mol Genet Genomics,2005,274:394-401
    130. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B S, Choi S R, Lim Y P, Meng J. Flowering time quantitative trait Loci analysis of oilseed brassica in multiple environments and genome wide alignment with Arabidopsis. Genetics,2007,177:2433-2444
    131. Long Y, Zhao L, Niu B, Su J, Wu H, Chen Y, Zhang Q, Guo J, Zhuang C, Mei M, Xia J, Wang L, Liu Y G. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci U S A,2008, 105:18871-18876
    132. Lu S, Van Eck J, Zhou X, Lopez A B, O'Halloran D M, Cosman K M, Conlin B J, Paolillo D J, Garvin D F, Vrebalov J, Kochian L V, Kupper H, Earle E D, Cao J, Li, L. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell,2006,18: 3594-3605
    133. Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics,2003,164:359-372
    134.Lukowitz W, Gillmor C S, Scheible W R. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol,2000,123: 795-805
    135.Lysak M A, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA,2006,103:5224-5229
    136.Lysak M A, Cheung K, Kitschke M, Bures P. Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol,2007,145:402-410
    137. Lysak M A, Koch M A, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res,2005,15:516-525
    138.Mariani C, de Beuckeleer M, Truettner J, Leemans J, Goldberg R B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature,1990,347:737-741
    139.Mariani C, Gossele V, De Beuckeleer M, De Blcok M, Goldberg M, De Greef R, Leemans J. A chimaeric robonuclease inhibitor gene restores fertility to male sterile plants. Nature,1992,357:384-387
    140. Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal V K, Good A G, Parkin I A. Complexities of chromosome landing in a highly duplicated genome:toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics,2005,171:1977-1988
    141.McCormick S. Control of male gametophyte development. Plant Cell,2004,16 Suppl:S142-153
    142. McCormick S. Male Gametophyte Development. Plant Cell,1993,5:1265-1275
    143.Michelmore R, Paran W I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA,1991,88:9828-9832
    144.Muangprom A, Osborn T C. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet,2004,108: 1378-1384
    145.Muangprom A, Thomas S G, Sun T P, Osborn T C. A novel dwarfing mutation in a green revolution gene from Brassica rapa. Plant Physiol,2005,137:931-938
    146. Mun J H, Kwon S J, Yang T J, Kim H S, Choi B S, Baek S, Kim J S, Jin M, Kim J A, Lim M H, Lee S I, Kim H I, Kim H, Lim Y P, Park B S. The first generation of a BAC-based physical map of Brassica rapa. BMC Genomics,2008,9:280
    147. Mun J H, Kwon S J, Yang T J, Seol Y J, Jin M, Kim J A, Lim M H, Kim J S, Baek S, Choi B S, Yu H J, Kim D S, Kim N, Lim K B, Lee S I, Hahn J H, Lim Y P, Bancroft I, Park B S. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol,2009,10:R111
    148. Neu C, Stein N, Keller B. Genetic mapping of the Lr20-Pml resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome, 2002,45:737-744
    149.Nicod J C, Largiader C R. SNPs by AFLP (SBA):a rapid SNP isolation strategy for non-model organisms. Nucleic Acids Res,2003,31:e19
    150. Oh K, Hardeman K, Ivanchenko M G, Ellard-Ivey M, Nebenfuhr A, White T J, Lomax T L. Fine mapping in tomato using microsynteny with the Arabidopsis genome:the Diageotropica (Dgt) locus. Genome Biol,2002,3:research0049
    151. Oh K, Ivanchenko M G, White T J, Lomax T L. The diageotropica gene of tomato encodes a cyclophilin:a novel player in auxin signaling. Planta,2006,224:133-144
    152.Ohmori T, Murata M, Motoyoshi F. Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theor Appl Genet,1996,92:151-156
    153. O'Neill C M, Bancroft I. Comparative physical mapping of segments of the genome of Brassica oleracea var. albogl-abra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J,2000,23:233-243
    154.Osborn T C, Kole C, Parkin I A P, Sharpe A G, Kuiper M, Lydiate D J, Trick M. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics,1997,146:1123-1129
    155. Palmer J D, Shields C R, Cohen D B, Orton T J. Chloroplast DNA evolution and the origin of amphidiploids Brassica species. Theor Appl Genet,1983,65:181-189
    156.Panjabi P, Jagannath A, Bisht N C, Padmaja K L, Sharma S, Gupta V, Pradhan A K, Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers:homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics,2008,9:113
    157.Paran I, Michelmore R. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet,1993,85:985-993
    158. Park J Y, Koo D H, Hong C P, Lee S J, Jeon J W, Lee S H, Yun P Y, Park B S, Kim H R, Bang J W, Plaha P, Bancroft I, Lim Y P. Physical mapping and microsynteny of Brassica rapa ssp.pekinensis genome corresponding to a 222 kb gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5. Mol Genet Genomics,2005,274:579-588
