用户名: 密码: 验证码:
汽车水泵轴承动力学性能、热学性能与疲劳寿命计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泵轴连轴承具有结构紧凑、安装方便等优点,广泛用于汽车、纺织机械、工程机械等内燃机的冷却水泵中。随着现代内燃机的发展,对水泵轴承的工作性能,如运转速度、运行精度、耐热性和使用寿命等提出了更高的要求。如何准确高效地评估水泵轴承在具体应用中的各种性能指标从而实现水泵轴承的设计优化,一直以来都是工程领域的研究热点和难题。本文以WR型汽车水泵轴承为研究对象,从水泵轴承的受力和运动特性、轴承-转子系统动力学特性、热学特性和疲劳寿命等几个方面展开了较为系统深入的研究,主要研究内容和取得的成果包括:
     (1)在综合考虑转轴挠曲变形、润滑剂流体动压效应、滚动体离心力和轴承游隙等因素影响的基础上,建立了柔性-动压条件下的汽车水泵轴连轴承内部载荷分布和变形计算模型,能够实现对水泵轴承两滚动体列的受载、内部载荷分布及位移的准确高效计算。根据该模型系统研究了转轴挠曲变形、润滑剂动压效应、轴承转速与载荷大小对水泵轴承两滚动体列载荷分布和位移的影响规律。
     (2)考虑流体润滑膜和转轴偏斜的影响,构建了汽车水泵轴承两滚动体列各方向刚度和油膜阻尼系数的理论计算方法,实现了对不同转速下轴承刚度和阻尼较为准确的计算。计入轴上零部件的转动惯量与陀螺效应、油膜作用下的轴承刚度与阻尼,建立了非对称水泵轴承转子系统改进型传递矩阵分析模型,并利用该模型对水泵轴承-转子系统的不平衡响应和VC振动响应进行了分析计算,得到了不同转速下水泵轴承的振动响应振幅曲线以及两滚动体列的频谱与轴心轨迹图。研究了带轮不平衡量与风扇不平衡量大小和空间方位关系对水泵轴承转子系统振动特性的影响规律,得到了使转子系统各轴向位置不平衡响应振幅最小时的带轮与风扇不平衡量方位差及其大小的比例关系。
     (3)建立了水泵轴承拟动力学发热分析模型,考虑了润滑剂流体动压效应、转轴挠曲变形以及滚动体离心力对轴承内部载荷分布的影响以及润滑乏油和接触椭圆截断对滚动体-滚道接触流动动压滚动摩擦力的影响。利用该发热计算模型对水泵轴承的发热特性进行了实例计算研究,得到了水泵轴承各滚动体-滚道间的滑动摩擦切应力分布、滚动体-保持架兜孔作用力、轴承两滚动体列的发热率周向分布以及轴承总发热随载荷和转速的变化曲线。
     (4)设计和搭建了一台水泵轴承温升试验装置,测试了水泵轴承在不同工况下两滚动体列的外圈温升曲线,并针对该试验装置,利用热网格法建立了瞬态热分析模型,对各种试验工况下水泵轴承的瞬态温度场进行了理论计算。理论计算得到的轴承外圈温升曲线与试验测得温升曲线具有较好的一致性,从而验证了所构建的水泵轴承发热计算模型的正确性。
     (5)基于ISO标准推荐的寿命系统法,综合考虑转轴挠曲变形与润滑剂流体动压效应引起的轴承非标准载荷分布以及轴承-转子系统的振动的影响,对水泵轴承各组件的疲劳寿命进行了实例计算研究,得到了转轴挠曲变形、润滑剂流体动压效应、轴承转速、风扇与带轮不平衡量等因素引起的轴承-转子系统振动对水泵轴承的疲劳寿命的影响规律。
     本文的研究成果能够为准确评估水泵轴连轴承的工作性能进而实现优化的轴承设计和合理的工况匹配提供理论支撑。
The coaxial water pump bearing is widely used in the water cooling systems of the combustion engines of automobiles, textile machines and construction machines due to its compact structure, easy installation and so on. More excellent operating performances of this bearing such as higher running accuracy, better heat resistance and longer fatigue life are required to satisfy the development of modern combustion engines. However, how to accurately evaluate these operating perpormances in the specific bearing applications and eventually optimize the bearing design is a difficult problem puzzling bearing engineers and so it is always a research hotspot in the rolling bearing industry. In this dissertation, the automobile water pump bearing is taken as the research object. The loads and motions of bearing components, the dynamic and theromal performances of the bearing-rotor system, and the bearing fatigue life are investigated in detail. The research contents and achievements of this dissertation include following aspects:
     (1) A new calculation model based on flexible-hydrodynamic condition is established to accurately and rapidly calculate the loadings, internal load distributions and displacements of the automobile water pump bearing, in which the deflection of bearing spindle, the hydrodynamic effects at raceway-rolling element contacts, the centrifugal forces of rolling elements and the alterable clearances of bearing are all considered. Making use of this model, the influence rules of the deflection of the bearing spindle, the hydrodynamic effect, the bearing rotational speed and the load carried by the bearing on the bearing internal load distributions and displacements are specifically studied.
