用户名: 密码: 验证码:
颉颃细菌对根结线虫病的生防作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南方根结线虫(Meloidogyne incognita Kofoid & White)是重要的土传病害病原物,具有寄主范围广、抗逆性强、难以根除等特点,防治上既缺乏优良的抗病品种,又缺乏低毒、高效的化学防治药剂。生物防治克服了上述弊病,因而成为研究的热点,越来越受到人们的重视。
     我们选取了26株颉颃细菌,测定它们对南方根结线虫二龄幼虫致死率和卵孵化的抑制率,26株颉颃细菌对南方根结线虫二龄幼虫致死率最高的为77.8%,最低的为1.3%,对卵孵化的抑制率最高为87.8%,最低为-16.5%。根据以上室内测定结果,我们挑选13个菌株(12株对二龄幼虫致死率达到40%以上的菌株和1个随机挑选作为对照的菌株)用于温室防效测定。其中,防效最低为30.0%,最高达到65.6%。此外,我们又测定了26株颉颃细菌产蛋白酶和几丁质酶的活性,结果显示20株菌株具有蛋白酶活性,而14株具有几丁质酶的活性。经过分析,13个菌株的温室防效和蛋白酶活性相关系数高达0.92,但温室防效与几丁质酶活性相关系数仅为0.06。因此细菌产蛋白酶活性作为一个指标用于筛选根结线虫颉颃菌具有一定的可行性。本实验选取了在温室试验中防效最好和产蛋白酶活性高的菌株AR156分别在江苏和山东两地做田间试验。在江苏淮安,AR156防效为73.4%;在山东枣庄,AR156防效为71.0%,菌株AR156的防效都显著高于农药阿维菌素的防效。
     我们对芽孢杆菌制剂AR156采用了四种不同的大田使用方法防治黄瓜根结线虫,分别是AR156的堆肥处理(A)、AR156的灌根处理(B)、AR156的喷雾处理(C)、AR156与化学农药辛硫磷的协同使用处理(D)、AR156采用堆肥处理、灌根处理和与化学农药辛硫磷的协同使用处理,90天后和对照相比,对根结线虫防治效果分别为74.4%、74.9%和73.3%,增产率分别达到194.8%,193.1%和189.7%;AR156喷雾处理和对照相比的防治效果为21.7%,增产率为37.9%,而化学农药辛硫磷防治效果却达到61.1%,增产率达155.2%。
     生防菌AR156是本实验室从镇江的森林根围土分离得到,经初步鉴定为芽孢杆菌(Bacillus spp.)。该菌株具有产蛋白酶、几丁质酶、纤维素酶和嗜铁素的活性,并具有解磷固氮能力;AR156在根围具有很强的定殖能力,处理前种子的带菌量为每粒种子9.6×106CFU,14天后AR156rif在番茄根围的定殖量为8.9×105CFU/g土样。AR156处理5天后,青枯病原菌HB10挑战接种;病原菌接种14天和21天后,AR156对青枯病的防效分别为75.3%和50.7%。
     枯草芽孢杆菌(Bacillus subtilis (Ehrenberg) Cohn)的SpoOA是非常重要的转录因子,可以调控枯草芽孢杆菌生物膜(biofilm)的形成。本实验通过单交换的方式,构建了spoOA基因的突变株mBs,又通过双交换产生了突变体mBs的互补菌株CmBs。PopW是来源于青枯病菌的一种harpin蛋白,具有诱导植物抗病性和促进植物生长的作用。我们构建了含有p43强启动子和nprB信号肽的PopW基因的表达载体pHTPOW,将表达载体pHTPOW分别转入B. subtilis 168和突变体mBs,得到两株工程菌株BsW、mBsW。SDS-PAGE和Western blot结果表明BsW和mBsW都能分泌PopW蛋白。工程菌株BsW、mBsW,在离体试验中,处理24 h和48 h后,J2死亡率分别为53.4%、79.6%、59.0%和89.7%;工程菌Bsw和mBsw的菌悬液处理番茄植株,6周后根系上的卵块和根结数目明显减少,防效分别为60.0%和54.3%。
     复合菌剂GJ23在已经完成的室内离体试验和温室实验中,表现出对根结线虫很好的防治作用。大田试验表明使用复合菌剂GJ23能有效防治黄瓜根结线虫,同时对黄瓜有一定的促进生长和增产效应。90天后,复合菌剂GJ23对根结线虫防治效果为63.3%,增产率达到39.4%,均显著高于1.8%阿维菌素乳油。
Meloidogyne incognita (Kofoid & White) is an important plant soil-borne pathogen which can infect hundreds of hosts, and it is difficult to control because of its high tolerance and ineradicable traits. No appropriate disease-resistant cultivar and chemical pesticides with low toxicity and high efficacy were used commonly. Meanwhile, using of biological control agents (BCAs) may provide a friendly alternative to chemical pesticides for plant soil-borne disease control. Therefore, it would be necessary to explore new biological control agents to control these plant pathgens.
     Twenty-six bacterial strains that had demonstrated antagonism to some fungal and bacterial pathogens were evaluated for their ability to inhibit the root-knot nematode. In the in vitro test, the 26 strains caused the J2 mortality rates of M. incognita varying from 1.3% to 77.8% and the inhibition rates of egg-hatching ranging from -16.5% to 87.4%. The 12 strains inducing J2 mortality over 40% were chosen for further greenhouse experiments and one of the remaining strains was randomly selected as a control, in which their biocontrol efficacy reached from 30.0% to 65.6%. On the other side, the 26 strains were tested for their protease and chitinase activities, which revealed that 20 of them had protease activities and 14 of them had chitinase activities. We investigated the relationships between the biocontrol efficacy and protease or chitinase activities. The biocontrol efficacy against M. incognita of the antagonistic strains were highly correlated to their in vitro protease activities (r=0.92), but not to their chitinase activities (r=0.06). We proposed that the in vitro protease activity of an antagonistic strain could be used as a parameter for selecting the BCAs against the root-knot disease. We further assessed the biocontrol efficacy of strains Bacillus sp. AR156 in field. Consequently, the biocontrol efficacy of AR156 reached 74.3%, in the field in Huai-an, Jiangsu, and 71.0% in Zao-zhuang, Shandong, respectively, which were significantly higher than that of abamectin:45.4% in Huai-an and 42.2% in Zao-zhuang.
     Biocontrol efficacy of Bacillus sp. AR156 with diferent application methods towards Meloidogyne root-knot were tested under field conditions. The application methods included (A) composting AR156 with rapeseed residue and made compost before application, (B) watering diluted AR156 into rhizosphere of plants, (C) spraying diluted AR156 into field, and (D) watering plants with dilution of AR156 preparation after plants treated by phoxime for 3 days. In field trials at Xuzhou in 2007, the total average control efficacy for treatments A, B, and D reached 74.4%,74.9% and 73.3%. And the yield increased 194.8%,193.1%, and 189.7%, respectively. However, method C, spraying, showed worse disease control efficacy than the other methods and the control efficacy was only 21.7% and the yield increased 39.7%. The average control efficacy of phoxime was 61.1% and the yield increased 155.2%.
