用户名: 密码: 验证码:
SNAC1基因在棉花上的应用及盐胁迫下棉花基因组DNA甲基化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物特别是作物对非生物逆境(干旱、冷害和高盐等)的适应性对于作物的产量和品质有着非常重要的影响。干旱和高盐是植物逆境最普遍的形式,在许多地区是农业发展的制约因素,因而抗逆育种一直受到重视。利用基因工程手段,提高作物的耐盐、耐早能力,具有深远的应用前景。植物在逆境胁迫下基因组DNA通常发生着甲基化变化,探明胁迫下植物基因组DNA甲基化的水平及变化模式对研究其抗逆机制有着重要意义。
     棉花是一种重要的经济作物,利用基因工程技术对于提高棉花的产量、增强抗逆能力以及改良纤维品质具有重要作用。本研究以最终获得用于抗逆遗传改良的转基因棉花植株为目的,通过导入并超量表达对逆境起调控作用的转录因子基因——SNAC1基因,系统地对这些转基因再生棉花植株进行抗逆性分析和鉴定。初步鉴定出SNAC1基因在抗逆遗传改良中的有效性,并对SNAC1基因作为筛选标记基因用于棉花遗传转化进行了研究。另外,以棉花品系YZ1为材料对其盐胁迫下根组织DNA甲基化的水平及变化模式进行了研究。主要结果如下:
     1.SNAC1基因是具有耐旱及耐盐的转录因子基因,本研究利用农杆菌介导的方法把SNAC1基因导入到陆地棉品系YZ1。PCR检测和RT-PCR分析表明,SNAC1基因已经整合到转基因棉花的基因组中且得到表达,共获得9个克隆系的再生植株及后代。田间农艺性状调查表明,转基因S1和S2家系的T_1代棉花植株在产量等农艺性状上与非转基因植株比较没有大的变异。棉花离体叶片失水速率测定表明,田间种植的转基因T_1代棉花植株叶片的失水速率为25%左右,低于非转基因植株叶片失水速率(30.4%)。同时,电镜扫描观察证实了离体叶片失水胁迫后转基因植株叶片的气孔关闭数量比例(71.8%)要高于野生型植株(51.5%)。水培抗盐性鉴定结果表明,在200 mmol/L NaCl胁迫5天后转基因T_2代植株幼苗的叶片相对含水量(RWC)为72%,而非转基因植株叶片的相对含水量为61%,并且非转基因植株叶片萎焉脱落要早于转基因植株。同时,转基因T_2代植株幼苗在高盐胁迫及胁迫后恢复过程中的相对生长速度(RGR)分别为7.9%和109.5%,高于非转基因植株的相对生长速度(分别为-7.4%和53.1%)。另外,在150 mmol/L NaCl胁迫下转基因胚性愈伤组织能够继续生长,而非转基因胚性愈伤组织则失水变白死亡。对转基因阳性和阴性T_1代植株的qRT-PCR分析结果表明,SNAC1基因能够调控棉花部分基因的表达,如G2(NAC familyprotein)与G3(NAM-like protein)基因的表达上升以及G5(GSA-AM2)、G11(SAMS)与AF38(ABF2)基因的表达下降。
     2.本文以SNAC1基因作为筛选标记基因,采用农杆菌介导法将SNAC1基因导入棉花细胞,同时研究了NaCl作为筛选剂用于棉花遗传转化的可行性。经过棉花下胚轴的农杆菌菌液浸染、共培养以及NaCl筛选培养,获得了转基因棉花胚性愈伤组织。对获得的胚性愈伤组织进行PCR检测证实外源基因已经整合到棉花基因组中且阳性率达50%以上,同时GUS染色也表明GUS基因得到表达。另外,本文还对NaCl作为筛选剂在农杆菌介导的棉花遗传转化中的应用浓度及方法进行了研究,即:在农杆菌侵染后棉花下胚轴的共培养时间为3~4天,愈伤组织诱导初期的NaCl筛选浓度在1.1%~1.5%(W/V)之间,随着愈伤组织的生长其耐盐性有所增强而逐渐提高NaCl的筛选浓度。与正常培养条件相比,培养基中NaCl的存在不利于胚性愈伤组织的分化,因此经过3~4次愈伤组织继代筛选后要及时去除培养基中的NaCl以促进胚性愈伤组织的分化。
     3.本研究以陆地棉品系YZ1为材料,调查不同NaCl浓度处理下棉花幼苗生长及根基因组DNA甲基化的水平和变化模式。结果表明,100 mmol/L NaCl对棉花幼苗的株高和根长生长有促进作用,而200 mmol/L NaCl则显著抑制株高和根长的生长。此外,在100~200 mmol/LNaCl胁迫下棉花幼苗的侧根数量被严重抑制。MSAP分析结果表明,经100、150和200 mmol/L NaCl胁迫处理后棉花幼苗根基因组DNA甲基化水平分别为38.1%、35.2%和34.5%,均低于对照(0 mmol/LNaCl)的甲基化水平(41.2%),同时棉花幼苗根DNA甲基化的水平与NaCl处理浓度呈显著负相关(r=-0.986)。与对照(0 mmol/L NaCl)相比,在100、150和200 mmol/LNaCl胁迫下棉花幼苗根基因组DNA发生甲基化的比率分别为6.4%、7.6%、11.3%,而去甲基化的比率分别为12.7%、11.1%、8.2%.序列分忻结果显示,部分MSAP差异片段与功能基因同源。RT-PCR分析表明,分别与MSAP差异片段M2及M3高度同源的海岛棉gyspy反转座子反转录酶基因及陆地棉cDNA基因在处理(200 mmol/LNaCI)的棉花幼苗根中有表达,但在对照(0 mmol/L NaCl)的根中则没有表达。
Plant's adaptability to abiotic stresses such as drought,cold and salinity plays an important role in plant's yield and quality.Drought and salinity stresses are the most common form of adversity,which are the limiting factors for agricultural development in many areas.Therefore,it is important to improve crop's tolerance to stresses by genetic engineering.Plant genomic DNA was always methylated under stresses and studying the level and pattern of genomic DNA methylation under stresses will help to identify the mechanisms on stress resistance.
     Cotton is one of the most important economic crops in the world,and genetic engineering played an important role in increasing cotton's yield,enhancing stress resistance and improving cotton fiber quality.The objective of this study was to gain transgenic cotton plants for genetic improvement,SNAC1 gene,a transcriptional factor regulating stress response,which was transformed into cotton and the analysis and identification of stress resistance were carried out on transgenic cotton plants systematically.The availability of SNAC1 gene was indentified preliminarily in genetic improvement and SNAC1 gene as a selection marker gene for genetic transformation of cotton was studied also.In addition,the cotton strain of YZ1 was used to study the level and pattern of DNA methylation in cotton roots under salt stress.The following results were obtained:
     1.SNAC1 gene in rice can enhance drought- and salt-tolerance,and then was transformed into Gossypium hirsutum YZ1 by Agrobacterium -mediated genetic transformation in this study.PCR detection and RT-PCR analysis indicated SNAC1 gene had been integrated into the transgenic cotton genome and at the same time regenerated plants of 9 clones were gained totally.The field surveys showed that T_1 generation of transgenic plants did not vary in many agronomic traits such as yield,compared to non-transgenic plants.The determination of rate of water loss of excised-leaves of cotton demonstrated that the RWL(rate of water loss) of T_1 generationof transgenic plants was 25%,and was lower than that(30.4%) of the non-transgenic plants.Then the observation of SEM(scanning electron microscope) also suggested the ratio of stomatal closure in the leaves of transgenic plants was 71.8%and was higher than that(51.5%) of non-transgenic plants.The results of salt-tolerance identification by water culture showed that RWC (Relative water content) of leaves of T_2 generation of transgenic seedlings was 72%under stress of 200 mmol/L NaCl after 5 d and that of non-transgenic cotton's leaves was 61%. What is more,the leaves of non-transgenic plants withered and broken off earlier than that of transgenic plants.In addion,the RGR(Relative growth rate) of transgenic plant seedlings were 7.9%and 109.5%respectively during salt stress and sress revovery,and the RGR of non-transgenic plants were only-7.4%and 53.1%respectively.Under the 150 mmol/L NaCl stess transgenic embryogenic calli can continue to grow,but non-transgenic embryogenic calli lost water and died.The results of qRT-PCR analysis suggested that in T_1 generation of transgenic positive and negative plants SNAC1 gene could regulate expressions of some genes in cotton,for example expressions of G2(NAC family protein) and G3(NAM-like protein) genes were up-regulated and expressions of G5(GSA-AM2), G11(SAMS) and AF38(ABF2) genes were down-regulated.
     2.In this study,employing SNAC1 gene was selected as a marker gene and NaCl as a selection agent,SNAC1(Stress-induced NAC 1) and GUS genes were introduced into cotton genome via Agrobacterium-mediated transformation,and the feasibility of NaCl as a selection agent for the genetic transformation of cotton was researched.Finally transgenic embryonic calli were gained after the infection with Agrobacterium,co-culture and selection culture of NaCl.Transgenic calli were confirmed by PCR analysis and positive rate of transgenic calli was 58%,and at the same time expression of the GUS gene was showed with GUS staining.Furthermore the concentration of NaCl and method for employing NaCl as a selection agent had been studied.The hypocotyls were co-cultured for 3~4 d after Agrobaterium infection.The reasonable selection concentration of NaCl should be 1.1%~1.5%(W/V) and the start concentration of NaCl in the callus induction medium should be lower.Then the concentration was increased as cotton calli proliferated.Because NaCl is not beneficial for embryo differentiation and development,NaCl should be removed from the culture medium to promote embryonic calli differentiation after calli were subcultured for 3~4 times.