     (2) Taking the influences of the spindle deflection and lubrication film into consideration, the theoretical calculation methods of the bearing stiffnesses and dampings along various directions are derived for water pump bearings running under different speeds and loads. A modified transfer matix method is developed to analyze the vibration characteristics of the asymmetric rotor-water pump bearing system, considering the rotary inertias and gyroscopic moments of all components within the rotor system and the bearing stiffnesses and dampings related to the bearing speed and load. With this modified method, the vibrations of the rotor-water pump bearing system due to the mass unbalances of system components and the varying compliance (VC) of the bearing are calculated and analyzed. The response amplitudes under different bearing rotational speeds, the frequency spectra and axis orbits of two rolling element rows of the bearing are obtained. The influences of the cooling fan and driving pulley unbalanes including their magnitudes and azimuths on the vibration of the rotor-water pump bearing system are also investigated and the optimum azimuth differences and magnitude ratios between the fan and pulley unbalances are obtained to minimize the vibration responses at individual axial positons along the rotor.
     (3) An improved quasi-dynamic model used to calculate the heat generations of the water pump bearing is proposed. In this model, the influence of the spindle deflection, the lubricant hydrodynamic effect and rolling element centrifugal forces on the bearing internal load distribution and the influence of contact ellipse truncation and lubrication starvation on the hydrodynamic rolling force at each rolling element-raceway contact are all considered.The analysis of water pump bearing heat generation performance are conducted by an example calculation. The sliding frictional shear stress distributions over the rolling element-raceway contacts, cage pocket-rolling elment normal contact loads and heat generation rates at all rolling elment azimuth angles, and the relationship curves of the bearing total heat generation rate versus the bearing speed and load are obtained.
     (4) An experimental apparatus is designed and built to test the temperature rises of the water pump bearing under different operating conditions. According to the heat generation rates calculated with the improved quasi-dynamic model, transient thermal analysis for this apparatus is performed using a network approach. The temperature rises of the bearing outer ring got from the thermal analysis agree well with those measured from the experimental apparatus and so the heat generation calculation model developed for the water pump bearing is validated.
     (5) The individual fatigue lives of the bearing components and then the total fatigue live of the bearing are predicted based on the systems approach of bearing fatigue life calculation proposed by the ISO standard and further considering the nonstandard internal load distributions of the bearing and the vibrations of the rotor-bearing system. The influence rules of the spindle deflection, the hydrodynamic effects, the bearing rotational speed and the rotor-bearing system vibrations on the fatigue life of the water pump bearing are obtained.
     The researches and achievements obtained in this dissertation can provide theoretical foundations for evaluating the operation performances of the water pump bearing accurately and further for optimizing the bearing design and matching the practical operating conditions reasonably for the bearing.
引文
[1]Harris T A. Rolling bearing analysis[M].3rd edition. New York:Willey& Sons,1997.
    [2]杨晓蔚,周宇.滚动轴承重要性与技术含量纵论[J].轴承,2003(1):35-38.
    [3]蔡亚新.双列球型水泵轴连轴承的设计[J].轴承,1999(2):4-7.
    [4]李飞雪.最新滚动轴承标准应用手册[Z].洛阳:洛阳轴承研究所,2004.
    [5]彭晓红,温朝杰,史龙武.水泵轴连轴承常见失效形式与改进[J].轴承,2007(5):39-41.
    [6]蔡亚新,肖晖,王金玉等.国外水泵轴连轴承设计与应用[J].轴承,1999(6):37-39.
    [7]陈盂月,张迅雷.双列向心球型水泵轴连轴承结构设计[J].轴承,1996(3):3-5.
    [8]樱木正明著,杨金容译.计入轴刚性的汽车水泵轴承寿命的研究[J].Koyo,1989,136:51-63.
    [9]镰本繁夫著,刘治曾译.外圈旋转式水泵轴承的疲劳寿命[J].国外轴承,1992(6):46-55.
    [10]Lundberg G, Palmgren A. Dynamic capacity of rolling bearings [J]. Acta Polytech. Mech. Eng. Ser.l,1947,7(3):1-7.
    [11]马子魁.基于拟静力学方法的球轴承动力学特性分析[D].杭州:浙江大学,2010.
    [12]Stribeck R. Ball bearing for various loads[J]. ASME Transactions,1907,29:420-463.
    [13]Palmgren A. Ball and roller bearing engineering[M].3rd edition. Burbank Philadelphia: SKF Industries,1959.
    [14]Sjovall H. The load distribution within ball and roller bearings under given external radial and axial load[J]. Teknisk Tidskrift Mek.,1933,9:1-6.
    [15]Harris T. Rolling bearing analysis[M]. New York:John Wiley and sons.1966.
    [16]Oswald B, Zaretsky E, Poplawski J. Effect of internal clearance on load distribution and life of radially loaded ball and roller bearings[J]. Tribology Transactions,2012,55(2): 245-265.
    [17]Houpert L. Uniform analytical approach for ball and roller bearings calculations[J]. ASME Journal of Tribology,1997,119 (3):851-858.
    [18]Liu J. Analysis of tapered roller bearings considering high speed and combined loading[J]. ASME Journal of Lubrication Technology,1976,98 (3):564-574.