     Strain AR156(Bacillus sp.) was isolated from Zhen Jiang forest soil in Nanjing, Jiangsu province. In order to investigate the mechanism of this biocontrol agent against plant disase, we studied its colonization and other activities. This strain could produce protease, cellulase, chitinase and siderophore. It also has the functions of phosphate-dissolving and nitrogen-fixing. Fourteen days after seed inoculation with 10 ml AR156 suspension with the concentration of 9.6×109 CFU/ml, the density of this strain in rhizosphere of tomato was 8.9×105 CFU/g soil. In addition, strain AR156 could induce the resistance of tomato against the diseases caused by Ralstonian solanacearum HB10. In green house experiments, on the 14th and 21th day after tomato plants were treated with strain AR156, the average biocontrol efficacy were 75.3% and 50.7%, respectively.
     Bacillus subtilis (Ehrenberg) Cohn have long been exploited for industrial and biotechnological applications. The completion of the sequencing and annotation of the B. subtilis 168 strain genome provieded a complete view of the Bacillus subtilis protein machinery. spoOA-deficient mutant of B. Subtilis 168 (mBs) contructed by using the pBGSCsp vector which could be integrated into spoOA locus within the B. subtilis 168 chromosome by single-crossover could not form biofilm. Meanwhile, another vector, pSGspOA, was integrated into amyE locus of the mutant (mBs) by double crossover, and we got the complementary strain named CmBs. PopW from Ralstonia solanacearum, is a member of the harpin group of proteins, eliciting hypersensitive cell death in non-host plants, inducing disease resistance in plants and enhancing plant growth. To expression and secreting PopW protein in Bacillus subtilis, we constructed recombinant expression vector pHTPOW, which carried p43 promoter, signal peptide element nprB, and the total PopW gen. The shuttle vector pHTPOW was transformed into competent cell of B. subtilis 168 and mBs separately, and two genetically modified strains, BsW and mBsW were constructed. The expression of PopW in two genetically modified strains was confirmed by SDS-PAGE and Western-blot analysis. In the in vitro test, on the 24 and 48 hous after treated with genetically modified strains, the J2 mortality rates of M. incognita were 53.4%, 79.6%,59.0%, and 89.7%, separately. On the 42th day, the biocontrol efficacy of strains (BsW and mBsW) reached 60.0% and 54.3%, respectively.
     In this study, bacteria GJ23 was used to control root-knot nematodes Meloidogyne spp., and it achieved a good efficacy. Previously, strain GJ23 showed great mortality of J2, in vitro. In the greenhouse tests, GJ23 could effectively inhibit gall formation in the roots of tomato. Under field conditions, the average biocontrol efficacy investigated on the 90th day after cucumber plants were treated with strain GJ23 was 63.3%, and yield increasement was 39.4%. As for control, the biocontrol efficacy and yield increasement of 1.8% abamectin were 35.4% and 13.2%, seperately.
引文
1. Aalten PM, Vitour D, Blanvillain D, Gowen SR, Sutra L. Effect of rhizosphere fluorescent Pseudomonas strains on plant parasitic nematodes Radopholus similis and Meloidogyne spp. Lett Appl Microbiol,1998,27:357-361.
    2. Agaisse H, Lereclus D. Expession in Bacillus Subtilis of the Bacillus Thuringiensis CryⅢA Toxin Gene is not dependent on a Sporulation Specific Sigma Factor and is increased in a SpoOA Mutant [J]. J Bacterial,1994,176(15):47342-4741.
    3. Ahmad JS, Baker R. Rhizosphere competence of Trichoderma harzianum [J]. Phytopathology,1987,77:182-189.
    4. Ahman J, Johansson T, Olsson M, et al. Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity [J]. Appl Environ Microbiol,2000,68:3408-3415.
    5. Ahn IP, Park K, Kim CH. Rhizobacteria-induced resistance perturbs viral disease progress and triggers defense-related gene expression [J]. Molecular Cell,2002,13:302-308.
    6. Akhtar M. Studies on the predatory behavior of Mononchus aquaticus [J]. International Nematology. Network Newsletter,1989,6(2):8-9.
    7. Ali NI, Siddiqui IA, Shaukat SS, et al. Nematicidal activity of some strains of Pseudomonas spp [J]. Soil Biology and Biochemistry,2002,34:1051-1058.
    8. Anastasiadis IA, Giannakou IO, Prophetou-Athanasiadou DA. The combined effect of the application of a biocontrol agent Paecilomyces lilacinus, with various practices for the control of root-knot nematodes [J]. Crop Prot.2008,27:352-361.
    9. Antoun H, Prevost D. Ecology of plant growth promoting rhizobacteria. In:Siddiqui ZA (Ed) PGPR:Biocontrol and Biofertilization, Springer. Printed in the Netherlands,2005, pp:1-38.
    10. Anuratha CS, Gnanamanickam SS. Biological control of bacterial wilt caused by Pseudomonas solanacearum in India with antagonistic bacteria [J]. Plant and Soil,1990, 124:109-116.
    11. Aoki M, Uehara K, Koseki K, et al. An antimicrobial substance produced by Pseudomonas cepacia B5 against the bacterial wilt disease pathogen Pseudomonas solanacearum. Agric Biol Chem.1991,55:715-722.
    12. Ash C, Priest FC, Collins MD. Molecular identification of rRNA group 3 bacilliusing a PCR probe test [J]. Antonie Van Leeuwenhoek,1994,64:253-260.
    13. Azmi MI. Predatory behaviour of nematodes. Biological control of Helicotylenchus dihystera through the predaceous nematodes, Iotonchus monhystera, Indian J. Nematol.1983, 13:1-8.
    14. Bacon CW, Yates IE, Hinton DM, et al. Biological control of Fusarium moniliforme in maize. Environ Health Perspect,2001,109(S2):325-332.
    15. Baker KF. Evolving concepts of biological control of plant pathogens. Ann. Rev.Phytopathol.1987,25:67-85.
    16. Bano N, Musarrat J. Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent [J]. Curr Microbiol,2003,46:324-328.
    17. Bargabus RL, Zidack NK, Sherwood JW, et al. Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent [J]. Physiological and Molecular Plant Pathology,2002,61:289-198.
    18. Barker KR, Carter CC, Sasser JN. An advanced treatise on Meloidogyne. Vol.11: Methodology. Raleigh:North Carolina State University Graphics,1985,69-78.
    19. Beatty PH, Jensen SE. Paenibacillus polymyxa produces fusaricidin type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola [J]. Can J Microbial,2002,48:151.
    20. Becker, JO. Effects of rhizobacteria on root-knot nematodes and gall formation [J]. Phytopathology,1988,78:1466-1469.
    21. Benhamou N, Kloepper JW, Quadt-Hallman A, Tuzun S. Induction of Defense-Related Ultrastructural Modifications in Pea Root Tissues Inoculated with Endophytic Bacteria.Plant Physiol.1996,112(3):919-929.
    22. Bernier L, Cooper RM, Charnley AK, et al. Transformation of the entomo pathogenic fungus Metarhizium anisopliaeto benomyl resistance [J].FEMS Microbiology Letters,1989, 60:261-266.
    23. Bilgrami AL. Resistance and susceptibility of prey nematodes to predation and strike rate of the predators, Mononchus aquaticus, Dorylaimus stagnalis and Aquatides thornei [J]. Fundamental and Applied Nematology,1992,15(3):265-270.
    24. Bonants PJ, Fitters PF, Thijs H, Den BE, Waalwijk C, Henfling JW. A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology 1995,141:775-784.