     3.In this study the growth of cotton seedlings and the level and patterns of DNA methylation in the roots of cotton were investigated uder salt stress.The results showed that 100 mmol/L NaCl obviously promoted plant height and root length of cotton seedlings,but 200 mmol/L NaCl significantly inhibited the growth of cotton seedlings; 100~200 mmol/L NaCl inhibited the numbers of lateral root considerably.The analysis of MSAP showed that the level of global DNA methylation in the roots of cotton seedlings was 41.2%,38.1%,35.2%and 34.5%respectively under the stresses of 0,100,150,200 mmol/L NaCl;there was a significantly negative correlation(r=-0.986) between NaCl concentrations and the level of DNA methylation in the roots of cotton seedlings. Compared to the control(0 mmol/L NaCl) the methylation ratio of root genomic DNA were 6.4%,7.6%and 11.3%respectively,and the demethylation ratio of root genomic DNA were 12.7%,11.1%and 8.2%respectively under the stresses of 100,150 and 200 mmol/L NaCl.In addition,the analysis of sequences suggested that parts of MSAP fragments were homologous to functional genes.The results of RT-PCR showed that M3 fragment homologous to gypsy retrotransposon reverse transcriptase gene of Gossypium barbadense and M2 fragment homologous to Gossypium hirsutum cDNA GH_TMO were expressed in the roots of cotton seedlings under 200 mmol/L NaCl stress,but were not expressed under 0 mmol/L NaCl stress.
引文
1.安韩冰,朱祯.基因枪在植物遗传转化中的应用.生物工程进展,1997,17(1):18-26
    2.陈宛新,王伟,吴茜,等.修饰的cpti基因在转基因棉花后代中的表达及其抗虫性分析.高技术通讯,2002,12(6):21-25
    3.陈志贤.利用农杆菌介导法转移tfdA基因获得可遗传的抗2,4-D植株.中国农业科学,1994,27(2):31-37
    4.葛才林,杨小勇,刘向农,孙锦荷,王泽港.重金属对水稻和小麦DNA甲基化水平的影响.植物生理与生物学学报,28(5):363-368
    5.郭洪年,吴家和,陈晓英,等.转CrylAc活性杀虫蛋白及慈菇蛋白酶抑制剂B 基因的棉花.植物学报.2003,45(1):108-113
    6.郭三堆,张秀梅,崔洪志,等.抗蚜虫兼抗除草剂的转基因棉花研究.云南大学学报(自然科学版),1999,21:127
    7.郭香墨,刘海涛,张永山,等.我国转Bt基因棉育种技术与成就.中国棉花,1999,26(7):2-5
    8.郭予元,丁红建,王武刚,等.棉铃虫的研究.北京:中国农业出版社,1998:279-286
    9.胡红红.水稻逆境相关转录因子的分离和功能鉴定.[博士学位论文].武汉:华中农业大学,2006
    10.金双侠.棉花遗传转化体系的优化及突变体的创制.[博士学位论文].武汉:华中农业大学,2006
    11.李付广,李秀兰,李凤莲,等.盐胁迫对陆地棉愈伤组织的影响.棉花学报,1994,6(1):37-40
    12.李燕娥,朱祯,陈志贤,等.豇豆胰蛋白酶抑制剂转基因棉花的获得.棉花学报,1998,10(5):237-243
    13.梁雪莲;王引斌;卫建强,等.作物抗除草剂转基因研究进展.生物技术通报,2001,(2):17-21
    14.刘俊,龙震,陈金湘.棉花抗除草剂研究现状及其展望.作物研究,2007,21(5):675-678
    15.刘锡娟,刘昱辉,王志兴,王旭静.张永强.转5-烯醇式丙酮酰莽草酸-3-磷酸合酶(EPSPS)基因抗草甘膦烟草和棉花的获得.农业生物技术学报,2007,15(6):958-963
    16.罗晓丽,肖娟丽,王志安,张安红,田颖川,吴家和.菠菜甜菜碱醛脱氢酶基因在棉花中的过量表达和抗冻耐逆性分析.生物工程学报,2008,24(8):1464-1469
    17.马轩,杜雄明.提取棉花基因组DNA的一点探讨.棉花学报,2004,16(1):40-43
    18.毛树春,王香河.2007年全国棉花品种监测报告--兼谈棉花良种补贴效果.中国棉麻流通经济,2008,1:17-18
    19.倪万潮,张震林,郭三堆.转基因抗虫棉的培育.中国农业科学,1998,31(2):8-13
    20.涂礼莉,张献龙,刘迪秋,金双侠,曹景林,朱龙付,邓锋林,谭家福,张存斌.棉花纤维发育和体细胞胚发生过程中实时定量PCR内对照基因的筛选.科学通报,2007,52(20):2379-2385
    21.肖松华,刘剑光,吴巧娟,等.转外源凝集素基因棉花对棉蚜的杭性鉴定.棉花学报,2005,17(2):72-78
    22.叶武威,庞念厂,王俊娟,樊宝相.盐胁迫下棉花体内Na~+的积累、分配及耐盐机制研究.棉花学报,2006,18(5):279-283
    23.余秋英,贺浩华,彭小松.生物技术与传统育种:兼论发展江西农业生物技术的几个问题.江西农业大学学报,1998,20(4):433-436
    24.于元杰.异科外源DNA导入陆地棉引起性状变异初报.山东农业大学学报,1991,22(4):335-340
    25.岳建雄,孟钊红,张炼辉,等.以甘露糖作为筛选剂的棉花遗传转化.棉花学报,2005,17(1):3-7
    26.朱龙付,涂礼莉,曾范昌,等.一种适合于cDNA文库构建的高质量棉花RNA的简单抽提法.作物学报,2005,31(12):1657-1659
    27.Adams K L,Percifield R,Wendel J F.Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid.Genetics,2004,168:2217-2226
    28.Aina R,Sgorbati S,Santagostino A,Labra A,Ghiani A,Citterio S.Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant, 2004, 121(3): 472-480
    