    [19]de Mul J, Vree J, Maas D. Equilibrium and associated load distribution in ball and roller bearing in five degrees of freedom while neglecting friction, part 1:general theory and application to ball bearings [J]. ASME Journal of Tribology.1989,111(1):142-148.
    [20]de Mul J, Vree J. Maas D. Equilibrium and associated load distribution in ball and roller bearing in five degrees of freedom while neglecting friction, part 2:application to roller bearings and experimental verification[J]. ASME Journal of Tribology,1989.111(1): 149-155.
    [21]Bercea I, Nelias D, Cavallaro G. A unified and simplified treatment of the non-linear equilibrium problem of double-row rolling bearings, part 1:rolling bearing model[J]. Proc. Inst. Mech. Eng., Part J:J. Eng. Tribol.,2003,217:205-212.
    [22]Nelias D, Bercea I. A unified and simplified treatment of the non-linear equilibrium problem of double-row rolling bearings, part 2:application to taper rolling element bearings supporting a flexible shaft[J]. Proc. Inst. Mech. Eng., Part J:J. Eng. Tribol., 2003,217:213-221.
    [23]Amasorrain J, Sagartzazu X, Damian J. Load distribution in a four contact-point slewing bearing[J]. Mechanism and Machine Theory.2003,38:479-496.
    [24]Gao X, Huang X, Wang H. Load distribution over raceways of an 8-point-contact slewing bearing[C]. International Conference on Applied Mechanics and Mechanical Engineering, Changsha,2010.
    [25]Jones A, Harris T. Analysis of a rolling element idler gear bearing having a deformable outer race structure[J]. ASME Trans. J. Basic Eng.1963,6:273-278.
    [26]Harris T, Optimizing the design of cluster mill rolling bearings[J]. ASLE Trans.1964,4: 253-260.
    [27]Harris T, Broschard J. Analysis of an improved planetary gear transmission bearing[J]. ASME Journal of Basic Engineering,1964,9:457-462.
    [28]Zupan S, Prebil I. Carrying angle and carrying capacity of a large single row ball bearing as a function of geometry parameters of rolling contact and supporting structure stiffness[J]. Mechanism and Machine Theory.2001,36:1087-1103.
    [29]Houpert L. Prediction of bearing, gear and housing performances[C]. Rolling bearing Practice Today Seminar. Proceeding of the I. Mech. E, London,1995.
    [30]Hauswald T, Houpert L. Numerical and experimental simulations of performances of bearing system, shaft and housing; account for global and local deformations[C]. SIA seminar Fiabilite experimentale, Proceeding of the Conference, Paris,2000
    [31]Demirhan N, Kanber B. Stress and displacement distributions on cylindrical roller bearing rings using FEM[J]. Mechanics Based Design of Structures and Machines,2008, 36(1):86-102.
    [32]Tang Z, Sun J. The contact analysis for deep groove ball bearing based on ANSYS[J]. Procedia Engineering,2011,23:423-428.
    [33]Daidie A, Chaib Z, Ghosn A.3D simplified finite elements analysis of load and contact angle in a slewing ball bearing[J]. Journal of Mechanical Design,2008,130(8):1-8.
    [34]Tadeusz S, Eugeniusz R. Superelement-based modeling of load distribution in large-size slewing bearings[J]. Journal of Mechanical Design,2007,129(4):459-463.
    [35]Shirkhodaie A, Dubeck, J. Physics-based modeling of bearing based on finite element technique[C]. Proceedings 2003 ASME International Mechanical Engineers Congress, Washington. D.C,2003
    [36]汪久根,王庆久.章维明.滚动轴承动力学分析[J].轴承,2007(3):40-45.
    [37]罗继伟,罗天宇.滚动轴承分析计算与应用[M].北京:机械工业出版社,2009.
    [38]Jones A. Ball motion and sliding friction in ball bearings[J]. ASME Journal of Basic Engineering,1959,81(3):1-12.
    [39]Harris T. Ball motion in thrust-loaded, angular contact bearings with Coulomb friction[J]. Journal of Lubrication Technology,1971,93(1):32-38.
    [40]Harris T. An analytical method to predict skidding in thrust-loaded angular-contact ball bearings[J]. Journal of Lubrication Technology,1971,93(1):17-24.
    [41]Centle C, Boness R. Prediction of ball motion in high-speed thrust-loaded ball bearings[J]. Journal of Lubrication Technology,1976,98(3):463-471.
    [42]Cretu S, Bercea I, Mitu N. A dynamic analysis of tapered roller bearing under fully flooded conditions-part 1:theoretical formulation[J]. Wear,1995,188:1-10.
    [43]Cretu S, Mim N, Bercea I. A dynamic analysis of tapered roller bearing under fully flooded conditions-part 2:results[J]. Wear,1995,188:11-18.
    [44]袁茹,李继庆.高速滚子轴承的拟动力学分析计算[J].机械科学与技术,1995,14(1):65-68.
    [45]罗祝三,吴林丰,孙心德等.轴向受载高速球轴承的拟动力学[J].航空动力学报,1996,11(3):257-260.
    [46]杜辉.航空发动机主轴高速圆柱滚子轴承三维瞬态拟动力学[D].洛阳:河南科技大学,2005.