    25. Brocmeier U, Wendorff M, and Eggert T. Versatile expression and secretion vectors for Bacillus subtilis. Current Microbiology,2006,52:143-148.
    26. Burg RW, Miller BM, Baker EE, et al. Avermectins, new family of potent anthelmintic agents, producing organism and fermentation, Antimicrob. Agents Chemother,1979,15, pp: 361-367.
    27. Burr TJ, Schroth MN, Suslow T. Increased Potato Yields by Treatment of Seed pieces with Specific Strains of Pseudomonas fluorescens and P. putida Disease Control and Pest Management,1978,1377-1383.
    28. Cassidy GH. Some Mononchs of Hawaii [J]. Hawaii Plant Rec,1931,35:305-339.
    29. Castoria R, Curtis FD, Lima G, et al. β-1,3-glucanase activity of two saprophytic yeasts and possible mode of action as biocontrol agents against postharvest diseases, Postharvest Biol [J]. Technol,1997,12, pp:293-300.
    30. Cayrol, DJ, Djian C, Pijarowski L. Study of the nematocidal properties of the culture filtrate of the nematophagous fungus (Paecilomyces lilacinus). Review de Nematologie,1989, 12:331-336.
    31. Channer AG, Daudi AT, Gowen SR. The potential of Pasteuria penetrans for the control of Meloidogyne javanica:theory and practice. Nematologica 1990,36:339-340.
    32. Chattopadhyay D, Langsley G, CarsonM, Recacga R, Delucas L, Smith C. Structure of then nucleotide-binding domain of Plasmodium falciparum Rab6 in the GDP-bound form. Acta Crystallogr,2000, D56 (8):937-944.
    33. Chen WY. Effect of avirulent bacteriocin-producing strains of Pseudomonas solanacearum on the control of bacterial wilt of tomato [J]. Plant Pathology,1984,33:245-252.
    34. Choong-MR, Jinwoo K, Okhee C, et al. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame [J]. Biological Control,2006, 39(3):282-289.
    35. Chung, Hoitink HAJ. Interactions between thermophilic fungi and Trichoderma hamatum in suppression of Rhizoctonia damping-off in a bark compost-amended container medium, Phytopathology,1990,80:73-77.
    36. Cobb NA. Fungus maladies of the sugar cane with notes on associated insects and nematodes. Hawaiian Sugar Plant. Assoc. Div. Pathol. Physiol,1906.5:254.
    37. Cohn E, Mordechai M. Experiments in suppressing citrus nematode [J]. Nematol. Mediterr, 1974,2:43-53.
    38. Cook RJ, Backer KF. The role of bacteria in the biological control of plant pathogens [J]. Annal of Phytopathology,1983.
    39. Cook RJ, Thomashow LS, Weller DM, et al. Molecular mechanisms for biological control of plant pathogens [J]. Phytopathology,1995,31:53-80.
    40. Cook RJ. Making greater use of introduced microorganisms for biological control of plant pathogens [J]. Annual Review of Phytopathology,1993,31:53-80.
    41. Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms [J]. Annu Rev Microbiol,1995,49:711-745.
    42. Cronin D, Moenne-Loccoz Y, Dunne C, O'Gara F. Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria. Eur J Plant Pathol.1997, 103:433-440.
    43. Davey ME, O'Toole GA. Microbial biofilms:from ecology to molecular genetics [J]. Microbiol. Mol. Biol. Rev,2000,64:847-867.
    44. De Meyer G, Bigirimana J, Elad Y. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea [J]. European Journal of Plant Pathology,1998, 104(3):279-286.
    45. Ding GC, Fu P, Guo JH. Biocontrol evaluation of Bacillus subtilis against Meloidogyne incognita [J]. Journal of Nanjing Agricultural University,2005,28:10-13.
    46. Doncaster CC, Hooper DJ. Nematodes attacked by protozoa and tardigrades [J]. Nematologica,1961,6:333-335.
    47. Dropkin VH. Introduction to plant pathology. John Wiley & Jons Inc. New York,1980, pp: 293.
    48. Dutta S, Mishra AK, Dileep Kumar BS. Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacte-ria and rhizobia. Soil Biology and Biochemistry.2008,40(2):452-461.
    49. Elad Y, Kohl J, Fokkema N J. Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophtic yeasts [J]. Phytopathology,1994,84(10):1193-1200.
    50. El-Nagdi WMA, Youssef MMA. Soaking faba bean seed in some bio-agents as prophylactic treatment for controlling Meloidogyne incognita root-knot nematode infection. J Pest Sci. 2004,77:75-78.
    51. Endo BY. The ultrastructure and distribution of an intracellular bacterium-like microorganism in tissues of larvae of the soybean cyst nematode, Heterodera glycines [J]. J. Ultrastruct. Res,1979,67:1-14.
    52. Epa. Identification of Microorganisms Currently Listed on the Tsca Chemical Substance Inventory [M]. August 31,1994.
    53. Esser RP, Sobers EK. Natural enemies of nematodes [J]. Soil Crop Sci. Soc. Fla. Proc.,1964, 24:326-352.
    54. Fang WG, Leng B, Xiao YH, et al. Cloning of Beauveria bassiana chitinase gene Bbchit 1 and its application to improve fungal strain virolence [J]. Appl. Environ. Microbiol.2005, 71(1):363-370.
    55. Fravel DR, Rhodes DJ, Larkin RP. Production and commercialization of biocontrol products. In:Albajes R, Gullino ML, Van Lenteren J, Elad Y (ed) Integrated pest and disease management in greenhouse crops, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, pp:365-376.
    56. Fravel DR. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 2005,43:337-359
    57. Furuya N, Matsuyama N. Biological Control of the Bacterial Wilt of Tomato with Antibiotic-Producing Strains of Pseudomonas glumae. Journal of the Faculty of Agriculture, Kyushu University.37(2):159-171.
    58. Garabedian S, Van Gundy SD. Use of avermectins for the control of Meloidogyne incognita on tomatoes [J]. J. Nematol,1983,15:503-510.
    59. Georgakopoulos DG, Fiddaman P, Leifert C, et al. Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists [J]. J Appl Microbiol,2002,92:1078-86.
    60. Ghose TK. Measurement of cellulase activities [J]. Pure and Applied Chemistry,1987, 59:257-268.
    61. Giannakou IO, Anastasiadis IA, Gowen SR, et al. Effects of non-chemical nematicide combined with soil solarization for the control of root-knot nematodes [J]. Crop Protection, 2007,26:1644-1654.
    62. Gierth K, Hallmann J, Schlang J. Plant tolerance for managing plant parasitic nematodes.OILB/SROP Bulletin,2004,27:67-73.
    63. Gokte N, Swarup G. On the potential of some bacterial biocides against root-knot and cyst nematodes. Indian J Nematol.1988,18:152-153.
    64. Gray NF. Ecology of nematophagous fungi:effect of the soil nutrients N, P and K, and seven major metals on distribution [J]. Plant and Soil.1988,108:286-290.
    65. Guo JH, Qi HY, Guo YH, Ge H, Gong LY, Zhang LX and Sun PH. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria [J]. Biological Control,2004,29:66-72.
    66. Hackenberg C, Muehlchen A, Forge T, Vrain T. Pseudomonas chlororaphis strain Sm3, bacterial antagonist of Pratylenchus penetrans. J Nematol.2000,32:183-189.
