用户名: 密码: 验证码:
UV胁迫下棉铃虫生理生化响应及蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉铃虫Helicoverpa armigera (Hiiber)隶属于鳞翅目(Lepioloptera)夜蛾科(Noctuidae),是我国乃至世界上的重要农业害虫。棉铃虫是一种典型的趋光性昆虫,对紫外光(Ultraviolet, UV)十分敏感,本研究以棉铃虫为试验材料,研究UV照射下其体内生理生化响应及差异蛋白质组的变化。主要研究结果如下:
     1.棉铃虫抗氧化系统对UV胁迫的响应
     为了验证UV照射会对昆虫造成氧化胁迫这一假设,本研究检测了UV照射不同时间(0、30、60和90min)对棉铃虫总抗氧化能力的影响;通过测定过氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POX)、谷胱甘肽-S-转移酶(GST)及谷胱甘肽还原酶(GR)活性,分析了棉铃虫体内酶促抗氧化系统对UV胁迫的应答反应。当UV照射棉铃虫成虫30 min时,其体内总抗氧化能力、SOD、CAT、POX和GST活性均显著升高。当照射时间延长至60和90 min时,CAT和GST活性仍显著高于对照组水平,但总抗氧化能力和SOD活性恢复到对照组水平,POX活性则明显降低。本试验证实了UV照射能够对棉铃虫造成氧化胁迫的假设,提出UV照射对趋光性昆虫是一种光胁迫的理论。
     2.UV胁迫对棉铃虫乙酰胆碱酯酶和羧酸酯酶活性的影响
     本试验探讨了UV胁迫与棉铃虫体内乙酰胆碱酯酶(AChE)及羧酸酯酶(CarE)活性之间的关系,分析比较了两种酶活性在UV照射不同时间(0、30、60和90 min)下的变化情况。棉铃虫经过UV照射不同时间后,体内的AChE活性均有所降低,且在30 min时达到显著水平。UV照射对棉铃虫体内的CarE活性也产生了一定的抑制作用,与对照组相比,照射时间为30、60和90min的UV处理组CarE活性均显著低于对照水平。本研究推测,昆虫体内的AChE和CarE活性除了受已报道的杀虫剂的影响外,也有可能随着其它胁迫环境的作用而发生改变,如UV胁迫。
     3.UV胁迫对棉铃虫几种同工酶的影响
     为了分析UV胁迫条件下棉铃虫体内酯酶同工酶、POX同工酶和CAT同工酶的变化,本研究采用了同工酶电泳方法。与对照相比,UV处理组酯酶同工酶谱带发生了质和量的变化。照射时间为30和60 min时,谱带E4、E9、E10增强,谱带E2、E8减弱,谱带E1、E5、E7、E11消失,新增了E3、E6谱带;照射时间延长至90 min时,谱带E4、E9增强,谱带E2、E8减弱,谱带E1、E5、E7消失,新增了E3、E6谱带。棉铃虫POX同工酶主要有6条谱带,与对照组相比,棉铃虫P5谱带在UV照射处理下增强。棉铃虫CAT同工酶主要有2条谱带,在经过UV照射不同时间后谱带变化有所不同,与对照组相比,UV处理组的P1谱带增强,而P2谱带在30 min时减弱,60 min时恢复到对照水平,90 min时与对照相比又有所减弱。本研究推测这些同工酶谱带发生的变化,可能是昆虫对UV胁迫条件的一种适应反应。
     4.棉铃虫响应UV胁迫的蛋白质组研究
     为了研究UV胁迫条件下棉铃虫体内蛋白的变化,本文采用了比较蛋白质组学的方法。分别提取正常条件和UV照射1h条件下的棉铃虫体内总蛋白,然后进行双向电泳分离虫体的总蛋白,共检测到至少1200个蛋白点,其中21个被下调,12个被上调。质谱分析共鉴定出29个蛋白点,包括丝裂原活化蛋白激酶、Ste20类激酶CG40293-PA亚型A、ADP-核糖基化因子鸟苷酸转换因子2(BFA抑制)亚型CRA a、锌指蛋白768、预测的PPAR-α相互作用复合蛋白285相似蛋白、牦牛儿基转移酶Ⅰβ亚基、推测的线粒体辛酰基转移酶、热激蛋白21.4、预测的CAT相似蛋白、烯醇酶、H转运ATP合成酶β亚基亚型1、H转运ATP合成酶β亚基亚型2、异戊烯基半胱氨酸氧化酶1、腺苷脱氨酶相似蛋白A、3-羟-3-甲基戊二酰辅酶A还原酶、法呢基焦磷酸合成酶、肌动蛋白、肌球蛋白重链、肌肉肌球蛋白重链、嗅觉受体类似物、溶菌酶C、推测的染色体结构维持蛋白和一些功能未知的假设蛋白。这些蛋白多数具有重要的生物学功能,参与了信号转导、RNA加工、蛋白质加工、氧化还原平衡、代谢、及细胞骨架稳定等过程。
The cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae) is one of the most serious insect pest in China and neighboring contries. The moths of this nocturnal insect display a conspicuous positive phototactic behaviour to light stimuli, and are especially sensitive to Ultraviolet (UV) light. In the present study, we study on the physiological and biochemical response and differentially expressed proteome under UV light irradiation stress in H. armigera adults. Main results were summarized as follows:
     1. Response of the antioxidant system of H. armigera adults to UV light stress
     We test the hypothesis that one of the effects of UV light irradiation is to increase oxidative stress on insects. The effects of UV light irradiation on total antioxidant capacity and the activities of superoxide dismutase (SOD), catalase (CAT), peroxidases (POX), glutathione-S-transferase (GST) and glutathione reductase (GR) were investigated in H. armigera adults. The adults were exposed to UV light for various time periods (0,30,60 and 90 min). We found that exposure to UV light for 30 min resulted in increased total antioxidant capacity and the activities of SOD, CAT, POX and GST. When the exposure time lasted for 60 and 90 min, the activities of CAT and GST remained significantly higher than the control. However, the antioxidant capacity and SOD activity returned to control levels, and POX activity decreased at 60 and 90 min. Our results confirm the hypothesis that UV light irradiation increases the level of oxidative stress in H. armigera adults.