    29. Anand A, Trick H N, Gill B S, Muthukrishman S. Stable transgene expression and random gene silencing in wheat. Plant Biotechnol J, 2003, 1: 241-251
    
    30. Ashikawa I. Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars.Plant Mol Biol, 2001, 45(1): 31-39
    
    31. Ashraf M. Breeding for salinity tolerance in plants. Crit Rev Plant Sci, 1994, 13:17-42
    
    32. Aufsatz W, Mette M F, Matzke A J et al. The role of MET1 in RNA directed de novo and maintenance methylation of CG dinucleotides. Plant Mol Biol, 2004, 54(6):793-804
    
    33. Bardini M, Labra M, Winfield M, Sala F. Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana. Plant Cell Tiss Org Cult, 2003, 72:157-162
    
    34. Baumer A, Wiedemann U, Hergersberg M, Schinzel A. A novel MSP/DHPLC method for the investigation of the methylation status of imprinted genes enables the molecular detection of low cell mosaicisms. Hum Mutat, 2001, 17: 423-430
    
    35. Bender J. Chromatin-based silencing mechanisms. Curr Opin Plant Biol, 2004, 7:521-526
    
    36. Bestor T H. Gene silencing methylation meets acetylation. Nature, 1998, 393: 311-312
    
    37. Bisaro D M. Silencing suppression by geminivirus proteins. Virology, 2005, 344:158-168
    
    38. Bogre L Meskiene I, Heberle-Born E, Hirt H. Stressing the role of the MAP kinases in mitogenic stimulation. Plant Mol Biol, 2000, 43: 705-718
    
    39. Boyko A and Kovalchuk I. Epigenetic control of plant stress response. Environ Mol Mutagen, 2008, 49: 61-72
    
    40. Brain M, Sylvia M. Selectable marker genes in transgenic plants: applications,alternatives and biosafety. J Biotechnol, 2004, 107: 193-232
    
    41. Breusegem F V, Dekeyser R, Gielen J, Montagu M V, Caplan A. Characterization of a S-Adenosylmethionine Synthetase Gene in Rice. Plant Physiol, 1994, 105:1463-1464
    