    67. Hallmann J, Quadt HA, Miller WG, et al. Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection [J]. Phytopathology, 2001,91:415-422.
    68. Hamon MA, Lazazzera B. The sporulation transcription factor SpoOA is required for biofilm development in Bacillus subtilis [J]. Mol Microbiol,2001,42:1199-1209.
    69. Handelsman JO, Jacobson LM. Novel Bacillus Cereus StrainDGA34:WO,9639483 [P]. 1996-12-12.
    70. Harsh PB, Ray F. Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae is facilitated by biofilm and surfactin production [J].Plant physiology, 2004,134:307-319.
    71. Henis Y, Ghaffar A, Baker R. Factor affecting suppression to Rhizoctonia solani in soil. Phytopathology.1979,69:1164-1169.
    72. Huang XW, Niu QH, Zhou W, et al. Bacillus nematocida sp.nov., a novel bacterial strain with nematotoxic activity isolated from soil in Yunnan, China [J]. Systematic and Applied Microbiology,2005,28:323-327.
    73. Hutchinson MT, Streu HT. Tardigrades attacking nematodes [J]. Nematologica,1960,5:149.
    74. Hwang SF, Chakravarty P. Potential for integrated control of Rhizoctonia root-rot of Pisum sativum using Bacillus subtilis and a fungicide [J]. Plant disease,1992,99(6):626-636.
    75. Idriss EES. et al. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology.148,2002,2097-2109.
    76. Inserra RN, Davis DW. Hypoaspis nr. Aculeifer:a mite predacious on root-knot and cyst nematodes [J]. J. Nematol,1983,15:324-325.
    77. Insunza V, Alstrom S, Eriksson KB. Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato. Plant Soil.2002,241:271-278.
    78. Jacq VA, Fortuner R. Biological control of rice nematodes using sulphate reducing bacteria. Revue Nematol 1979,2:41-50.
    79. Jagdale GB, Grewal PS. Identification of alternatives for the management of foliar nematodes in floriculture.Pest Manag Sci.2002,58:451-458.
    80. Jairajpuri MS, Khan WU. Predatory nematodes (Mononchida) with special reference to India. New Delhi Associate Publishing Company,1986.
    81. Janisiewicz WJ, Yourman L, Roitman J et al. Postharvest control of blue mold and gray mold of apples and pears by dip treatments with pyrrolnitrin, a metabolite of Pseudomonas cepacia [J]. Plant Dis,1991,75:490-494.
    82. Jatala P. Biological control of plant-parasitic nematodes [J]. Ann. Rev. Phytopathology,1986, 24:435-439.
    83. Johnston TM. Effect of fatty acid mixture on the rice stylet nematode (Tylenchorhynchus martini) Fielding. Nature [M],1956,183:1392.
    84. Kajimura Y, Kaneda M. Fusaricidins BC. New depsipeptide antibiotics produced by Bacillus polymyxa KT-8:isolation, structure elucidation and biological activity [J]. Antibiot,1997, 50:220-228.
    85. Kamensky M, Ovadis M, Chet I, et al. Soil borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases [J]. Soil Biol Biochem 2003,35:323-331.
    86. Karssen G. The Plant-parasitic nematode genus Meloidogyne goldi,1892 (Tylenchida) in Euwpel DrukkerijModem:Bennekom,1999.
    87. Kerry BR, Hidalgo-Diaz L. Application of Pochonia chlamydosporia in the integrated control of root-knot nematodes on organically grown vegetable crops in Cuba. IOBC WPRS Bulletin,2004,27:123-126.
    88. Kerry BR. Biological control. In:Principles and practice of nematode control in crops, Sydney Academic Press,1987, pp:233-263.
    89. Kerry BR. Fungal parasites of cyst nematodes.Agriculture [J]. Ecosystem and Environment, 1988,24:293-305.
    90. Khan A, Williams K, Nevalainen H. Testing the nematophagous biological control strain Paecilomyces lilacinus 251 for parcilotoxin production [J]. FEMS Microbial Lett,2003, 227:107-111.
    91. Khan A, Williams KL, Nevalainen HKM. Effects of Paecilomyces lilacinusprotease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles [J]. Biological Control,2004,31:346-352.
    92. Kiewnick S, Sikora R. Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251 [J].Biological Control,2005,38:179-187.
    93. Killian U, Steiner B, Krebs, et al. FZB24 (r) Bacillus subtilis mode of section of a microbial agent enhancing plant vitality [J]. Pflanzenschutz-Nachrichten Bayer 2003,1/00,1:72-93.
    94. Kloepper JW, Beauchamp CJ. A review of issues related to measuring of plant roots by bacteria. Canadian Journal of Microbiology.1992,32:1219-1232.
    95. Kloepper JW, Schroth MN. In Proc.4th Int. Conf. Plant Pathog [J]. Bact. Angers, Fr.,1978, 1:245-250.
    96. Kokalis-Burelle N, Kloepper JW, Reddy MS. Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms [J]. Applied Soil Ecology,2006,31:91-100.
    97. Kumamoto CA. A contact-activated kinase signals Candida albicans invasive growth and biofilm formation [J]. Proc. Natl. Acad. Sci (USA),2005,102:5576-81.
    98. Kwork OCH, Plattner R, Weisleder D, et al. A nematicidal toxin from Pleurotus ostreatus NRRL 3526 [J]. J Chem Ecol,1992,18:127-136.
    99. Landa BB. Influence of temperature and inoculums density of Fusarium oxysporum on suppression of fusarium wilts of chickpea by rhi2zosphere bacteria [J]. Phytopathology,2001, 91(8):807-816.
    100. Laoide BM and Mcconnell DJ. Cis Sequences Involved in Modulating Exprssion of Bacillus Licheniformis Amyl in Bacillus Subtilis:Effect of Sporulation Mutation and Catabolite Repression Resistance Mutations on Expression [J]. J Bacterial,1989,171 (5):2443-2450.
    101.Larkin RP, Fravel DR. Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium Wilt of tomato. Plant disease [J],1998,82:1022-1028.
    102. Larry C, Scott AB, Cynthia B, Whitchurch, et al. An interactive web-based Pseudomonas aeruginosa genome database:discovery of new genes, pathways and structures. Microbiology,2000,146:2351-2364.
    103. Lewis, J. A. and Paparizas, G. C.:An approach to stimulate population proliferation Trichoderma species and other potential biocontrol fungi introduced into natural soils. Phytopathology.1984,74:1240-1244.
    104. Li B, Xie GL, Soad A, et al. Suppression of Meloidogyne javanica by antagonistic and plant growth-promoting rhizobacteria [J]. J Zhejiang Univ Sci,2005,6:496-501.
    105. Liu L, Kloepper JW, Tuzun S. Induction of systemic resistance in cucumber by plant growth-promotin rhizobacteria:Duration of protection and effect of host resistance on protection and root colonization [J]. Phytopathology,1995,85(10):64-68.
    106. Luc M, Sikora RA, Bridge J. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. CAB Internation.1990.
    107. Mah TF and O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents Trends [J]. Microbiol.2001,9:34-39.
    108. Mah TF, Pitts B, Pellock B, et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance [J]. Nature,2003,426:306-310.
    109. Mai WF, Abawi GS. Interactions among root-knot nematodes and Fusarium wilt fungi on host plants [J]. Annu. Rev. Phytopathol,1987,25:317-338.