     2. Effects of UV light stress on the activities of acetylcholinesterase and carboxylesterase in H. armigera adults
     We analyse the relation between UV light stress and the activities of acetylcholinesterase (AChE) and carboxylesterase (CarE) in H. armigera adults. The effects of UV light irradiation on the activities AChE and CarE were investigated in H. armigera adults. The adults were exposed to UV light for various time periods (0,30, 60 and 90 min). AChE activity of adults exposed to UV light was reduced in comparison with the control adults, and a significant decrease was found at 30 min of exposure. We found decreaded CarE activity in H. armigera adults exposed to UV light for 30,60 and 90 min in comparison with the control. We assume that the activities of AChE and CarE in insects may be influenced by other environmental stress, except for insecticides that have been reported.
     3. Effects of UV light stress on several isozymes in H. armigera adults
     To study the effects of UV light stress on esterase, POX, and CAT isozymes in H. armigera adults, we carried out isozyme electrophoresis. When exposed to UV light irradiation, esterase isozyme changed mainly in the number and activity of isozyme. At 30 and 60 min exposure, the intensity of isozyme bands E4, E9 and E10 were enhanced, E2 and E8 were decreased. The bands El, E5, E7 and Ell disappered after UV light irradiation, E3 and E6 were new patterns. At the longest exposure time (90 min), the intensity of isozyme bands E4 and E9 E10 were enhanced, E2 and E8 were decreased. The bands E1, E5 and E7 disappered after UV light irradiation, E3 and E6 were new patterns. H. armigera adults showed 6 POX bands. The intensity of POX band P5 was enhanced in adults following exposure to UV light for 30,60 and 90 min. H. armigera adults showed 2 CAT bands. The intensity of band C1 was enhanced in adults following exposure to UV light irradiation for 30,60 and 90 min. The intensity of band C2 was decreased at 30 and 90 min of exposure in comparison with the control. These processes may be mirrored in insect physiological adaptation.
     4. A proteomic analysis of H. armigera adults after exposure to UV light irradiation
     To gain a better understanding of the response of H. armigera adults to UV light irradiation, we carried out a comparative proteomic analysis. Three-day-old adults were exposed to UV light for 1 h. Total proteins were extracted and separated by two-dimensional gel electrophoresis. More than 1200 protein spots were reproducibly detected, including 12 that were more abundant and 21 less abundant. Mass spectrometry analysis and database searching helped us to identify 29 differentially abundant proteins, including mitogen-activated protein kinase, ste20-like kinase CG40293-PA, isoform A, ADP-ribosylation factor guanine nucleotide-exchange factor 2 (brefeldin A-inhibited), isoform CRA_a, zinc finger protein 768, PREDICTED:similar to PPAR-alpha interacting complex protein 285, Beta subunit of type I geranylgeranyl transferase, putative octanoyltransferase, mitochondrial, heat shock protein hsp21.4, PREDICTED:similar to catalase, enolase, H+ transporting ATP synthase beta subunit isoform 1, H+ transporting ATP synthase beta subunit isoform 2, Prenylcysteine oxidase 1, Adenosine deaminase-like protein A, 3-hydroxy-3-methylglutaryl-CoA reductase, farnesyl-pyrophosphate synthetase, actin (Fragment), myosin heavy chain, muscle myosin heavy chain, olfactory receptor-like receptor, lysozyme C, structural maintenance of chromosome, putative, etc. The identified proteins were categorized into several functional groups including signal transduction, RNA processing, protein processing, stress response, metabolisms, and cytoskeleton structure, etc.