    159. Park S, Yu H J, Mun J H, Lee S C. Genome-wide discovery of DNA polymorphism in Brassica rapa. Mol Genet Genomics,2010,283:135-145
    160. Parkin I A, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn T C, Lydiate D J. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics,2005,171:765-781
    161. Parkin I A, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome,1995,38: 1122-1131
    162. Patterson E B. Properties and use of duplicate-deficient chromosome complements in maize. In Walden, D B ed., Maize breeding and genetics. New York:John Wiley & Sons, Inc.,1978,693-710
    163.Perez-Prat E, Lookeren Campagne M M. Hybrid seed production and the challenge of propagating male sterile plants. Trends Plant Sci,2002,7:199-203
    164. Peters J L, Cnudde F, Gerats T. Forward genetics and map-based cloning approaches. Trends Plant Sci,2003,8:484-491
    165.Pflieger S, Lefebvre V, Causse M. The candidate gene approach in plant genetics:A review. Mol Breed,2001,7:275-291
    166.Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet,2005,111:1514-1523
    167. Pouilly N, Delourme R, Alix K, Jenczewski E. Repetitive sequence-derived markers tag centromeres and telomeres and provide insights into chromosome evolution in Brassica napus,. Chromosome Res,2008,16:683-700
    168. Qi L L, Gill B S. High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic region of low recombination in wheat and is not amenable to map-based cloning. Theor Appl Genet,2001,103:998-1006
    169. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, et al. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet,2006, 114:67-80
    170.Rafalski J A, Tingey S V. Genetic diagnostics in plant breeding:RAPDs, microsatellites and machines. Trends Genet,1993,9:275-280
    171. Rahman M, Sun Z, McVetty P B, Li G. High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted selection in plant breeding. Theor Appl Genet,2008,117:895-904
    172.Ramage R T. Balanced tertiary trisomic for use in hybrid seed production. Crop Sci, 1965,5:177-178
    173. Rana D, van den Boogaart T, O'Neill C M, Hynes L, Bent E, Macpherson L, Park J Y, LimY P, Bancroft I. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J,2004,40:725-733
    174.Razi H, Howell E C, Newbury H J, Kearsey M J. Does sequence polymorphism of FLC paralogues underlie flowering time QTL in Brassica oleracea? Theor Appl Genet,2008,116:179-192
    175.Ribarits A, Mamun A N, Li S, Resch T, Fiers M, Heberle-Bors E, Liu C M, Touraev A. Combination of reversible male sterility and doubled haploid production by targeted inactivation of cytoplasmic glutamine synthetase in developing anthers and pollen. Plant Biotechnol J,2007,5:483-494
    176. Roy SW, Gilbert W. Rates of intron loss and gain:implications for early eukaryotic evolution. Proc Natl Acad Sci USA,2005,102:5773-5778
    177. Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M. Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Theor Appl Genet,2006,114: 81-91
    178. Schmidt R, Acarkan A, Boivin K. Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochem,2001,39:253-262
    179. Schmidt R. Plant genome evolution:lessons from comparative genomics at the DNA level. Plant Mol Biol,200248:21-37
    180. Schranz M E, Lysak M A, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae:building blocks of crucifer genomes. Trends Plant Sci,2006,11: 535-542
    181.Schranz M E, Windsor A J, Song B H, Lawton-Rauh A, Mitchell-Olds T. Comparative genetic mapping in Boechera stricta, a close relative of Arabidopsis. Plant Physiol,2007,144:286-298
    182. Sebastian R L, Howell E C, King G J, Marshall D F, Kearsey M J. An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor Appl Genet,2000,100:75-81
    183. Seyis F, Snowdon R J,Luhs W, Friedt W. Molecular characterization of novel resynthesized rapeseed(Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breed,2003,122:473-478
    184. Siebert P D, Chenchick A, Kellogg D E, Lukyanov K A, Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucl Acids Res,1995, 23:1087-1088
    185. Snowdon R J, Friedrich T, Friedt T, Kohler W. Identifying the chromosomes of the A-and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor Appl Genet,2002,104:533-538
    186. Snowdon R J, Friedt W. Molecular markers in Brassica oilseed breeding:current status and future possibilities. Plant Breed,2004,123:1-8
    187. Song L Q, Fu T D, Tu J X, Ma C Z, Yang G S. Molecular validation of multiple allele inheritance for dominant genic male sterility gene in Brassica napus L. Theor Appl Genet,2006,113:55-62
    188. Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B. Subgenome chromosome walking in wheat:a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci U S A,2000,97:13436-13441