    110. Mankau R, Biological control of nematode pests by natural enemies. Ann. Rev. Phytopathol [J],1980,18:415-440.
    111. Mankau R, Imbriani JL. Studies on the mite Lasioseius scapulatus-a predator on soil nematodes [J]. Nematropica,1978,8:15.
    112. Mankau R. Bacillus penetrans causing a virulent disease of plant-parasitic nematodes [J]. Journal of Invertebrate Pathology,1975,26:333-339.
    113. Marc O and Philippe. Bacillus lipopeptides:versatile weapons for plant disease biocontrol [J]. JacquesTrends in Microbiology 2007,16(3):115-125.
    114. Martin FN, Bull CT. Biological approaches for control of root pathogens of strawberry [J]. Phytopathology,2002,92:1356-1362.
    115. Maurhofer M, Hase C, Meuwly P, et al. Induction of systemic resistance of tobacco to Tobacco Necrosis Virus by the root-colonizing Pseudomonas fluorescens strain CHAO-influence of the gacA gene and of pyoverdine production [J]. Phytopathology,1994, 84 (2):139-146.
    116. McInnis I. Suppression of Criconemella xenoplax on peach by rhizosphere bacteria [J]. Nematologica.1990.36:370.
    117. MeClure MA, Kruk TH, Misaghi IA. Method for obtaining quantities of clean Meloidogyne eggs [J]. Journal of Nematology,1973,5:230.
    118. Mendoza AR, Kiewnick S, Sikora RA. In vitro activity of Bacillus firmus against the borrowing nematode Radopholus similis the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci [J]. Biocontrol Sci. Technol,2008,18:377-389.
    119. Mercier J, Manker DC. Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus [J]. Crop Protection,2004, 24:355-362.
    120. Metchnikoff E. Annales de l'Institut Pasteur,1888,2:165-170.
    121. Miller TW, Charet L, Cole DJ, et al. Avermectines, a new family of potent anthelmintic agents:Isolation and chromatographic properties [J]. Antimicrob. Agents Chemother,1979, 15:368-371.
    122. Motsinger R, Crawford J, Thompson S. Nematode survey of peanut and cotton in southwest Gorgia [J]. Peanut Sci,1976,3:72-74.
    123. Moyne AL, Shelby R, Cleveland TE, et al. Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus [J]. J Appl Microbiol,2001,90:622-629.
    124. Murphy JF, Reddy MS, Ryu CM, et al. Rhizobacteria-mediated growth promotion of tomato leads to protection against cucumber mosaic virus [J]. Phytopathology,2003,93:1301-1307.
    125. Neipp PW, Becker JO. Evaluation of biocontrol activity of rhizobacteria from Beta vulgaris against Heterodera schachtii. J Nematol.1999,31:54-61.
    126. Niu Q, Huang X, Li Y, et al. Functional identification of the gene bace16 from nematophagous bacterium Bacillus nematocida [J]. Appl Microbiol Biotechnol,2007, 75:141-148.
    127. Niu QH, Huang XW, Tian BY, et al. Bacillus sp. B16 kills nematodes with a serine protease identified as a pathogenic factor [J]. Applied Microbiology and Biotechnology,2005. 722-730.
    128. O'Toole GA, Pratt LA., Watnick PI, et al. Genetic approaches to study of biofilms [J]. Methods Enzymol,1999,310:91-109.
    129. Oka, Y., Chet, I., Spiegel, Y. Control of root-knot nematode Meloidogyne javanica by Bacillus cereus. Biocontrol Science and Technology.1993,3:115-126.
    130. Olubunmi OF, Rajani SN. Biological control of root-knot nematodes(Meloidogyne spp.) on tissue culture banana (Dwarf cavendish var. Basarai) [J]. Acta Horticult.2004,635:183-186.
    131.Ongena M, Jacques P, Toure Y, et al. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis [J]. Appl Microbiol Biotechnol,2005, 69:29-38.
    132. Oostendorp M, Sikora RA. In-vitro interrelationships between rhizosphere bacteria and Heterodera schachtii [J]. Revue nematol,1990,13:269-274.
    133. Oostendorp M, Sikora RA. Seed treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet [J]. Revue Nematol, 1989,12:77-83.
    134. O'Sullivan M, Stephens PM, O'Gara F. Interactions between the soil-borne bacteriophage Fo-1 and Pseudomonas spp. on sugarbeet roots FEMS Microbiology Letters.2006, 68(3):329-334.
    135. Padgham J, Sikora R. Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice [J]. Crop Protection,2006, 26:971-977.
    136. Papavizas GC. Lumsden RD. Biological control of soilborne fungal propagule,1980.
    137. Parke JL, Rand RE, Joy AE, et al. Biological control of Pythium damping-off and Aphanomyces root rot of peas by application of Pseudomonas cepacia or P. Fluorescens to seed [J]. Plant Disease,1991,75:987-992.
    138. Peng DL. Occurance and control of nematodes diseases on vegetables [J]. Chinese Vegetable, 1998,4:57.
    139. Peng JL, Dong HS, Dong HP, et al. Harpin-elicited hypersensitive cell death and pathogen resistance require the NDR1 and EDS1 genes. Physiological and Molecular Plant Pathology, 2003,62:317-326.
    140. Peypoux F, Bonmatin JM., Wallach J. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol.1999,51:553-563.
    141. Qiuhong N, Xiaowei H, Baoyu T, et al. Bacillus sp. B16 kills nematodes with a serine protease identified as a pathogenic factor [J]. Appl Microbiol Biotechnol,2006,69:22-30.
    142. Racke J, Sikora RA. Isolation, formulation and antagonistic activity of rhizobacteria toward the potato cyst nematode Globodera pallida [J]. Soil Biology and Biochemistry,1992, 24:521-526.
    143. Ramamoorthy V, Viswanathan R, Raghuchander T, et al. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases [J]. Crop Prot, 2001,20:1-11.
    144. Ramirez VJ, Munecke DE. Effect of solar heating and soil amendments of cruciferous residues on Fusarium oyxsporum f. sp. conglutinans and other organisms [J]. Phytopathology, 1988,78:289-295.
    145. Ran LX, Liu CY, Wu GJ, et al. Suppression of bacterial wilt in Eucalyptus urophylla by Pseudomonas fluorescent spp. in China.Biological Control,2005,32:111-120.
    146. Raupach GS, Klopper RJM. Mixtures Of plant growth promoting rhizobacteria ehance biological control of multiple cucumber pathogens [J]. Phytopathology,1998,88:1158-1164.
    147. Rene'A. Soares A, Luiz FW, et al., Occurrence anddistribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques [J]. Applied Soil Ecology,2006,33:221-234.
    148. Roberts DP, Lohrke SM, Bowers JH, et al. Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber [J]. Crop Protection,2005, 24:141-155.
    149. Roberts WK, Selitrennikoff CP. Plant and bacterial chitinases differ in antifungal activity [J]. Gen Microbiol,1988,134:169-176.
    150. Rodriguez H and Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion [J]. Biotechnol Adv 1999,17:319-339
    151. Saravanakumar D, Harish S, Loganathan M, et al. Rhizobacterial bioformulation for the effective management of macrophomina root rot in mungbean [J]. Archives of Phytopathology and Plant Protection,2007,40(5):323-337.