    42. Brown P T H. DNA methylation in plants and its role in tissue culture. Genome, 1989,31:717-729
    43.Buryanov Y I,Shevchuk T V.DNA methyltransferases and structural-functional specificity of eukaryotic DNA modification.Biochemistry(Moscow),2005,70:730-742
    44.Cao X,Jacobsen S E.Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing.Curt Biol,2002,12:1138-1144
    45.Cao X,Springer N M,Muszynski M G,et al.Conserved plant genes with similarity to mammalian denovo methyltransferases.Proc Natl Acad Sci USA,2000,97:4979-4984
    46.Cervera M T,Ruiz-Garcia L,Martinez-Zapater J M.Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.Mol Genet Genomics,2002,268(4):543-552
    47.Chan S W,Henderson I R,Jacobsen S E.Gardening the genome DNA methylation Arabidopsis thaliana.Nat Rev Genet,2005,6:351-360
    48.Chan S W,Zilberman D,Xie Z,Johansen L K,Carringtion J C,Jacobsen S E.RNA silencing genes control de novo DNA methylation.Science,2004,303:1336-1336
    49.Chehab E W,Patharkar O R,Hegeman A D,Taybi T,Cushman J C.Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant.Plant Physiol,2004,135:1430-1446
    50.Cheng C,Daigen M,Hirochika H.Epigenetic regulation of the rice retrotransposon Tos17.Mol Genet Genomics,2006,276(4):378-390
    51.Cheng N H,Pittman J K,Zhu J K,Hirschi K D.The protein kinase SOS2 activates the Arabidopsis H~+/Ca~(2+) antiporter CAX1 to integrate calcium transport and salt tolerance.J Biol Chem,2004,279:2922-2926
    52.Choi C S and Sano H.Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants.Mol Genet Genomics,2007,277:589-600
    53.Choi H,Hong J,Ha J,Kang J,Kim S Y.ABFs,a family of ABA-responsive element binding factors.Biol Chem,2000,275:1723-1730
    54.Cogoni C,Macino G.Conservation of transgene-induced post-transcriptional gene silencing in plants and fungi.Trends Plant Sci,1997,2:438-443
    55.Culpepper A S,York A C.Weed management in no-tillage bromoxynil-tolerant cotton (Gossypium hirsutum).Weed Technology,1997,11:335-345
    56. Deak K I, Malamy J. Osmotic regulation of root system architecture. Plant J, 2005, 43(1): 17-28
    57. Devaux P, Kilian A, Kleinhofs A. Anther culture and Hordeum bulbosum-derived barley double haploids: mutations and methylation. Mol Gen Genet, 1993, 241(5/6): 674-679
    58. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Elmavan T, Proux F, Vaucheret H. Arabidopsis RPA2: a genetic link among transcriptional gene silencing, DNA repair, and DNA replication. Curr Biol, 2005, 15: 1919-1925
    59. Edward K, Catherine A, Jim H, Mark A, Marc R. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J, 2000, 23(2): 267-278
    60. Fa'bio T S N, Paulo S S, Sandra R C, et al. SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci, 2005, 169:93-106
    61. Feschotte C, Jiang N, Wessler R S. Plant retrotransposable elements: Where genetics meets genomics. Nat Rev Genet, 2002, 3(5): 329-341
    62. Finnegan E J, Genger R K, Kovac K, Kovac K, Peacock W J, Dennis E S. DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci USA, 1998, 95(10): 5824-5829
    63. Finnegan EJ, Kovac KA. Plant DNA methyltransferases. Plant Mol Biol, 2000, 43: 189-201
    64. Finnegan EJ, Peacock WJ, Dennis ES. DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev, 2000, 10: 217-223.
    65. Firozabady E, DeBoer D L, Metlo D J, et al. Transformation of cotton by Agroba ceterium tumefaciens and regereration of transgenie plants. Plant Mol Biol, 1987, 10:105-116
    66. Freitag M, Selker E U. Controlling DNA methylation: many roads to one modification. Curr Opin Genet Dev, 2005, 15: 191-199
    67. Geert Potters, Taras P, Pasternak, Yves Guisez, Klaus J, Palme and Marcel A.K. Jansen. Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci, 2007, 12: 1360-1385
    68. Gendrel A V, Colot V. Arabidopsis epigenetics: when RNA meets chromatin. Curr Opin Plant Biol, 2005, 8: 142-147
    69. Gener R K, Kovac K A, Dennis E S. Multiple DNA methyltransferase genes in Arabidopsis thaliana. Plant Mol Biol, 1999, 41: 269-278
    70. Gong D, Guo Y, Jagendorf AT, Zhu JK. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol, 2002, 130:256-264
    71. Gong D, Guo Y, Schumaker KS, Zhu J K. The SOS3 Family of Calcium Sensors and SOS2 Family of Protein Kinase in Arabidopsis. Plant Physiol, 2004, 134: 919-926
    72. Gonzalgo ML, Jones PA. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res, 1997, 25: 2529-2531
    73. Guo H W, Ecker J. The ethylene signaling pathway: new insight. Curr Opin Plant Biol, 2004, 7: 40-49
    74. Guo Y, Halfter U, Ishitani M, Zhu J K. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 2001, 13: 1383-1400
    75. Gutierrez R A, Green P J, Keegstra A K, Ohlrogge J B. Phylogenetic profiling of the Arabidopsis thaliana proteome: what proteins distinguish plants from other organisms? Genome Biol, 2004, 5 (8): 53
    76. Haake V, Cook D, Riechmann JL, et al. Transcription Factor CBF4 is a Regulator of Drought Adaptation in Arabidopsis. Plant Physiol, 2002, 130: 639-648
    77. Halliday KJ, Fankhauser C. Phytochrome-hormonal signalling networks. New Phytologist, 2003, 157: 449-463
    78. Hans J B, Gong Q Q, Li P H, Ma S S. Unraveling abiotic stress tolerance mechanisms--getting genomics going. Curr Opin Plant Biol, 2006, 9: 180-188
    79. Hao Y J, Deng X X. Stress treatments and DNA methylation affected the somatic embryogenesis of Citrus callus. Acta Bot Sin, 2002, 44(6): 673-677
    80. He X J, Mu R L, Cao W H, Zhang Z G, Zhang J S, Chen S Y. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J, 2005, 44(6): 903-916
    81. Herman J G, Graff J R, Myohanen S, Nelkin B D, Baylin S B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA, 1996, 93: 9821-9821
    82. Holger P. Removing selectable marker genes: taking shortcut. Trends in Plant Sci, 2000, 5 (7): 273-2742
    83. Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103(135): 12987-12992
    84. Hwang L, Sze H, Harper J F. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca~(2+) pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci USA, 2000, 97: 6224-6229
    85. Jablonka E, Goiten R, Marcus M, Cedar H. DNA hypomethylation causes an increase in DNase I sensitivity and an advance in the timing of replication of the entire X chromosome. Chromosoma, 1985, 93(2): 152-156
    86. Jaligot E, Beule T, Rival A. Methylation-sensitive RFLPs: Characterization of two oil palm markers showing somaclonal variation-associated polymorphism. Theor Appl Genet, 2002, 104(8): 1263-1269
    87. JIN S X, Zhang X L, Liang S G, et al. Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult, 2005, 81 (2): 229-237
    88. Johnston J W, Harding K, Bremner D H, Souch G, Green J, Lynch P T, Grout B, Benson E E. HPLC analysis of plant DNA methylation: a study of critical methodological factors. Plant Physiol Biochem, 2005, 43: 844-853
    89. Joyce S M, Cassells A C. Variation in potato microplant morphology in vitro and DNA methylation. Plant Cell Tissue Organ Cult, 2002, 70: 125-137
    90. Jullien P E, Kinoshita T, Ohad N, Berger F. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell, 2006, 18(6): 1360-1372
    91. Kapoor A, Agarwal M, Andreucci A, Zheng X, Gong Z, Hasegawa P M, Bressan R A, Kumpatla S P, Teng W, Buchholz W G, Hall T C. Epigenetic transcriptional silencing and 5-Azacytidine-mediated reactivation of a complex transgene in rice. Plant Physiol, 1997, 115:361-373
    92. Kapoor A, Agarwal M, Andreucci A, Zheng X, Gong Z, Hasegawa P M, Bressan R A, Zhu J K. Mutations in a conserved replication protein suppress transcriptional gene silencing in a DNA-methylation-independent manner in Arabidopsis. Curr Biol,2005b, 15: 1912-1918
    