引文
1. 陈惠祥,周建荣,陈小波,顾国华.棉铃虫对不同波长光源趋光反应的研究.江西棉花,1999,21:16-18
    2. 陈宁生.夜蛾趋光行为的本质、规律和导航原理.昆虫知识,1979,16:369-373
    3. 陈小波,顾国华,葛红,韩娟.棉铃虫成虫趋光行为的初步研究.南京农专学报,2003,19:39-41
    4. 陈元光,钦俊德.粘虫成虫复眼暗适应的电生理研究.昆虫学报,1963,1-3
    5. 成海平,钱小红.蛋白质组研究技术体系及其进展.生物化学与生物生理进展,2000,27(6):584-588
    6. 丁岩钦,高慰曾,李典谟.夜蛾趋光特性的研究:棉铃虫和烟青虫成虫对单色光的反应.昆虫学报,1974,17:307-317
    7. 高慰曾.夜蛾复眼转化速度与暗适应的时间关系.昆虫学报,1989,32:306-309
    8. 高慰曾.夜蛾趋光特性的研究:复眼反应与行为反应的相关现象.昆虫学报,1976,19:307-317
    9. 高慰曾.夜蛾趋光特性的研究—向灯飞原因的进一步分析.昆虫学报,1980,23:369-373
    10. 高慰曾,郭炳群.棉铃虫蛾复眼的形态及显微结构.昆虫学报,1983,26:375-378
    11.顾国华,陈小波,韩娟,葛红,陈惠祥.棉铃虫成虫趋光行为研究.天津农学院学报,2004,11:32-36
    12.侯无危.不同照度对棉铃虫蛾活动的影响.昆虫知识,1997,34:1-3
    13.侯无危,贺小威.夜蛾趋光特性的研究:复眼转化过程中的行为差异.昆虫学报,1979,22:34-39
    14.侯无危,马幼飞,高慰曾,李世文,杨自军.桃小食心虫成虫的趋光性.昆虫学报,1994,37:165-170
    15. 胡能书,万贤国.同工酶技术及其应用.长沙:湖南科学技术出版社,1985,1-11
    16.李典谟,马幼飞.夜蛾趋光特性的研究—复眼反射光的变化和上等概率分析.昆虫学报,1977,20:128-134
    17.李晔,谢湘林,周鸣,刘凯,臧晓峰,吴轶川,刘宏雁.缺氧耐受形成中脑内乙酰胆碱含量和乙酰胆碱酯酶活性的变化.中国应用生理学杂志, 2008,24:284-285
    18.靖湘峰.夜行性昆虫的趋光行为反应及黑光灯对棉铃虫体内酶系的影响.[硕士学位论文].武汉:华中农业大学图书馆,2004
    19. 靖湘峰,雷朝亮.昆虫趋光性及其机理的研究进展.昆虫知识,2004,41:198-203
    20.P.S卡拉汉著,刘心田,杨昇鸿译.自然的秘密.上海:上海科学技术出版社,1985
    21.唐培安,邓永学,王进军.甲酸乙酯对米象乙酰胆碱酯酶和羧酸酯酶的影响.植物保护,2007,33:44-47
    22.唐振华.昆虫抗药性及其治理.北京:农业出版社,1993.
    23.万晶宏,贺福初.蛋白质组技术的研究进展.科学通报,1999,44:904-911
    24.王东,李兵,管京敏,赵华强,陈玉华,沈卫德.棉铃虫羧酸酯酶基因的克隆、序列分析及组织表达.昆虫学报,2008,51:979-985
    25.魏国树,张青文.棉铃虫[Helicoverpa armigera (Hubner)]蛾复眼视网膜电位研究.生物物理学报,1999,15:682-688
    26.魏国树,张青文,周明牂,吴卫国.不同光波及光强度下棉铃虫(Helicoverpa armigera)成虫的行为反应.生物物理学报,2000,16:89-95
    27.魏国树,张青文,周明牂,吴卫国.棉铃虫蛾复眼光反应特性.昆虫学报,2002,45:323-328
    28.吴京一.番茄夜蛾复眼光谱感光性.中华昆虫,1990,10:151-158
    29.夏明,刘亚学,阿拉木斯,韩润清.苜蓿叶片过氧化物同工酶与抗冷性的关系.中国草地,2003,25:41-45
    30.杨桂华,王蕴生.亚洲玉米螟雌雄蛾对不同光波的趋性.玉米科学,1995,增刊,70-71
    31.杨勇智,郭炳群.棉铃虫和玉米螟成虫复眼光反应特性的比较研究.生物物理学报,1998,14:713-718
    32.依姆斯AD.昆虫学纲要[M].北京:中华书局,1953,46-47
    33.俞利荣,曾嵘,夏其昌.蛋白质组研究技术及其进展.生命的化学,1998,18:4-9
    34. Agee H G. Sensory response of the compound eye of adults Heliothis zea and H. virescens to ultraviolet stimuli. Ann Entomol Soc Am,1972,65:701-705
    35. Agee H G. Spectral sensitivity of the compound eye of field-collected adult bollworms and tobacco budworms. Ann Entomol Soc Am,1973,66:613-615
    36. Ahmad S, Duval D L, Weinhold L C, Pardini R S. Cabbage looper antioxidant enzymes:Tissue specificity. Insect Biochemistry,1991,21:563-572
    37. Alam Z L, Halliwell B, Jenner P. Noevidence for increased oxidative damage to lipids, proteins, or DNA in huntington's disease. J Neurochem,2000,75: 840-846
    38. Alban A, David S O, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics,2003,3:36-44
    39. Appleyard M E. Secreted acetylcholinesterase:non-classical aspects of a classical enzyme. Trends Neurosci,1992,15:485-490
    40. Aucoin R, Guillet G, Murray C, Philogene B J R, Arnason J T. How do insect herbivores cope with the extreme oxidative stress of phototoxic host plants. Arch Insect Biochem Physiol,1995,29:211-226
    41. Beranova-Giorgianni S. Proteome analysis by two-dimensional gel electrophoresis and mass spectrometry:Strengths and limitations. Trac-Trend Anal Chem,2003,22:273-281
    42. Boldt R, Scandalios J G. Circadian regulation of the Cat3 catalase gene in maize: entrainment of the circadian rhythm of Cat3 by different light treatments. Plant J,1995,7:989-999
    43. Bradford M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254
    44. Brey P T, Lee W J, Yamakawa M, Koizumi Y, Perrot S, Francois M, Ashida M. Role of the integument in insect immunity:epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proc Natl Acad Sci USA,1993, 90:6275-6279
    45. Brush M. Dye hard:protein gel staining products. Scientist,1988,12:16-22
    46. Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res,2005,571:3-17
    47. Candas M, Loseva O, Oppert B, et al. Insect resistance to Bacillus thuringiensis: alterations in the indianmeal moth larval gut proteome. Mol Cell Proteomics, 2003,2:19-28
    48. Callahan P S. Intermediate and far infrared sensing of nocturnal insects. Part Ⅱ. The compound eye of the corn earworm Heliothis zea and other moths as a mosaic optic-electromagnetic thermal radiometer. Ann Ent Soc Amer,1965,58: 746-756
    49. Cervera A, Maymo A C, Martinez-Pardo R, Garcera M D. Antioxidant enzymes in Oncopeltus fasciatus (Heteroptera:Lygaeidae) exposed to cadmium. Environ Entomol 2003,32:705-710
    50. Chaleff D T, Tatchell K. Molecular cloning and characterization of the Ste7 and Stell genes of Saccharomyces cerevisiae. Mol Cell Biol,1985,5:1878-1888
    51. Chen L Z, Liang G M, Zhang J, Wu K M, Guo Y Y, Rector B G. Proteomic analysis of novel Cry1Ac binding proteins in Helicoverpa armigera (Hiibner). Arch Insect Biochem Physiol,2010,73:61-73
    52. Choi J, Ha M H. Effect of cadmium exposure on the globin protein expression in 4th instar larvae of Chironomus riparius Mg. (Diptera:Chironomidae):An ecotoxicoproteomics approach. Proteomics,2009,9:31-39