    [47]Waiters C. The dynamics of ball bearings[J]. Journal of Lubrication Technology.1971, 93:1-10.
    [48]Gupta P. Advanced dynamics of rolling elements[M]. New York:Springer-Verlag,1984.
    [49]Gupta P. Cage unbalance and wear in ball bearings[J]. Wear,1991,147(1):93-104.
    [50]Gupta P. Cage unblance and wear in roller bearings [J]. Wear,1991,147(1):105-118.
    [51]Gupta P. Dynamic loads and cage wear in high-speed rolling bearings[J]. Wear,1991, 147(1):119-134.
    [52]Meeks C, Ng K. The dynamics of ball separators in ball bearings-part 1:analysis[J]. ASLE Transactions,1985,28(3):277-287.
    [53]Meeks C. The dynamics of ball separators in ball bearings-part 2:results of optimization study[J]. ASLE Transactions,1985.28(3):288-295.
    [54]Meeks C, Tran L. Ball bearing dynamic analysis using computer methods-part 1: analysis[J]. ASME Journal of Tribology,1996,118(1):52-58.
    [55]李锦标.吴林丰.高速滚子轴承的动力学分析[J].航空学报.1992,13(12):625-632.
    [56]张成铁.陈国定.高速滚动轴承的动力学分析[J].机械科学与技术.1997.16(1):136-139.
    [57]薛峥.汪久根Z Rymuza等.圆柱滚子轴承的动力学分析[J].轴承.2009(7):1-6.
    [58]薛峥,汪久根Z Rymuza等.深沟球轴承的动力学分析及其软件BA[J].轴承,2009(8):14-19.
    [59]虞烈,刘恒.轴承-转了系统动力学[M].西安:西安交通大学出版社,2001.
    [60]Newkirk B. Shaft whipping[J]. General Electric Review,1924,27:169-178.
    [61]Yamamoto T. On the vibration of a shaft supported by bearing having radial clearances[J]. Transactions of JSME,1955,21:182-192.
    [62]Ehrich F F. Higher order subharmonic response of high speed rotors in bearing clearance[J]. ASME Journal of Vibration Acoustic Stress and Reliability in Design,1988, 110:9-16.
    [63]Ehrich F F. Observation of subcritical superharmonic and chaotic response in rotor dynamic[J]. ASME Journal of Vibration Acoustic Stress and Reliability in Design,1991, 114:93-99.
    [64]Radoslav T, Vojislav M, Milan B et al. Vibration response of rigid rotor in unloaded rolling element bearing [J]. International Journal of Mechanical Sciences.2010,52: 1176-1185.
    [65]袁茹,赵凌燕,王三民.滚动轴承-转子系统非线性动力学特性分析[J].机械科学与技术,2004,23(10):1175-1177,1233.
    [66]彭超英.新型高速纺纱锭子及其相关轴承-转子系统动力特性的研究[D].西安:西安交通大学,1994.
    [67]Aini R, Rahaejat H, Gohar R. Vibration modeling of rotating spindles supported by lubricated bearings[J]. ASME Journal of Tribology,1992,114:348-59.
    [68]Wensing J A, van Nijen G C. The dynamic behaviour of a system that includes a rolling bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology,2001,215(6):509-518.
    [69]Fukata S, Gad E H, Kondou T et al. On the radial vibration of ball bearings (computer simulation)[J]. Bulletin of the JSME,1985,28:899-904.
    [70]Mevel B, Guyader J L. Routes to chaos in ball bearings[J]. Journal of Sound and Vibration,1993,162(3):471-487.
    [71]Akturk N, Uneeb M, Gohar R. The effect of number of balls and preload on vibrations associated with ball bearings[J]. ASME Journal of Tribology,1997,119:747-753.
    [72]Han D C, Choi S H, Lee Y H, et al. The nonlinear and ball pass effects of a ball bearing on rotor vibration[J]. KSME International Journal,1998,12(3):396-404.
    [73]Sankaravelu A, Noah S T, Burger C P. Bifurcation and chaos in ball bearings[J]. Nonlinear and Stochastic Dynamics,1994,192:313-325.
    [74]Kim Y B, Noah S T. Bifurcation analysis for a modified Jeffcott rotor with Bearing Clearances[J]. Nonlinear Dynamics,1990,1:221-241.
    [75]Kim Y B, Noah S T. Quasi periodic response and stability analysis for a nonlinear Jeffcott rotor [J]. Journal of Sound and Vibration,1996,190(2):239-253.
    [76]Tiwari M, Gupta K, Prakash O. Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor[J]. Journal of Sound and Vibration,2000. 238(5):723-756.
    [77]Harsha S P. Sandeep K, Prakash R. The effect of speed of balanced rotor on nonlinear vibrations associated with ball bearing [J]. International Journal of Mechanical Sciences, 2003,45(4):725-740.
    [78]Harsha S P. Non-linear dynamic response of a balanced rotor supported on rolling element bearings[J]. Mechanical Systems and Signal Processing,2005,19(3):551-578.
    [79]白长青,许庆余,张小龙.考虑径向内间隙的滚动轴承平衡转子系统的非线性动力稳定性[J].应用数学和力学,2006,27(2):159-169.