    152. Sasser JN, Freckman DW. Aworld perspective on nematology:The role of society Vistas on Nematology,1987,7-14.
    153. Sasser JN. The international Meloidogyne project-its goals and accomplishments [J]. Annual Review Phytopathology,1983,21:271-288.
    154. Sayre RM and Starr MP. In:Bergey's Manual of Systematic Bacteriology (Williams ST, Sharpe ME, Holt JG.). Baltimore, MD:The Williams & Wilkins,1989,2601-2615.
    155. Sayre RM and Wergin WP. Bacterial parasite of a plant nematode:Morphology and ultra structure [J]. J. Bacteriology,1977,129:1091-1101.
    156. Sayre RM, Powers EM. A predacious soil turbellarian that feeds on free-living and plant-parasitic nematodes [J]. Nematologica,1966,12:619-629.
    157. Sayre RM. Biotic influences in soil environment. In:Plant-Parasitic Nematodes 1 (Zuckerman BM, Mai WF, Rohde RA.). New York Academic,1971,235-266.
    158. Schippers B. Exploitation of microbial mechanisms to promote plant health and plant growth [J]. Phytopathology,1993,21(2):75-79.
    159. Schotsmans WC, Braun G., DeLong JM, et al. Temperature and controlled atmosphere effects on efficacy of Muscodor albus as a biofumigant [J]. Biol. Control,2008,44:101-110.
    160. Schroth MN. Root-cloning bacteria and plant health [J]. Hort Sci,1986, (21):1295-1297.
    161. Shan-da L, Baker R. Mechanisms of biological control in soil suppressive to Rhizoctonia solani. Phytopathology.1980,70:404-411.
    162. Sharma VK, Nowak JJ. Enhancement of verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp.strain PsJN) Microbiol.1998,44:528-536.
    163. Sharma RD. Studies on the plant-parasitic nematode Tylenchorhynchus dubius. Meded. Landboawhogesch. Wageningen,1971,71:150.
    164. Sharond E, Bar-Eyal M, Chet, et al. Biologyical Control of the Root-Kont nematode Meloidgyne javanic by Tyichoderma harzianum [J]. The American Phytophologyical Society, 2001,91:687-693.
    165. Shoda M. Bacterial control of plant diseases. Journal of Bioscience and Bioengineering, 2000,89(6):515-521.
    166. Siddiqui IA. Shaukat SS. Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHAO and its genetically-modified derivatives [J]. J. Phytopathol.2003,151:231-238.
    167. Siddiqui ZA and Mahmood I. Effect of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea [J]. Bioresour Technol,2001,79:41-45.
    168. Siddiqui ZA and Mahmood I. Role of bacteria in the management of plant parasitic nematodes:a review [J]. Bioresour Technol,1999,69:167-179.
    169. Siddiqui ZA. Mahmood I. Biological control of Heterodera cajani and Fusarium udurn by Bacillus subtilis, Bradyrhizobium japonicum and Glomus fasciculatum on pigeonpea. Fundamental Applied Nematology.1995c,18,556-559.
    170. Siddiqui ZA, Mahmood I. Management of Meloidogyne incognita race 3 and Macrophomina phaseolina by fungus culture filtrates and Bacillus subtilis on chickpea. Fundamental Applied Nematology.1995a.18:71-76.
    171. Siddiqui ZA, Mahmood, I. Role of plant symbionts in nematode management. A review. Bioresource Technology.1995b,54:217-226.
    172. Siddiqui ZA, Mahmood I. Biological control of root-rot disease complex of chickp Macrophomina phaseolina. Nematology Mediterranean.1992,20:199-202.
    173. Sikora RA, Fernandez E. Nematode parasites of vegetables. In:Luc, M., Sikora, R.A., Bridge, J. (Eds.), Plant-Parasitic Nematodes inSubtropical and Tropical Agriculture, second ed. CABI Publishing,Wallingford, UK,2005, pp:319-392.
    174. Sikora RA. Interrelationship between plant health promoting rhizobacteria, plant parasitic nematodes and soil microorganisms. Med. Fac. Landbouvow. Rijksuniv. Gent.1988, 53/2b:867-878.
    175. Simi K. The chitinase encoding T7-based chiA gene endows Pseudomonas fluorescens with the capacity to control plant pathogens in soil. Gene,1994,147:81-83.
    176. Smilanick, JL, Denis-Arrue R. Control of green mold of lemons with Pseudomonas species [J]. Plant Dis.1992,76:481-485.
    177. Smirnova TA, Minenkova IB, Orlova MV. The crystal-forming strains of Bacillus laterosporus 1996.147:343-350.
    178. Spencer S, Benson DM. Pine bark, hardwood bark compost and peat amendment effects on development of Phytophthora spp. and lupine root rot. Phytopathology,1982,72:346-351.
    179. St Leger R, Joshi L, Bidochka MJ, et al. Construction of an improved mycoinsecticide overexpressing a toxic protease [J]. Proc Natl Acad Sci USA.1996,93(13):6349-6354.
    180. Stephens CT, Stebbins TC. Control of damping-off pathogens in soilless container media, Plant Dis.1985,69:494-496.
    181. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms [J]. Lancet,2001, 358:135-138.
    182. Stewart PS. Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms [J]. Antimicrob. Agents Chemother,1994,38:1052-1058.
    183. Stirling GR and Mankau R. Mode of parasitism of Meloidogyne and other nematode eggs by Dactylella oviparasitica. J. of Nematology,1979,11:282-288.
    184. Sun MH, Gao L, Liu XZ, et al. Fungi and actinomycetes associated with Meloidogyne spp. eggs and females in China and their biocontrol potential [J]. Invertebr Pathol,2006, 93:22-28.
    185. Suslow RV. In Proc.4th Int. Conf. Plant Pathog. Bact. Angers. Fr.1978,2:885.
    186. Tang WH. Advances in biological control of plant diseases:proceeding of the international workshop on biological.2003,34-36.
    187. Thakore Y. The biopesticide market for global agricultural use [J]. Ind. Biotechnol.2006, 2:194-208.
    188. Thorne G. Duboscqia penetrans, n. sp.(Sporozoa:Microsporidia, Nosematidae) a parasite of the nematode Pratylenchus pratensis (de Man) Filipjev [J]. Proc. Helminthol. Soc. (Wash.), 1940,7:51-53.
    189. Thrane C, Nielsen TH, Nielsen MN, et al. Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere [J]. FEMS Microbiology Ecology,2000,33(2):139-146.
    190. Tian H, Riggs RD, Crippen DL. Control of soybean cyst nematode by chitinolytic bacteria with chitin substrate. Journal of Nematology.2000,32:370-376.
    191. Tjalsma H, Antelmann H, and Jongbloed JDH, et al. Proteomics of Protein Secretion by Bacillus subtilis:Separating the "Secrets" of the Secretome [J]. Microbiol Mol Bio Rev, 2004,68:207-233.
    192. Valle J, Da Re S, Henry N, et al."Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide" Proceedings of the National Academy of Sciences,2006, 103(33):12558-12563.
    193. Van LL, Bakker V, Pieterse M. Systemic resistance induced by rhizosphere bacteria [J]. Annu. Rev. Phytopathol,1998,36:453-83.
    194. Van P, Niemann RG, Schippers BJ. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp.Strain WCS 417,1991, 81:728.
    195. Viswanathan R and Samiyappan R. Induced systemic resistance by fluorescent pseudomonads against red rot disease of sugarcane caused by Colletotrichum falcatum [J]. Crop Protection,2002,21(1):1-10.