    53. Christophides G K, Zdobnov E, Barillas C, Blandin S, Blass C, Brey P T, Collins F H, Danielli A, Dimopoulos G, Hetru C, Hoa N T, Hoffmann J A, Kanzok S M, Letunic I, Clavaron-Mathews M, Summers, C B, Felton G W. Ascorbate peroxidase:A novel antioxidant enzyme in insects. Arch Insect Biochem Physiol,1997,34:57-68
    54. Ciftci-Yilmaz S, Morsy M R, Song L, Coutu A, Krizek B A, Lewis M W, Warren D, Cushman J, Connolly E L, Mittler R. The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. JBiol Chem,2007:282:9260-9268
    55. Cockell C S. A photobiological history of Earth. In:Cockell, C.S., Blaustein, A.R. (Eds.), Ecosystems, Evolution and Ultraviolet Radiation. Springer, New York,2001, pp.1-35
    56. Costa P, Bahrman N, Frigerio J M, Kremer A, Plomion C. Water-deficit-responsive proteins in maritime pine. Plant Mol Biol,1998,38: 587-596
    57. Cusson M, Beliveau C, Sen S E, Vandermoten S, Rutledge R G, Stewart D, Francis F, Haubruge E, Rehse P, Huggins D J, Dowling A P, Grant G H. Characterization and tissue-specific expression of two lepidopteran farnesyl diphosphate synthase homologs:Implications for the biosynthesis of ethyl-substituted juvenile hormones. Proteins,2006,65:742-758
    58. Dan C, Kelly A, Bernard O, Minden A. Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIMK1 and cofilin. JBiol Chem, 2001,276:32115-32121
    59. De Gregorio E, Spellman P T, Rubin G M, Lemaitre B. Genomewide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci USA,2001,98:12590-12595
    60. Debernard S, Rossignol F, Couillaud F. The HMG-CoA reductase inhibitor fluvastatin inhibits insect juvenile hormone biosynthesis. Gen Comp Endocr, 1994,95:92-98
    61. Del Rio D, Stewart A J, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism, and Cardiovascular Disease,2005,15:316-328
    62. Derijard B, Hibi M, Wu I H, Barrett T, Su B, Deng T, Karin M, Davis R J. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell,1994,76:1025-1037
    63. Dimopoulos G, Christophides G K, Meister S, Schultz J, White K P, Barillas-Mury C, Kafatos F C. Genome expression analysis of Anopheles gambiae:responses to injury, bacterial challenge, and malaria infection. Proc Natl Acad Sci USA,2002,99:8814-8819
    64. Downes G B, Granato M. Acetylcholinesterase function is dispensable for sensory neurite growth but is critical for neuromuscular synapse stability. Dev Biol,2004,270:232-245
    65. Dufay P O. Contribution a I'etude du phototvopisme des Lepidopteres Noctuids. Ann Sci Nat Zool Paris Ser,1964,12:281-408
    66. Dubovskiy I M, Martemyanov V V, Vorontsova Y L, Rantala M J, Gryzanova E V, Glupov V V. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp Biochem Phys C,2008,148:1-5
    67. Eldumiati I I. Submillimetre wave sensing of nocturnal moth. Nature Lond, 1971,233:283-284
    68. Eldumiati I I. Summary of attractive responses in Lepidoptera to electromagnetic radiation and other stimuli. JEcon Ent,1972,65:291-292
    69. Eugehi E, Watanabe K, Hariyama T. A comparison of electrophysiologically detmerined spectral responses in 35 species of Lepidoptera. J Insect Physiol, 1982,28:675-682
    70. Evron T, Greenberg D, Mor T S, Soreq H. Adaptive changes in acetylcholinesterase gene expression as mediators of recovery from chemical and biological insults. Toxicology,2007,233:97-107
    71. Feder M E, Hofmann G E. Heat-shock proteins, molecular chapterones, and the stress response:evolutionary and ecological physiology. Annu Rev Physiol, 1999,61:243-282
    72. Felton G W, Summers C B. Antioxidant systems in insects. Arch Insect Biochem Physiol,1995,2:187-197
    73. Foyer C H, Descouvie'res P, Kunert K. Protection against oxygen radicals:an important defence mechanism studied in transgenic plants. Plant Cell Environ, 1994,17:507-523
    74. Foyer C H, Noctor G. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell, 2005,17:1866-1875
    75. Foyer C H, Lelandais M, Kunert K. Photooxidative stress in plants. Physiol Plant,1994,92:696-717
    76. Fridovich I. The biology of oxygen radicals. Science,1978,201:875-879
    77. Ghiselli A, Serafini M, Natella F, Scaccini C. Total antioxidant capacity as a tool to assess redox status:critical view and experimental data. Free Radical Bio Med,2000,29:1106-1114
    78. Goldstein J L, Brown M S. Regulation of the mevalonate pathway. Nature,1990, 343:425-430
    79. Gorg A, Weiss W, Dunn M M. Current two-dimensional electrophoresis technology for proteomics. Proteomics,2004,4:3665-3685
    80. Griswold C M, Matthews A L, Bewley K E, Mahaffey J W. Molecular characterization and rescue of acatalasemic mutants of Drosophila melanogaster. Genetics,1993,134:781-788
    81. Gudkov S V, Shtarkman I N, Smirnova V S, Chernikov A V, Bruskov V I. Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice. Radiation Research,2006,165:538-545
    82. Halliwell B, Gutteridge J M. Free Radicals in Biology and Medicine. Oxford University Press, Oxford.,1999
    83. Hancock W S, Wu S L, Shiel P. The challenges of developing a sound proteomics strategy. Proteomics,2002:2:352-359