    [80]陈果.滚动轴承支承下不平衡转子系统非线性动力响应分析[J].中国机械工程,2007,18(23):2773-2778.
    [81]陈果.含不平衡-碰摩-基础松动耦合的转子-滚动轴承系统非线性动力响应分析[J].振动与冲击,2008,27(9):100-104.
    [82]Warlde, F. P. Vibration forces produced by waviness of the rolling surfaces of thrust loaded ball bearings-part 1:theory[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,1988,202:305-312.
    [83]Warlde, F. P. Vibration forces produced by waviness of the rolling surfaces of thrust loaded ball bearings-part 2:experimental validation[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,1988,202: 313-319.
    [84]Akturk N. The effect of waviness on vibrations associated with ball bearings[J]. ASME Journal of Tribology,1999,121:667-677.
    [85]Harsha S, Nataraj C, Kankar P. The effect of ball waviness on nonlinear vibration associated with rolling element bearings[J]. International Journal of Acoustics and Vibrations,2006,11(2):56-66.
    [86]Harsha SP, Nataraj C. Nonlinear dynamic analysis of an unbalanced rotor supported by high-speed rolling element bearings with effect of surface waviness[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2006,7(2):56-66.
    [87]Choudhury A, Tandon N. A theoretical model to predict vibration response of rolling bearings to distributed defects under radial load[J]. ASME Journal of Vibration and Acoustics,1998,120:214-220.
    [88]Choudhury A, Tandon N. Vibration response of rolling element bearings in a rotor bearing system to a local defect under radial load[J]. ASME Journal of Tribology,2006, 128:252-261.
    [89]Patel V N, Tandon N, Pandey R K. A dynamic model for vibration studies of deep groove ball bearings considering single and multiple defects in races[J]. ASME Journal of Tribology,2010,132:041101.
    [90]Patil M S, Mathew J, Rajendrakumar P K, et al. A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing[J]. International Journal of Mechanical Sciences,2010,52:1193-1201
    [91]Lynagh N, Rahnejat H, Ebrahimi M et al. Bearing induced vibration in precision high speed routing spindles[J]. International Journal of Machine Tools & Manufacture.2000, 40:561-577
    [92]Rafsanjania A, Abbasiona S, Farshidianfarb A, et al. Nonlinear dynamic modeling of surface defects in rolling element bearing systems[J]. Journal of Sound and Vibration. 2009,319:1150-1174.
    [93]Kappaganthu K, Nataraj C. Nonlinear modeling and analysis of a rolling element bearing with a clearance[J]. Commun Nonlinear Sci Numer Simulat,2011,16:4134-4145
    [94]Harsha S P. Nonlinear dynamic analysis of a high-speed rotor supported by rolling element bearings. Journal of Sound and Vibration,2006,290:65-100.
    [95]Sassi S, Badri B. A numerical model to predict damaged bearing vibrations[J]. Journal of Vibration and Control,2007,13:1603-1628
    [96]Ruhl R L. Dynamics of distributed parameter rotor systems:transfer matrix and finite element techniques [D]. New York:Cornell University,1970.
    [97]Nelson H D, McVaugh J M. The dynamics of rotor bearing systems using finite elements[J]. ASME Journal of Engineering for Industry,1976,98:593-600.
    [98]Nelson H D. A finite rotating shaft element using Timoshenko beam theory[J]. ASME Journal of Mechanical Design,1980,102:793-803.
    [99]Ozguven H N. On the critical speed of continuous shaft-disk systems[J]. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design,1984,106:59-61.
    [100]Ozguven H N, Ozkan Z L. Whirl speed and unbalance response of multi-bearing rotors using finite elements[J]. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design,1984,106:72-79.
    [101]Hashish E. Finite element and modal analyses of rotor-bearing system under stochastic loading conditions[J]. Journal of Vibration and Acoustics.1984,106(1):80-90.
    [102]袁茹,王三民,任平珍.发动机转子-滚动轴承系统的振动性能研究[J].机械科学与技术.1999,18(5):761-763.
    [103]华军.转子-轴承系统非线性动力稳定性研究[D].西安:西安交通大学,2002.
    [104]白长青,许庆余,张小龙.滚动轴承-火箭发动机液氢泵涡轮转子系统的动力特性分析[J].航空学报,2006,27(2):258-261.
    [105]罗平,刘恒,景敏卿.滚动轴承支承的柔性转子系统的非线性动力学分析[J].润滑与密封,2011,36(6):38-43.
    [106]Liew A, Feng N, Hahn E J. Transient rotor dynamic modeling of rolling element bearing systems[J]. ASME Journal of Engineering for Gas turbines and Power,2002,124: 984-991.
    [107]Prohl M A. A general method for calculating critical speeds of flexible rotors[J]. ASME Journal of Applied Mechanics,1945,67:142-148.
    [108]Koenig E C. Analysis for calculating lateral vibration characteristics of rotating systems with any number of flexible supports-part 1:the method of analysis[J]. ASME Journal of Applied Mechanics.1961,28:585-590.
    [109]Guenther T G., Lovejoy D C. Analysis for calculating lateral vibration characteristics of rotating systems with any number of flexible supports-part 2:application of the method of analysis[J]. ASME Journal of Applied Mechanics,1961,28:591-600.