    196. Walia RK, Sharma SB, Vats R. Bacterial antagonists of Phytonematodes. In:Upadhyay, R.R., Mukerji, K.G., Chamola, B.P. (Eds.), Biocontrol Potential and itsExploitation in Sustainable Agriculture:Crop Diseases, Weeds, and Nematodes, vol.1. Kluwer Academy Plenum, New York.2000.
    197. Walker JT. Population of Pratylenchus penetrans relative to decomposing nitrogenous soil amendments [J]. J. Nematol,1971,3:43-49.
    198. Walker R, Powell A.A and Seddon B. Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Pythium species [J]. J.Appl. Microbiol.1998,84:791-801.
    199. Webster JM. Nematodea and biological control. In:Economic Entomology (Webster, J. M. eds.) London Academic,1972,19:469-496.
    200. Wei ZM, Laby RJ, Zumoff CH, et al. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science,1992,257:85-88.
    201. Weller DM. Biological control of soil-borne plant pathogens in the rhizosphere with bacteria [J]. Annual Review of Phytopathology,1988,26:397-407.
    202. Westcott, S.W. Kluepiel, D.A. Inhibition of Criconemella xenoplax egg hatch by a strain of Pseudomonas aureofacines. Journal of Nematology 1992,24:626.
    203. Wheeler TA and Starr JL. Incidence and economic importance of plant-parasitic nematodes on peanuts in Texas [J]. Peanut Sci,1988.15:94-96.
    204. Whipps JM. Developments in the biological control of soil-borne plant pathogens. Advances in Botanical Research.1997,26:1-134.
    205. Winslow RD and Williams TD. Amoeboid organisms attacking larvae of the potato eelworm (Heterodera rostochiensis Woll.) in England and the beet eelworm (H. Schachtii Schm.) in Canada. Tijdachr. Plantenziekten,1957,63:242-43.
    206. Withham, L.M.T. and Baker, B.:Mechanism of biological control of preemergence damping-off of pea by seed treatment with Trichoderma spp. Phytopathology.1986, 76:720-725.
    207. Wu HJ, Wang S, Qiao JQ, et al. Expression of HpaGXooc protein in Bacillus subtilis and its biological functions. Journal of Microbiology and Biotechnology,2009,19:194-103.
    208. Xu GW, Gross DC. Selction of fluorescent Pseudomonads antagonistic to Erwlnia carotovora and suppressive of potato seed piece decay [J]. Phytopathology,1986, (76): 414-22.
    209. Yehuda H, Droby S, Bar-Shimon M, et al. The effect of under-and over-express CoEXG1-encoded-exo-glucanase secreted by Candida oleophila on the biocontrol of Penicillium digitatum, Yeast 2003,20, pp:771-780.
    210. Zhao H, Peng DL, Zhu JL. Research on root-knot nematodes [J]. Plant Protection,2003, 29:6-9.
    211. Zheng G and Shvik M. Isolation partial purification and characterization of a bacteriocin produced by a newly isolated method [J]. Appl. Microbiological,2002,28(5):363-367.
    212. Zhou T and Paulitz TC. Induced resistance in the biocontrol of Pythium aphanidermatum by Pseudomonas spp. on cucumber [J]. J. of Phytopathology,1994,142:51-63.
    213. Zuckerman BM and Jasson HB. Nematode chemotaxis and possible mechanism of host-prey recognition. Ann. Rev [J]. Phytopathol,1984,22:95-113.
    214.蔡学清,何红,胡方平.内生菌BS22对辣椒苗的促生作用及对内源激素的影响[J].亚热带农业研究,2005,1(4):49-52.
    215.陈彬,郑斯平,郑伟文.含儿丁质酶基因的粪产碱菌工程菌(BC2007)的构建.江西农业大学学报,2008,30(5):894-899.
    216.陈红,李平,桂瑶,等.抑制多种植物病原菌的几丁质酶产生菌X2-23的鉴定[J].四川大学学报,自然科学版,2002,9(增刊):45-49.
    217.陈庆河,翁启勇,胡方平.青枯病原细菌无毒菌株诱导番茄防御酶系及粗提取液抑菌活性的影响[J].植物病理学报,2003,33(4):334-337.
    218.陈庆河,翁启勇,胡方平.无致病力青枯菌株对番茄青枯病的防治效果[J].中国生物防治,2004,21(2):42-44.
    219.陈雪丽,王光华,吕宝林.多粘类芽孢杆菌BRF21和枯草芽孢杆菌BRF22对黄瓜和侨茄枯萎病的防治效果[J].中国生态农业学报,2008,16(2):133.
    220.陈志谊,高太东,严大富,等.枯草芽孢杆菌B-916防治水稻纹枯病的田间试验[J].中国生物防治,1997,13(2):75-78.
    221.陈中义.多功能质粒载体与组合Bt杀虫蛋白基因工程菌研究[D].北京:中国农业科学院,2002.
    222.董炜博,石延茂,迟玉成,等.穿刺巴氏杆菌防治植物根结线虫病的研究现状及其应用前景[J].中国生物防治,1999,15(2):89-93.
    223.杜立新,冯书亮,曹克强,等.枯草芽孢杆菌BS2208和BS2209菌株在番茄叶面及土 壤中定殖能力的研究[J].河北农业大学学报,2004,27(6):78-82.
    224.段玉玺,吴刚.植物线虫病害防治[M].中国农业科技出版社,2002.
    225.方敦煌,李天飞,沐应祥,等.拮抗细菌GP13防治烟草黑胫病的田间应用[J].云南农业大学学报,2003,18(1):49-52.
    226.付鹏,李红梅,丁国春,等.GJ23生防菌剂防治南方根结线虫研究[J].江苏农业科学,2004,(5):43-45.
    227.高芬,马利平,乔雄梧,等.蜡状芽孢杆菌BC98-1发酵液与抑菌粗提物对黄瓜枯萎病菌的抑菌特性研究[J].中国生态农业学报,2006,14(1):189-192.
    228.高学彪,邓德儿,周惠娟,等.淡紫拟青霉MCWA18菌株对南方根结线虫的寄生和防治作用[J].中国生物防治,1998,14(4):163-166.
    229.高学文,姚仕义,Huong Pham,等.基因工程菌枯草芽孢杆菌GEB3产生的脂肽类抗生素及其生物活性研究[J].中国农业科学,2003,36(12):1496-1501.
    230.顾真荣,马承铸,韩长安.产几丁质酶芽孢杆菌对病原真菌的抑菌作用[J].上海农业学报,2001,17(4):88-92.
    231.郭坚华,龚龙英,祁红英,等.三个拮抗颉颃菌株对辣椒青枯病的作用机制[J].中国生物防治,2003,19(1):6-10.
    232.何红,蔡学清,关雄,等.内生菌BS-2菌株的抗菌蛋白及其防病作用[J].植物病理学报,2003,33(4):373-378.
    233.何红,邱思鑫,蔡学清,等.辣椒内生细菌BS21和BS22在植物体内的定殖及鉴定[J].微生物学报,2004,44(1):13-18.
    234.何礼远,康耀卫.利用青枯菌无毒菌株和荧光假单胞菌诱导花生产生抗病性[J].植物保护学报,1990,17(2):113-116.