    84. Hao Z, Kasumba I, Aksoy S. Proventriculus (cardia) plays a crucial role in immunity in tsetse fly (Diptera:Glossinidiae). Insect Biochem Molec Biol,2003, 33:1155-1164
    85. Heck D E, Vetrano A M, Mariano T M, Laskin J D. UVB light stimulates production of reactive oxygen species:unexpected role for catalase. Journal of Biol Chem,2003,278:22432-22436
    86. Hemingway J, Hawkes N J, McCarroll L, Ranson H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol,2004,34: 653-665
    87. Hemingway J, Karunaratne S H. Mosquito carboxylesterases:a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol,1998,12:1-12
    88. Hsiao H S. Flight paths of night flying moths to light. J Insect Physiol,1973,19: 1971-1976
    89. Hsiao H S. The attraction of moth (Trichoplusia ni) to infrared radiation. J Insect Physiol,1972,18:1705-1714
    90. Huang Z W, Shi P, Chen G C, Du J W. Effects of azadirachtin on hemolymph protein expression in Ostrinia furnacalis (Lepidoptera:Crambidae). Ann Entomol Soc Am,2007,100:245-250
    91. Huang Z W, Shi P, Dai J Q, Du J W. Protein metabolism in Spodoptera litura (F.) is influenced by the botanical insecticide azadirachtin. Pestic Biochem Phys, 2004,80:85-93
    92. Huberty A F, Denno R F. Plant water stress and its consequences for herbivorous insects:a new synthesis. Ecology,2004,85:1383-1398
    93. Imlay J A, Linn S. DNA damage and oxygen radical toxicity. Science,1988,240: 1302-1309
    94. James C. Global status of commercialized biotech/GM crops:2005. ISAAA briefs No.34. ISAAA, Ithaca, New York
    95. Jiang H, Zhang J, Zhu H, Li H, Zhang X. Nerve growth factor prevents the apoptosis-associated increase in acetylcholinesterase activity after hydrogen peroxide treatment by activating Akt. Acta Biochim Biophys Sin,2007,39: 46-56
    96. Jin T, Zeng L, Lu Y, Xu Y J, Liang G W. Identification of resistance-responsive proteins in larvae of Bactrocera dorsalis (Hendel), for pyrethroid toxicity by a proteomic approach. Pestic Biochem and Phys,2010,96:1-7
    97. Joanisse D R, Storey K B. Oxidative stress and antioxidants in stress and recovery of cold-hardy insects. Insect Biochem Mol Biol,1998,28:23-30
    98. John S, Kale M, Rathore N, Bhatnagar D. Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes. J Nutr Biochem,2001,12:500-504
    99. Jurat-Fuentes J L, Adang M J. A proteomic approach to study Cry1Ac binding proteins and their alterations in resistant Heliothis virescens larvae. J Invertebr Pathol,2007,95:187-191
    100. Kabsch W, Vandekerckhove J. Structure and function of actin. Annu Rev Bioph Biom,1992,21:49-76
    101. Kamata H, Hirata H. Redox regulationof cellular signalling. Cell Signal,1999, 11:1-14
    102. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular mass exceeding 1000 daltons. Anal Chem,1998,60:2299-2301
    103. Karlsson C, Korayem A M, Scherfer C, Loseva O, DushayM S, Theopold U. Proteomic analysis of Drosophila larval hemolymph clot. J Biol Chem,2004, 279:52 033-52 041
    104. Karunaratne S H, Hemingway J, Jayawardena K G, Dassanayaka V, Vaughan A. Kinetic and molecular differences in the amplified and non-amplified esterases from insecticide-resistant and susceptible Culex quinquefasciatus mosquitoes. J Biol Chem,1995,270:124-128
    105. Kolanus W. Guanine nucleotide exchange factors of the cytohesin family and their roles in signal transduction. Immunol Rev,2007,218:102-113
    106. Kono Y, Shishido T. Distribution of glutathione S-transferase activity in insect tissues. ApplEntomol Zool,1992,27:391-397
    107. Krishnamoorthy M, Jurat-Fuentes J L, McNall R J, Andacht T, Adang M J. Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses. Insect Biochem Mol Biol,2007, 37:189-201
    108. Kumar S, Christophides G K, Cantera R, Charles B, Han Y S, Meister S, Dimopoulos G, Kafatos F C, Barillas-Mury C. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proc Natl Acad Sci USA,2003,100:14139-14144
    109. Kuzniar A, Mitura P, Kurys P, Szymonik-Lesiuk S, Florianczyk B, Stryjecka-Zimmer M. The influence of hypomagnesemia on erythrocyte antioxidant enzyme defence system in mice. BioMetals,2003,16:349-357
    110. Kultz D. Molecular and evolutionary basic of the cellular stress response. Annu Rev Physiol,2005,67:225-257
    111. Laity J H, Lee B M, Wright P E. Zinc finger proteins:new insights into structural and functional diversity. Curr Opin Struc Biol,2001,11:39-46
    112. Leberer E, Dignard D, Harcus D, Thomas D Y, Whiteway M. The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein beta gamma subunits to downstream signalling components. EMBO J,1992,11: 4815-4824
    113. Lee N, MacDonald H, Reinhard C, Halenbeck R, Roulston A, Shi T, Williams L T. Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc Natl Acad Sci USA, 1997,94:13642-13647
    114. Lehane M J, Aksoy S, Gibson W, Kerhornou A, Berriman M, Hamilton J, Soares M B, Bonaldo M F, Lehane S, Hall N. Adult midgut expressed sequence tags from the tsetse fly Glossina morsitans and expression analysis of putative immune response genes. Genome Biol,2003,4:Art. No. R63.