    93. Kapoor A, Agius F, Zhu J K. Preventing transcriptional gene silencing by active DNA demethylation. FEBS Lett, 2005a, 579: 5889-5898
    
    94. Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet, 2003, 33(1): 102-106
    
    95. Kazuo Shinozaki, Kazuko Yamaguchi-Shinozakiy and Motoaki Seki. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 2003, 6:410-417
    
    96. Kenneth M, Mahmut T, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet,2006, 38(8): 948-952
    
    97. Khan M A. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta. Pakistan Aquatic Bot, 2001, 70(3): 259-268
    
    98. Knight H, Knight M R. Abiotic stress signalling pathways: specificity and cross-talk. Trends in Plant Sci, 2001, 6: 262-267
    
    99. Kovalchuk O, Burke P, Arkhipov A, Kuchma N, Jill James S, Kovalchuk I, Pogribny I. Genome hypermethylation in Pinus silvestris of Chernobyl - a mechanism for radiation adaptation? Mutation Res, 2003, 529(1-2): 13-20
    
    100.Kumar A, Bennetzen J L. Plant retrotransposons. Annu Rev Genet, 1999, 33: 479-532
    101.Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini-Castiglione M,Bracale M. Analysis of cytosine methylaion pattern in response to water deficit in pea root tips. Plant Biol, 2002, 4(6): 694-699
    
    102.Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet, 2002, 3(9): 662-673
    103.Lin Z X, Zhang X L, Nie Y C, He D H, Wu M Q. Construction of a genetic linkage map for cotton based on SRAP. Chin Sci Bull, 2003, 48(19): 2063-2067
    104.Liu B, Brubaker C L, Mergeai G, Cronn R C, Wendel JF.Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome, 2001, 44: 321-330
    105.Liu J, Shitani M, Halfter U, Kim C S, Zhu J K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA, 2000, 97: 3730-3734
    106.Loidl P. A plant dialect of the histone language. Trends Plant Sci, 2004, 9: 84-90
    107.Long L, Lin X, Zhai J, Kou H, Yang W, Liu B. Heritable alteration in DNA methylation pattern occurred specifically at mobile elements in rice plants following hydrostatic pressurization. Biochem Biophys Res Commun, 2006, 340: 369-376
    
    108.Lu G Y, Wu X M, Chen B Y, Gao G Z, Xu K. Evaluation of genetic and epigenetic modification in rapeseed(Brassica napus) induced by salt stress. J Integr Plant Biol,2007,49(11): 1599-1607
    
    109.Lyon B R, Cousins Y, Llewellyn D J, et al. Cotton plants transformed with a bacterial degradation gene are protected from accidental spray drift damage by the herbicide 2,4-dichlorophenoxyacetic acid. Transgenic Res, 1993,2: 162-169
    