    [110]Lund J W, Orcutt F K. Calculations and experiments on the unbalance response of a flexible rotor[J]. ASME Journal of Engineering for Industry,1967,89:785-796.
    [111]Bansal P N, KirkR G. Stability and damped critical speeds of rotor-bearing systems[J]. ASME Journal of Engineering for Industry,1975,97:1325-1332.
    [112]Chao S W, Huang S C. On the flexural vibrations of shaft-disk systems using a modified transfer matrix method[C]. Proceedings of the 6th National Conference of the CSME, Taiwan, China,1989:1607-1618.
    [113]Gu J. An improved transfer matrix-direct integration method for rotor dynamics[J]. ASME Journal of Vibration and Acoustics,1986,108:182-188.
    [114]Lee A C, Kang Y, Liu S L. A modified transfer matrix for the linear rotor-bearing system[J]. ASME Journal of Applied Mechanics,1991,58:776-783.
    [115]Kang Y, Lee A C, Shih Y P. A modified transfer matrix method for asymmetric rotor-bearing systems[J]. ASME Journal of Vibration and Acoustics,1994,116:309-317.
    [116]Lee A C, Kang Y, Liu S L. Steady-state analysis of a rotor mounted on nonlinear bearings by the transfer matrix method[J]. International Journal of Mechanical Sciences, 1993,35:479-490.
    [117]Zu J W, Ji Z. An improved transfer matrix method for steady-state analysis of nonlinear rotor bearing systems [J]. ASME Journal of Engineering for Gas Turbines and Power, 2002,124 (2):303-310.
    [118]Maharathi B B, Dash P R, Behera A K. Dynamic behavior analysis of a dual-rotor system using the transfer matrix method[J]. International Journal of Acoustics and Vibrations,2004,9(3):115-128.
    [119]Liew A, Feng N S, Hahn E J. On using the transfer matrix formulation for transient analysis of nonlinear rotor bearing systems[J]. International Journal of Rotating Machinery,2004,10 (6):425-431.
    [120]Hsieh S C, Chen J H, Lee A C. A modified transfer matrix method for the coupled lateral and torsional vibrations of symmetric rotor-bearing systems[J]. Journal of Sound and Vibration,2006.289:294-333.
    [121]Hsieh S C, Chen J H, Lee A C. A modified transfer matrix method for the coupling lateral and torsional vibrations of asymmetric rotor-bearing systems[J]. Journal of Sound and Vibration,2008,312:563-571.
    [122]He B, Rui XT, Wang G. P. Riccati discrete time transfer matrix method for elastic beam undergoing large overall motion[J]. Multibody System Dynamics,2007,18:579-598.
    [123]Wu J S, Chen C T. A lumped-mass TMM for free vibration analysis of a multi-step Timoshenko beam carrying eccentric lumped masses with rotary inertias[J]. Journal of Sound and Vibration,2006,301:878-897.
    [124]Wu J S. Chen C T. A continuous-mass TMM for free vibration analysis of a non-uniform beam with various boundary conditions and carrying multiple concentrated elements [J]. Journal of Sound and Vibration,2008,311:1420-1430.
    [125]Tsai C Y, Huang S C. Transfer matrix for rotor coupler with parallel misalignment[J]. Journal of Mechanical Science and Technology,2009,23(5):1383-1395.
    [126]吴吴.滚动轴承动特性及轴承-转子系统动力学模型研究[D].上海:华东理工大学,2010.
    [127]陈观慈,王黎钦,古乐等.高速球轴承的生热分析[J].航空动力学报,2007,22(1):163-168.
    [128]刘喆,王燕霜.滚动轴承温度场的研究现状和展望[J].机械传动,2010,34(3):88-91.
    [129]刘志全,张永红,苏华.高速滚动轴承热分析[J].润滑与密封,1998,(4):66-68.
    [130]Astridge D G, Smith C F. Heat generation in high speed cylindrical roller bearings[C] Prooeedings of the Institution of Mechanical Engineers, the Second Symposium on Elasto-hydrodynamic Lubrication, Leeds,1972.
    [131]斯库巴切夫斯基,张文杰.航空燃气涡轮发动机零件结构与计算[M].北京:国防工业出版社,1992.
    [132]Rumbarger J H, Filetti E G.. Gubemiek D et al. Gas turbine engine main shaft roller bearing system analysis[J]. ASME Journal of Lubrication Technology,1973,95(4): 401-416.
    [133]刘志全,张鹏顺,沈允文.高速圆柱滚子轴承的热分析模型[J].机械科学与技术,1997,16(4):607-611.
    [134]徐跃进.高速脂润滑轴承温升失效分析与试验研究[J].机械设计,2008,25(4):49-52.
    [135]夏小群,赵彦群.基于热网络技术的轴承腔温度场分析[J].装备制造技术,2010,(6):28-29.
    [136]Houpert L. Ball bearing and tapered roller Bearing torque:analytical, numerical and experimental results[J]. STLE Tribology Transactions,2002,45:345-353.
    [137]Chittenden R J, Dowson D, Taylor C M. Power loss prediction in ball bearings[C]. Proceedings of the 15th Leeds-Lyon Symposium, Leeds,1988.