    189. Stein N, Graner A. Map-based gene isolation in cereal genomes. In:Gupta PK, Varshney RK eds., Cereal genomics. Berlin Heidelberg New York:Springer,2004, 332-338
    190. Sun T, Gubler F. Molecular mechanism of gibberellins signaling inplants. Annu Rev Plant Biol,2004,55:197-223
    191.Tanksley S D, Ganal M W, Martin G B. Chromosome landing:a paradigm for map-based gene cloning in plants with large genomes. Trends Genet,1995,11:63-68
    192.Tanksley S D, Ganal M W, Prince J P, Devicente M C, Bonierbale M W, Broun P, Fulton T M, Giovannoni J J, Grandillo S, Martin G B, Messeguer R, Miller J C, Miller L, Paterson A H, Pineda O, Roder M S, Wing RA, Wu W, Young N D. High density molecular linkage maps of the tomato and potato genomes. Genetics,1992, 132:1141-1160
    193. Thomas C M, Vos P, Zabeau M, Jones D A, Norcott K A, Chadwick B P, Jones J D G. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J, 1995,8:785-794
    194. Town C D, Cheung F, Maiti R, Crabtree J, Haas B J, Wortman J R, Hine E E, Althoff R, Arbogast T S, Tallon L J, Vigouroux M, Trick M, Bancroft I. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell,2006,18:1348-1359
    195.Trick M, Kwon S J, Choi S R, Fraser F, Soumpourou E, Drou N, Wang Z, Lee, S Y,Yang, T J, Mun J H, Paterson A H, Town C D, Pires J C, Pyo LimY, Park B S, Bancroft I. Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis. BMC Genomics,2009a,10:539
    196. Trick M, Long Y, Meng J, Bancroft I. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J,2009b,7:334-346
    197.U N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. Jpn J Bot,1935,7:389-452
    198. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23:4407-4414
    199. Wang G C, He J P, Hong D F, Xie Y Z, Xu Z H, Liu P W, Yang G S. Development of AFLP and SCAR markers linked to a recessive genie male sterile gene (Bnms3) in rapeseed for marker-assisted selection. Korean J Genetics,2007,29:481-487
    200. Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King G J, Meng J. The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol,2009,9:271
    201. Wang X, Zhao X, Zhu J, Wu W. Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNA Res,2005,12:417-427'
    202. Wei H, Fu Y, Arora R. Intron-flanking EST-PCR markers:from genetic marker development to gene structure analysis in Rhododendron. Theor Appl Genet,2005, 111:1347-1356
    203.Westermeier P, Wenzel G, Mohler V. Development and evaluation of single-nucleotide polymorphism markers in allotetraploid rapeseed(Brassica napus L.). Theor Appl Genet,2009,119:1301-1311
    204. Williams J G K, Kubelik A R, Livak K J, Rafalski J A and Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,1990,18:6531-6535
    205. Wilson ZA, Zhang D B. From Arabidopsis to rice:pathways in pollen development. J Exp Bot,2009,60:1479-1492
    206. Xiao L, Yi B, Chen Y F, Huang Z, Chen W, Ma C Z, Tu J X, Fu T D. Molecular markers linked to Bn;rf: a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L. Euphytica,2008,164:377-384
    207. Xu Y B, Crouch J H. Marker-assisted selection in plant breeding:From publications to practice. Crop Sci,2008,48:391-407
    208. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet,2008,40:761-767
    209. Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J,2004,37:528-538
    210. Yang H, You A, Yang Z, Zhang F, He R, Zhu L, He G. High-resolution genetic mapping at the Bphl5 locus for brown planthopper resistance in rice(Oryza sativa L.). Theor Appl Genet,2004,110:182-191
    211. Yang L, Jin G, Zhao X, Zheng Y, Xu Z, Wu W. PIP:a database of potential intron polymorphism markers. Bioinformatics,2007,23:2174-2177
    212. Yang T J, Kim J S, Kwon S J, Lim K B, Choi B S, Kim J A, Jin M, Park JY, Lim M H, Kim H I, Lim YP, Kang J J, Hong J H, Kim C B, Bhak J, Bancroft I, Park B S. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell,2006,18:1339-1347
    213. Yi B, Chen Y, Lei S, Tu J, Fu T. Fine mapping of the recessive genic male-sterile gene (Bnmsl) in Brassica napus L. Theor Appl Genet,2006,113:643-650
    214. Young N D, Zamir D, Ganal M W, Tanksley S D. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a Gene in Tomato. Genetics,1988,140:579-585
    215. Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty, P B, Li G. Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol,2009,69:553-563
    216. Zhao J, Kulkarni V, Liu N, Del Carpio D P, Bucher J, Bonnema G. BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. J Exp Bot,2010,61:1817-1825
    217. Zhou K J, Wang S H, Feng Y Q, Liu Z X, Wang G X. The 4E-ms system of producing hybrid wheat. Crop Sci,2006,46:250-255
    218.Zhu Y, Dun X, Zhou Z, Xia S, Yi B, Wen J, Shen J, MaC, Tu J, Fu T. A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus:the role of abscisic acid in early anther development. Plant Mol Biol, 2010,72:111-123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700