    110.Marina S, Rody S, Michael G W, et al. An efficient mannose selection protocol for tomato that has no adverse effect on the ploidy level of transgenic plants. Plant Cell Rep, 2004, 23: 236-245
    
    111 .Matthes M, Singh R, Cheah S C, Karp A. Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. Theor Appl Genet, 2001, 102: 971-979
    
    112.Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette MF, Matzke A J. Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim Biophys Acta,2004, 1677: 129-141
    113.Mayrose M, Bonshtien A, Sessa G. LeMPK3 is a mitogen-activated protein kinase with dual specificity induced during tomato defense and wounding responses. J Biol Chem, 2004, 279: 14819-14827
    114.Mcclelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonuclease and DNA modification methyltransferases. Nucl Acids Res,1994, 17(17): 3640-3659
    115.Menke F L, van Pelt J A, Pieterse C M, HIessig D F. Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell, 2004, 16: 897-907
    
    116.Mette M F, Aufsatz W, van der Winden J, Matzke M A, Matzke A J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J,2000,19:5194-5201
    117.Müller E, Brown P T H, Hartke S and L(o|¨)rz H. DNA variation in tissue-culture derived rice plants. Theor Appl Genet, 1990, 80: 673-679
    118.Mustilli A C, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by ab-scisic acid and acts upstream of reactive oxygen species production. Plant Cell, 2002, 14(12): 3089-3099
    119.Nakabayashi K, Okamoto M, Koshiba T, Kamiva Y, Nambara E. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J, 2005, 41: 697-709
    120.Nicholas S. Plant resistance to environmental stress. Curr Opin Biotechnol, 1998, 9:214-219
    121.O'Rourke S M, Herskowitz U. The Hogl MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccaromyces ccrevisiae. Genes Dev, 1998, 12:2874-2886
    122.Pandey S, Tiwari S B, Upadhyaya K C, Sopory S K. Calcium signaling: linking environmental signals to cellular functions. Crit Rev Plant Sci, 2000, 19: 291 -318
    123.Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol Environ Saf, 2005, 60(3): 324-349
    124.Patharkar O R, Cushman J C. A stress-induced calcium- dependent protein kinase from mesembthemum crystallium phosphorylates a two-component pseudo-response regulator. Plant J, 2000, 24: 679-691
    125.Peraza-Echeverria S, Herrera-Valencia V A, Kay A. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Sci, 2001, 161: 359-367
    126.Popescu C F, Falk A, Glimelius K. Application of AFLPs to characterize somaclonal variation in anther-derived grapevines. Vitis, 2002, 41: 177-182
    127.Portis E, Acquadro A, Comino C, Lanteri S. Analysis of DNA methylation during germination pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci, 2004, 166(1): 169-178
    128.Qiu Q S, Guo Y, Dietrich M, Schumaker K S, Zhu J K. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc.Natl. Acad. Sci. USA, 2002, 99: 8436-41
    129.Razin A, Cedar H. DNA methylation and gene expression. Microbiol Mol Biol Rev,1991, 55(3): 451-458
    130.Richards E J, Peacock W J, Dennis E S. DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev, 2000, 10(2): 217-223
    
    131.Richards E J. DNA methylation and plant development. Trends Genet, 1997, 13(8): 319-323
    132.Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science, 2000, 290 (5499):2105-2110
    133.Riechmann J L, Ratcliffe O J. A genomic perspective on plant transcription factors. Curr Opin Plant Biol, 2000, 3: 423-434
    134.Rush L J, Plass C. Restriction landmark genomic scanning for DNA methylation in cancer: past, present, and future applications. Anal Biochem, 2002, 307: 191-191
    135.Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca~(2+)-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 2000, 23: 319-327
    136.Sakuma Y, Liu Q, Dubouzet JGS et al. DNA-Binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998-1009
    137.Sánchez-Aguayo I, Rodríguez-Galán J M, García R, Torreblanca J, Pardo J M. Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants. Planta, 2004, 220: 278-285
    138.Sanchez-Ban-ena M J, Matinez-Ripoll M, Zhu J K, Albert A. The Structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J Mol Biol, 2005, 345: 1253-1264
    139.Sanders D, Pelloux J, Brownlee C, Harper JF. Calcium at the crossroads of signalling.Plant Cell, 2002, 14: 5401-5417
    140.Saze H, Mittelsten Scheid O, Paszkowski J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet, 2003,34(1): 65-69
    141.Scott R J, Spielman M. Epigenetics: imprinting in plants and mammals--the same but different? Curr Biol, 2004, 14: R201- R203
    