    115. Lesser M P. Oxidative stress in marine environments:biochemistry and physiological ecology. Annu Rev Physiol,2006,68:253-278
    116. Levashina E A, Loukeris T G, Lycett G, Meister S, Michel K, et al. Immunity related genes and gene families in Anopheles gambiae:A comparative genomic analysis. Science,2002,298:159-165
    117. Levine R L, Garland D, Oliver C N, Amici A, Climent I, Lenz A G, Ahn B W, Shaltiel S, Stadtman E R. Determination of carbonyl content in oxidatively modified proteins. Method Enzymol,1990,186:464-478
    118. Levy F, Bulet P, Ehret-Sabatier L. Proteomic analysis of the systemic immune response of Drosophila. Mol Cell Proteomics,2004a,3:156-166
    119. Levy F, Rabel D, Charlet M, Bulet P, Hoffmann J A, Ehret-Sabatier L. Peptidomic and proteomic analyses of the systemic immune response of Drosophila. Biochimie,2004b,86,607-616.
    120. Li A Q, Benoit J B, Lopez-Martinez G, Elnitsky M A, Lee Jr R E, Denlinger D L. Distinct contractile and cytoskeletal protein patterns in the Antarctic midge are elicited by desiccation and rehydration. Proteomics,2009,9:2788-2797
    121. Li L J, Liu X M, Guo Y P, Ma E B. Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis (Orthoptera Acridoidae). Environ Toxicol Phar,2005,20:412-416
    122. Li Q B, Haskell D W, Guy C L. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Mol Biol,1999,39:21-34
    123. Lopez-Martinez G, Elnitsky M A, Benoit J B, Lee Jr R E, Denlinger D L. High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem Mol Biol,2008:38,796-804
    124. Loseva O, Engstrom Y Analysis of signal-dependent changes in the proteome of Drosophila blood cells during an immune response. Mol Cell Proteomics,2004, 3:796-808
    125. Maier S A, Galellis J R, McDermid H E. Phylogenetic analysis reveals a novel protein family closely related to adenosine deaminase. J Mol Evol,2005,61: 776-794
    126.#12
    127. Meng J Y, Zhang C Y, Lei C L. A proteomic analysis of Helicoverpa armigera adults after exposure to UV light irradiation. J Insect Physiol,2010,56:405-411
    128. Meng J Y, Zhang C Y, Zhu F, Wang X P, Lei C L. Ultraviolet light-induced oxidative stress:Effects on antioxidant response of Helicoverpa armigera adults. J Insect Physiol,2009,55,588-592
    129. Melov S, Ravenscroft J, Malik S, Gill M S, Walker D W, Clayton P E, Wallace D C, Malfroy B, Doctrow S R, Lithgow G J. Extension of life-span with superoxide dismutase/catalase mimetics. Science,2000,289:1567-1569
    130. McNall R J, Adang M J,2003. Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochem Mol Biol,33:999-1010
    131. Michael D A. Introduction to insect behavior. New York:Macmillam Publishing Co. Inc.,1980.31-33
    132. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002,7:405-410
    133. Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci,2005,10:339-346
    134. Nath B S, Kumar R P S. Toxic impact of organophosphorus insecticides on acetylcholinesterase activity in the silkworm, Bombyx mori L. Ecotox Environ Safe,1999,42:157-162
    135. Neuhoff V, Stamm R, Eibl H. Clear background and highly sensitive protein staining with Commassie Blue dyes in polyacrylamide gels. Electrophoresis, 1985,6:427-448
    136. Nguyen T T A, Michaud D, Cloutie C. A proteomic analysis of the aphid Macrosiphum euphorbiae under heat and radiation stress. Insect Biochem Mol Biol,2009,39:20-30
    137. Nguyen T T A, Michaud D, Cloutie C. Proteomic profiling of aphid Macrosiphum euphorbiae responses to host-plant-mediated stress induced by defoliation and water deficit. J Insect Physiol,2007,53:601-611
    138. Nijhout H F. Insect Hormones. Princeton University Press, Princeton,1994
    139. Nishida E, Gotoh Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci,1993,18:128-131
    140. Noetor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol,1998,49:249-279
    141. Nykanen H, Koricheva J. Damage-induced changes in woody plants and their effects on insect herbivore performance:a meta-analysis. Oikos,2004,104: 247-268
    142. O'Farrell P H. High-resolution 2-dimensional electrophoresis of proteins. J Biol Chem,1975,250:4007-4021
    143. Orr W C, Sohal R S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science,1994,263: 1128-1130
    144. Ottoson D, Bernhard C G. Comparative studies on dark adaption in the compound eyes of nocturnal and diurnal Lepdoptera. J Gen Physiol,1960a,44: 195
    145. Ottoson D, Bernhard C G. Studies of the relation between the pigment migration and the sentiticity changes during dark adaption in the diurnal and nocturnal Lepdoptera. J Gen Physiol,1960b,44:205