    [138]Nelias D, Sainsot P, Flamand L. Power loss of gearbox ball bearing under axial and radial loads[J]. STLE Tribology Transactions,1994,37:83-90.
    [139]Gupta P K. Thermal interactions in rolling bearing dynamics[R]. USA Air Force Research Laboratory Report AFRL-PR-WP-TR-2002-2042,2002
    [140]Harris T A, Mindel M H. Rolling element bearing dynamics[J]. Wear,1973,23:311-337.
    [141]Harris T A, Kotzalas M N. Rolling Bearing Analysis[M].5th edition. Boca Raton:Taylor and Francis group,2007
    [142]Wang L Q, Chen G. C, Gu L, et al. Operating temperature in high-speed ball bearing[J]. Proceedings of the Institution of Mechanical Engineers Part C:Journal of Mechanical Engineering Science.2007.221:353-359.
    [143]Townsend D P, Allen C W, Zaretsky E V. Study of ball bearing torque under elastohydrodynamic lubrication[J]. ASME Journal of Lubrication Technology,1974,96: 561-571.
    [144]Zaretsky E V, Schuller F T, Coe H H. Lubrication and performance of high speed rolling element bearings[J]. ASME Journal of Lubrication Technology,1985,41:725-732.
    [145]Paty G. Bearing with minimum lubrication[C]. Advances Techniques for Engine Applications, European Commission Aeronautics Research Series. New York:John Wiley and Sons,1995.
    [146]Houpert L. CAGEDYN:A Contribution to Roller Bearing Dynamic Calculations Part I: Basic Tribology Concepts[J]. STLE Tribology Transactions,2010,53(1):1-9.
    [147]Pouly F, Changenet C, Ville F, et al. Investigations on the power losses and thermal behaviour of rolling element bearings[J]. Proceedings of the Institution of Mechanical Engineers Part J:Journal of Engineering Tribology,2010,224:925-933.
    [148]Pouly F, Changenet C, Ville F, et al. Power loss predictions in high-speed rolling element bearings using thermal networks[J]. STLE Tribology Transactions,2010,53(6):957-967.
    [149]Biboulet N, Houpert L. Hydrodynamic force and moment in pure rolling lubricated contacts, part I:line contacts[J]. Proceedings of the Institution of Mechanical Engineers Part J:Journal of Engineering Tribology,2010,224:765-775.
    [150]Biboulet N, Houpert L. Hydrodynamic force and moment in pure rolling lubricated contacts, part Ⅱ:point contacts[J]. Proceedings of the Institution of Mechanical Engineers Part J:Journal of Engineering Tribology,2010,224:777-787.
    [151]苗学问,王大伟,洪杰.滚动轴承寿命理论的发展[J].轴承,2008,(30):47-52.
    [152]Baillie D C, Mathew J. A Comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearing[J]. Mechanical Systems and Signal Processing, 1996,10(1):1-17.
    [153]Williams T, Ribadeneira X, Billingto S. Rolling element bearing diagnostics in run-to-failure life time testing[J]. Mechanical Systems and Signal Processing,2001, 115(5):979-993.
    [154]Hasan Ocak, Kenneth A L. HMM-Based fault detection and diagnosis scheme for rolling element bearings[J]. ASME Journal of Vibration and Acoustics,2005,127: 299-306.
    [155]Shao Y, Nezu K. Prognosis of remaining bearing life using neural networks[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ:Journal of Systems and Control Engineering,2000.214:217-230.
    [156]Mark L, Liu R, Vijay P. Residual life predictions from vibration-based degradation signals:a neural network approach[J]. IEEE Transactions on Industrial Electronics. 2004.51(3):694-699.
    [157]Huang R, Xia L. Li X et al. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J]. Mechanical Systems and Signal Processing,2007, (21):193-207.
    [158]Weibull W. A statistical theory of strength of materials[C]. Proceedings of the Royal Swedish Institute for Engineering Research. Stockholm,1939.
    [159]Lundberg G, Palmgren A. Dynamic capacity of roller bearings[J]. Acta Polytech. Mech. Eng. Ser.2,1952,96(4).
    [160]ISO 281/1:2000(E). Rolling bearings dynamic load ratings and rating life[S]. International Standardization Organization,2000.
    [161]ANSI-ABM A 9-1990. Load ratings and fatigue life for ball bearings[S]. American National Standards Institute-American Bearing Manufacturers Association,1990.
    [162]ANSI-ABM A 11-1990. Load ratings and fatigue life for roller bearings[S]. American National Standards Institute-American Bearing Manufacturers Association,1990.
    [163]Tallian T E. Weibull distribution of rolling contact fatigue life and deviations there from[J].ASLE Transactions,1962,5(1):103-113.
    [164]Zaretsky E V, Poplawski J V, Root L E. Reexamination of Ball-Race Conformity Effects on Ball Bearing Life[J]. STLE Tribology Transactions,2007,50(3):336-349.
    [165]Potocnik R, Goncz P Flasker J et al. Fatigue life of double row slewing ball bearing with irregular geometry[J]. Procedia Engineering,2010(2):1877-1886.