    142.Shi H, Ishitani M, Kim C, Zhu J K. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na~+/H~+ antiporter. Proc Natl Acad Sci USA, 2000, 97: 6896-6901
    143.Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 2003b, 6:410-417
    144.Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol, 2000, 3:217-223
    145.Shou H, Bordallo P, Fan J B, et al. Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci USA, 2004a, 101: 3298-3303
    146.Shou H, Bordallo P, Wang K. Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot, 2004b, 55: 1013-1019
    147.Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. Cell, 1996, 85: 159-170
    148.Spollen W G, Sharp R E, Saab I N, Wu Y. Regulation of Cell Expansion in Roots and Shoots at Low Water Potentials. In: Smith J A C, Griffiths H eds. Water Deficits: Plant Responses from Cell to Community. Oxford: BIOS Scientific Publishers, 1993.pp 37-52
    149.Steward N, Ito M, Yamaguchi Y, et al. DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem, 2002, 277(40): 37741-37746
    150.Stokes T L, Kunkel B N, Richards E J. Epigenetic variation in Arabidopsis disease resistance. Genes Dev, 2002, 16: 171-182
    151.Tabuchi T, Kawaguchi Y, Azuma T, Nanmori T, Yasuda T. Similar Regulation Patterns of Choline Monooxygenase, Phosphoethanolamine N-Methyltransferase and S-Adenosyl-L-Methionine Synthetase in Leaves of the Halophyte Atriplex nummularia L. Plant Cell Physiol, 2005, 46(3): 505-513
    152.Tariq M, Paszkowski J. DNA and histone methylation in plants. Trends Genet, 2004,20:244-251
    153.Thomas J C, Adams D G, Keppenne V D, et al. Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep, 1995, 14(12): 758-762
    154.Tzvi T and Vitaly C. Agrobacterium-mediated genetic transformation of plants:biology and biotechnology. Curr Opin Biotechnol, 2006, 17(2): 147-154
    155.Umback P, Johnson P, Barton K, Swain W. Genetically transformed cotton plants.Biotechnology, 1987, 5: 263-264
    156.Van der Weele C M, Spollen W G, Sharp R E, Baskin T I. Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J Exp Bot, 2000, 51 (350): 1555-1562
    157.Vanyushin B F. DNA methylation in plants. Curr Top Microbiol Immunol, 2006, 301:67-122
    158.Vanyushin B F. Enzymatic DNA methylation is an epigenetic control for genetic functions of the cell. Biochemistry (Moscow), 2005, 70: 488-499
    159.Wang W X, Basia V, Arie A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003, 218:1-14
    160.Wasenegger M, Heimes S, Riedel L, Sanger H L. RNA-directed de novo methylation of genomic sequences in plants. Cell, 1994, 76: 567-576
    161.Wassenegger M, Pelissier T. A model for RNA-mediated gene silencing in higher plants. Plant Mol Biol, 1998, 37(2): 349-362
    162.Widmann C, Gibson S, Jarpe M, Johnson G. Mitogen-activated protein Icinase:conservation of a threekinase module from yeast to human. Physiol Rev, 1999, 79:143-180
    163.Wu J, Luo X, Guo H, Xiao J, Tian Y. Transgenic cotton, expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids. Plant Breeding, 2006,125:390-394
    164.Xiao W, Custard K D, Brown R C, Lemmon B E, Harada J J, Goldberg R B, Fischer R L. DNA methylation is critical for Arabidopsis embryogenesis and seed viability.Plant Cell, 2006, 18(4): 805-814
    165.Xiong L M, Schumaker K S, Zhu J K. Cell signaling during cold, drought and salt stress. Plant Cell, 2002, 14: 165-183
    166.Xiong Z, Laird P W. COBRA: a sensitive and quantitative DNA methylation assay.Nucleic Acids Res, 1997, 25: 2532-2534
    167.Xu M, Li X, Korban S S. AFLP-based detection of DNA methylation. Plant Mol Biol Rep, 2000, 18:361-368
    168.Yan P S, Chen C M, Shi H, Rahmatpanah F, Wei S H, Caldwell C W, Huang T H M. Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res, 2001, 61: 8375-8380
    169.Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K,Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470-3488
    170.Yoder J A, Walsh C P, Bester T H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet, 1997, 13(8): 335-340
    171.Zhao Y, Yu S, Xing C, Fan S, Song M. Analysis of DNA methylation in cotton hybrids and their parents. Mol Biol, 2008, 42(2): 169-178
    172.Zhu J K. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol, 2003,6:441-445
    173.Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol,2002, 53: 247-273
    174.Zhu L F, Tu L L, Zeng F C, Liu D Q, Zhang X L. An improved simple protocol for isolation of high quality RNA from Gossypium spp. suitable for cDNA library construction. Acta Agron Sin, 2005, 31(12): 1657-1659
    175.Zilberman D, Cao X, Johansen L K, Xie Z, Carrington J C, Jacobsen S E. Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol, 2004, 14: 1214-1220
    176.Zluvova J, Janousek B, Vyskot B. Immuno-histchemical study of DNA methylation dynamics during plant development. J Exp Bot, 2001, 52(365): 2263-2273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700