    146. Pandey A, Mann M. Proteomics to study genes and genomes. Nature,2000,405: 837-846
    147. Paskewitz S M, Shi L, The hemolymph proteome of Anopheles gambiae. Insect Biochem Mol Biol,2005,35:815-824
    148. Pedra J H, Festucci-Buselli R A, Sun W L, Muir W M, Scharf M E, Pittendrigh B R. Profiling of abundant proteins associated with dichlorodiphenyltrichloroethane resistance in Drosophila melanogaster. Proteomics,2005,5:258-269
    149.Pennington S R, Dunn M J.蛋白质组学:从序列到功能科学出版社2002:15-18
    150. Pette D, Starton R S. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Bioch P,1990,116:1-76
    151. Polte T, Tyrrell R M. Involvement of lipid peroxidation and organic peroxides in UVA-induced matrix metalloproteinase-1 expression. Free Radical Bio Med, 2004,36:1566-1574
    152. Prohaszka Z, Fust G. Immunological aspects of heat-shock proteins-the optimum stress of life. Mol Immunol,2004,41:29-44
    153. Rabilloud T. Two-dimensional gel. electrophoresis in proteomics:Old, old fashioned, but it still climbs up the mountains. Proteomics,2002,2:3-10
    154. Rachinskya A, Guerrero F D, Scoles G A. Differential protein expression in ovaries of uninfected and Babesia-infected southern cattle ticks, Rhipicephalus (Boophilus) microplus. Insect Biochem Mol Biol,2007,37:1291-1308
    155. Rael L T, Thomas G W, Craun M L, Curtis C G, Bar-Or R, Bar-Or D. Lipid peroxidation and the thiobarbituric acid assay:standardization of the assay when using saturated and unsaturated fatty acids. Insect Biochem Mol Biol,2004,37: 749-752
    156. Randolt K, Gimple O, Geissendorfer J, Reinders J, Prusko C, Mueller M J, Albert S,
    157. Ravanat J L, Douki T, Cader J. Direct and indirect effects of UV radiation on DNA and its components. JPhotoch Photobio B,2001,63:88-102
    158. Rico E P, Rosemberg D B, Dias R D, Bogo M R, Bonan C D. Ethanol alters acetylcholinesterase activity and gene expression in zebrafish brain. Toxicol Lett, 2007,174:25-30
    159. Rossignol M. Analysis of the plant proteome. Curr. Opin. Bioteehnol,2001,12: 131-134
    160. Robinson H S. On the behaviour of night flying insects in the neighbourhood of a bright source of light. Proc Royal Ent Soc Lond Ser A,1952,27:13-21
    161. Robinson H S. Some notes on the observed behaviour of Lepidoptera in flight in the vicinity of a light source together with a description of a light trap designed to take entomological samples. Ent Gaz,1950,1:3-20
    162. Rosenberry T L. Acetyltransferase. Adv Enzymol,1975,43:103-218
    163. Roxstrom-Lindquist K, Terenius 0, Faye I. Parasite-specific immune response in adult Drosophila melanogaster. a genomic study. EMBO Rep,2004,5: 201-212
    164. Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol,2004,136:2734-2746
    165. Scharlaken B, de Graaf D C, Memmi S, Devreese B, Beeumen J V, Jacobs F J. Differential protein expression in the honey bee head after a bacterial challenge. Arch. Insect Biochem. Physiol,2007,65:223-237
    166. Service R F. High speed biologists search for gold in protein. Science,2001,294: 2074-2077
    167. Schauen M, Hornig-Do H T, Schomberg S, Herrmann G, Wiesner R J. Mitochondrial electron transport chain activity is not involved in ultraviolet A (UVA)-induced cell death. Free Radical Bio Med,2007,42:499-509
    168. Schneirla T C. Insect behaviour in relation to its setting in "Insect Physiology". Kenneth D R ed,1953Smirnoff N. The function and metabolism of ascorbic acid in plants. Ann Bot,1996,78:661-669
    169. Shacter E. Protein oxidative damage. Method Enzymol,2000,319:428-436
    170. Somogyi A, Rosta K, Pusztai P, Tulassay Z, Nagy G. Antioxidant measurements. Physiological Meas,2007,28:R41-R55
    171. Stadtman E R. Oxidation of proteins by mixed-function oxidation systems: implication in protein turnover, aging and neutrophil function. Trends Biochem Sci,1986,11:11-12
    172. Stadtman E R., Levine R L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids,2003,25:207-218
    173. Stanley T, Omaye P Z. β-Carotene and protein oxidation:effects of ascorbic acid and a-tocopherol. Toxicology,2000,146:37-47
    174. Stephanie E S, Andrea E S. Partial purification of a farnesyl diphosphate synthase from whole-body Manduca sexta. Insect Biochem Molec,2002,32: 889-899
    175. Sharma R, Komatsu S, Noda H. Proteomic analysis of brown planthopper: application to the study of carbamate toxicity. Insect Biochem Mol Biol,2004, 34:425-432
    176. Shi L, Paskewitz S M. Proteomics and insect immunity. ISJ,2006,3:4-17
    177. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta T, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot, 2002,53:1305-1319