    235.何青芳,陈卫良,马志超.枯草芽孢杆菌A30菌株产生的拮抗肽的分离纯化与理化性质研究[J].中国水稻科学,2002,16(4):361-365.
    236.何胜洋,葛起新.南方根结线虫天敌真菌[J].植物病理学报,1987,17(1):14-21.
    237.胡小加,江木兰,张银波,等.枯草芽孢杆菌Tu2100对几种作物的促生效果[J].中国油料作物学报,2005,27(4):92-94.
    238.江木兰,赵瑞,等.油菜内生生防菌BY22在油菜体内的定殖与对油菜菌核病的防治作用[J].植物病理学报,2007,37(2):192-196.
    239.蓝希钳,周泽扬,胡军华等.假单孢菌20-5菌株代谢产物对马铃薯晚疫病菌的抑制作用[J].植物保护学报,2003,30(3):300-304.
    240.乐超银,孙明.利用整合载体构建苏芸金芽孢杆菌杀虫工程菌[J].遗传学报,2003,30(8):737-742.
    241.黎起秦,罗宽,林纬,等.番茄青枯病内生拮抗细菌的筛选[J].植物病理学报,2003,33(4):364-367.
    242.李红梅,沈培垠,徐建华.江苏省进出口园林植物寄生线虫的调查研究[J].南京农业大学学报,2000,23:34-38.
    243.李建刚.青枯劳尔氏菌PopW蛋白生物学特性及其抗病功能研究[D].南京:南京农业大学,2009.
    244.李师默.辣椒和番茄青枯病等十传病害的生物防治研究[D].南京:南京农业大学,2009.
    245.林福呈,李德葆.枯草芽孢杆菌(Bacillus subtilis) S9对植物病原真菌的溶菌作用[J].植物病理学报,2003,33(2):174-177.
    246.林茂松,马民安,沈素文.淡紫拟青霉的培养和对南方根结线虫的防治试验[J].生物防治通报,1993,9(3):116-118.
    247.刘建国,裴炎,丛威,等.蜡状芽孢杆菌S1发酵条件的研究[J].工业微生物,2001,31(1):4-7.
    248.刘维志.植物病原线虫学[M].北京:中国农业出版社,2000.
    249.刘振宇,柳韶华,赵春青,等.枯草芽孢杆菌对桑炭疽病菌的抑制作用[J].蚕业科学,2005,31(4):409-412.
    250.刘志明,余玉冰,秦碧霞,等.根结线虫幼虫致病细菌的筛选[J].中国生物防治,2000,6(3):142.
    251.龙良鲲,肖崇刚,窦艳霞.防治番茄青枯病内生细菌的分离与筛选[J].中国蔬菜,2003,2:19-21.
    252.潘沧桑,林竞,徐腾,等.在我国发现的根结线虫病原菌及其用作生物防治的探讨[J].微生物学报,1993,33(4):313-316.
    253.裴炎,李先碧,彭红卫,等.抗真菌多肽APS-1的分离纯化与特性[J].微生物学报,1999,39(4):344.
    254.彭化贤,刘波微,陈小娟,等.水稻稻瘟病拮抗细菌的筛选与防治初探[J].中国生物防治,2002,18(1):25-27.
    255.齐东梅,梁启美,惠明,等.棉花枯萎、黄萎病拮抗芽孢杆菌的抗菌蛋白特性[J].微生物学通报,2005,32(4):42-46.
    256.石志琦,胡梁斌,于淑池,等.细菌P-FS08的鉴定及其对几种植物病原真菌的拮抗作用[J].南京农业大学学报,2005,28(3):48-52.
    257.孙漫红,刘杏忠,唐霖.士壤抑制作用对食线虫真菌及其制剂的影响[J].真菌系统,1997,16(2):149-154.
    258.孙启利,陈夕军,童蕴慧,等.地衣芽孢杆W10抗菌蛋白对油菜菌核病菌的抑制作用及 防病效果[J].扬州大学学报(农业与生命科学版),2007,28(3):82-85.
    259.唐文华,顾培荦.全国生物防治学术讨论会论文摘要集,1995,p330.
    260.童蕴慧,郭桂萍,徐敬友,等.拮抗细菌对番茄植株抗灰霉病的诱导[J].中国生物防治,2004,20(3):187-189.
    261.汪来发,杨宝君,李传道.根据结线虫生物防治研空进展[J].南京林业大学学报(自然科学版),2002,26(1):64-68.
    262.王东明.蜡样芽孢杆菌6371的多效性及发酵条件的研究[D].南京:南京师范大学,2004.
    263.王明祖,吴秋芳.根结经线虫卵寄生真菌的研究:卵寄生真菌的筛选[J].华中农业大学学报,1990,(3):225-229.
    264.王雅平,王进先,刘伊强.小麦抗赤霉病品种的配合力及复交F1的抗性特点[J].中国农业科学,1990,23(6):6-12.
    265.王益民,唐文华.几丁质酶基因和B-1,3-葡聚糖酶基因的克隆及双价基因在枯草芽孢杆菌p-908中的表达[D].北京,中国农业大学,1997.
    266.谢关林,Algam A,李斌,等.利用芽孢杆菌在温室环境中控制番茄青枯病[J].植物病理学报,2006,(1):80-86.
    267.杨合同,庞定远,任欣正.姜瘟病生物防治试验初报[J].山东科学,1990,3(1):42-46.
    268.杨树军,夏振远,李天飞,等.两利生防菌剂对南方根结线虫子卵孵化的影响[J].西南农业大学学报,2001,23(3):247-248.
    269.游春平,肖爱萍,等.稻瘟病生防菌对四种作物土传病害病原菌的抑制作用[J].江西农业大学学报,2006,28(6):860-863.
    270.岳东霞,张要武,陈融,许长蔼.荧光假单胞菌工程菌株的构建及对黄瓜枯萎病的防治效果[J].华北农学报,2008,(06)
    271.张光焰,张杰,彭于发,等.用电激转化法构建杀虫防病荧光假单胞菌[J].中国农业科学,1995,8(4):8-13.
    272.张杰,彭于发,陈彩层,等.运用接合转移技术构建杀虫防病工程菌[J].农业生物技术学报,1993,251-57.
    273.张克勤,何世用,周薇等.真菌和细菌在线虫生防中的作用及其研究进展[J].杀虫微生物,1991,3:55-61.
    274.张新建,黄玉杰,杨合同,任艳,陈凯.通过导入几丁质酶基因提高巨大芽孢杆菌的生防效果云南植物研究.2007,29(6):666-670.
    275.张学君,赵军,王金生.枯草芽孢杆菌B3菌株对小麦根系和茎基部的定殖作用研究[J].中国生物防治,1994,10(4):171-174.
    276.张中鸽,彭于发,黄大防等.荧光93菌剂防治小麦全蚀病使用技术及田间效果[C].
    277.张中鸽,彭于发,张玉勋.多粘芽孢菌B48菌株抑菌作用[J].中国生物防治,1994,2:85-86.
    278.赵德立,曾林子,李晖,等.多粘芽孢杆菌JW725抗菌活性物质及其发酵条件的初步研究[J].植物保护,2006,(1):47-50.
    279.朱育菁,肖荣凤,林营志,等.生防菌ANTI28098A对青枯劳尔氏菌致病力的影响[J].中国生物防治,2009,25(1):41-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700