    178. Song K H, Jung S J, Seo Y R, Kang S W, Han S S. Identification of up-regulated proteins in the hemolymph of immunized Bombyx mori larvae. Comp Biochem Phys D,2006,1:260-266
    179. Storey K B, Storey J M. Metabolic rate depression in animals:transcriptional and translational controls. Biol Rev,2004,79:207-233
    180. Tabatabaie T, Floyd R A. Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agents. Arch Biochem Biophys,1994,314:112-119
    181. Tautz J, Beier H. Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. Arch Insect Biochem Physiol,2008,69:155-167
    182. Tomaru T, Satoh T, Yoshino S, Ishizuka T, Monden T, Yamada M, Mori M. Isolation and characterization of a transcriptional cofactor and its novel isoform that bind the DNA-binding domain of peroxisome proliferator-activated receptor gamma. Endocrinology,2006,147:377-388
    183. Toyomasu T, Zennyozi A. On the application of isoenzyme electrophoresis to identification of strains in Leurinus edodes. Mushroom Sci,1981,11:675-684
    184. Toougu V. Acetylocholinesterase:mechanism of catalysis and inhibition. Curry Med Chem-Central Nervous System Agents,2001,1:155-170
    185. Unlu M, Morgan M E, Minden J S. Difference gel eleetrophoresis:a single gel method for detecting changes in protein extraets. Electrophoresis,1997,18: 2071-2077
    186. Untalan P M, Guerrero F D, Haines L R, Pearson T W. Proteome analysis of abundantly expressed proteins from unfed larvae of the cattle tick, Boophilus microplus. Insect Biochem Mol Biol,2005,35:141-151
    187. Urbach F. The biological effects of increased ultraviolet radiation:an update. Photochem Photobiol,1989,50:439-441
    188. van Asperen K. A study of housefly esterase by means of a sensitive colormetric method. J Insect Physiol,1962,8:401-406
    189. Verheijen F J. The mechanism of the trapping effect of artificial light sources upon anaimals. Archs Neerl Zool,1958,13:1-107
    190. Vierstraete E, Verleyen P, Baggerman G, Hertog W D, Bergh G V, Arckens L, Loof A D, Schoofs L. A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph. PNAS,2004,101:470-475
    191. Villatte F, Bachmann T T. How many genes encode cholinesterase in arthropods? Pesticide Biochem Physiol,2002,73:122-129
    192. Wang Y, Oberley L W, Murhammer D W. Antioxidant defense systems of two Lepidopteran insect cell lines. Free Radical Bio Med,2001,30:1254-126
    193. Wang Y Q, Zhang P B, Fujii H, Banno Y, Yamamoto K, Aso Y. Proteomic studies of lipolysaccharide-induced polypeptides in the silkworm, Bombyx mori. Biosci, Biotechnol Biochem,2004,68:1821-1823
    194. Wasinger V C, Cordwell S J, Cerpapoljak A, et al. Progerss with gene-product mapping of the mollicutes:Mycoplasma genitaliurn. Electrophoresis,1995,16: 1090-1094
    195. Wildgruber R, Harder A, Obemater C. Towards high resolution: two-dimensional electrophoresis of saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis,2000,21: 2610-2616
    196. Wilkins M R, Gasteigen E, Torella L, et al. Protein identification with N and C-terminal sequence tags in proteome projects. J Mol Biol,1998,228:599-608
    197. Wittmann-Liebold B, Graack H R, Pohl T. Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics,2006,6:4688-4703
    198. Wu K J, Gong P Y. A new and practical artificial diet for the cotton bollworm. Entomologia Sinica,1997,4:277-282
    199. Yan J X, Devenish A T, Walt R, Stone T, Lewis S, Fowler S. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics,2002,2:1682-1698
    200. Yan S P, Zhang Q Y, Tang Z C, Su W A., Sun W N. Comparative Proteomic Analysis Provides New Insights into Chilling Stress Responses in Rice. Mol Cell Proteomics,2006,5:484-496
    201. Yu S J, Nguyen S N, Abo-Elghar G E. Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pestic Biochem Physiol,2003,77:1-11
    202. Zapata R, Martin D, Piulachs M D, Belles X. Effects of hypocholesterolaemic agents on the expression and activity of 3-hydroxy-3-methylglutaryl-CoA reductase in the fat body of the German cockroach. Arch Insect Biochem Physiol, 2002,49:177-186
    203. Zapata R, Piulachs M D, Belles X. Ovarian 3-hydroxy-3-methylglutaryl-CoA reductase in Blattella germanica (L.):pattern of expression and critical role in embryogenesis. J Insect Physiol,2002,48:675-681
    204. Zha Y P, Xu F, Chen Q C, Lei C L. Effect of ultrasound on acetyloinesterase activity of Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae). Can Entomol,2008,140:1-6
    205. Zhang X J. Yang L. Zhao Q. Caen J P. He H Y. Jin Q H. Guo L H. Alemany M. Zhang L Y. Shi Y F. Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ,2002,9:790-800

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700