    [166]Gao X, Huang X, Wang H, et al. Effect of raceway geometry parameters on the carrying capability and the service life of a four-point-contact slewing bearing[J]. Journal of Mechanical Science and Technology,2010,24(10):2083-2089.
    [167]Oswald F B, Zaretsky E V, Poplawski J V. Effect of internal clearance on load distribution and life of radially loaded ball and roller bearings[J]. STLE Tribology Transactions,2012,55(2):245-265.
    [168]Li Z, Zhou Q, Tang J. Load calculation and life prediction for auto water pump bearing[J]. ASME Journal of Tribology,2012,134(4):041103.
    [169]Zaretsky E V. Life factors for rolling bearings[M]. Park Ridge:STLE,1992.
    [170]Andersson T. Endurance testing in theory[J]. Ball Bearing Journal,1983,217:14-23.
    [171]Harris T A, Barnsby R M. Life ratings for ball and roller bearings[J]. Proceedings of the Institution of Mechanical Engineers Part J:Journal of Engineering Tribology,2001,215: 577-595.
    [172]Ioannides E, Harris T, A new fatigue life model for rolling bearing[J]. ASME Journal of Tribology,1985,107:367-378.
    [173]Harris T A, McCool J I. On the accuracy of rolling bearing fatigue life prediction[J]. ASME Journal of Tribology,1996,118:297-310.
    [174]ISO 281:2007(E). Rolling bearings dynamic load ratings and rating life[S]. International Standardization Organization.2007.
    [175]Zaretsky E V, Poplawski J V, Peters S M. Comparison of life theories for rolling element bearings[J]. STLE Tribology Transactions,1996 39(1):237-248.
    [176]Zaretsky E V, Poplawski J V, Root L E. Relation between Hertz stress-life exponent, ball-race conformity, and ball bearing life[J]. STLE Tribology Transactions,2008.51(2): 150-158.
    [177]Zaretsky E V. In search of a fatigue limit:a critique of ISO standard 281:2007[J]. Tribology and Lubrication Technology,2010,66(8):30-40.
    [178]Shimizu S. Weibull distribution function application to static strength and fatigue life of materials[J]. STLE Tribology Transactions,2012,55(3):267-277.
    [179]Shimizu S. A new life theory for rolling bearings-by linkage between rolling contact fatigue and structural fatigue[J]. STLE Tribology Transactions,2012,55(5):558-570.
    [180]关醒凡.现代泵技术手册[M].北京:宇航出版社,1995.
    [181]Houpert L. An engineering approach to Hertzian contact elasticity-part 1[J]. ASME Journal of Tribology,2001,123:582-588.
    [182]Houpert L. An engineering approach to non-Hertzian contact elasticity-part 2[J]. ASME Journal of Tribology,2001,123:589-594.
    [183]Cretu S. Initial plastic deformation of cylindrical roller generatrix stress distribution analysis and fatigue life tests[J]. Acta Tribolgica,1996,4(1-2):1-6.
    [184]Brewe D, Hamrock B. Simplified solution for elliptical-contact deformation between two elastic solids[J]. ASME Journal of Lubrication Techology,1977,101(2):231-239.
    [185]Martin H M. The lubrication of gear-teeth[J]. Engineering,1916,102(3):119-121.
    [186]Blok H. The lubrication of gears-discussion[J]. Journal of Institute of Petrol,1952,38: 673-683.
    [187]Houpert L. The film thickness in piezoviscous regime, film thickness lubrication regimes transition criteria[J]. ASME Journal of Tribology,1984,106(3):375-385.
    [188]张鹏顺.压粘-刚性弹流状态的分析和膜厚的计算[J].润滑与密封,1987,(1):9-16.
    [189]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992.
    [190]Zhang P S, Gou J H. Two new formulae to calculate the film thickness in elastohydrodynamic lubrication and an evalution of Grubin's Formula[J]. Wear,1989, 130(2):357-360
    [191]张鹏顺,陆思聪.弹性流体动力润滑及其应用[M].北京:高等教育出版社,1995.
    [192]Brewe D E, Hamrock B J, Tayor C M. Effect of geometry on hydrodynamic film thickness[J]. ASME Journal of Lubrication Techology,1979.101:231-239.
    [193]JengY R, Hamrock B J Brewe D E. Piezoviscous effects in nonconformal contacts lubricated hydrodynamically[J]. STLE Tribology Transactions,1987,30(4):452-464.
    [194]Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts-full flooded results[J]. ASME Journal of Lubrication Technology,1977,99(2): 264-276.
    [195]Chittenden R J, Dowson D, Dunn J F et al. A theoretical analysis of isothermal elastohydrodynamic lubrication of concentrated contacts, part 2-general case, with lubrication entrainment along either principal axis of Hertian contact ellipse or at some intermediate angle[C]. Proceeding of the Royal Society, London,1985.
    [196]Hagiu G. D. Gafitunu M D. Dynamic characteristics of high speed angular ball bearings[J]. Wear,1997,211:22-29.
    [197]闻邦椿,顾家柳,夏松波等.高等转子动力学:理论、技术与应用[M].北京:机械工业出版社,1999
    [198]陈萍,李松生,刘思胜等.超高转速条件下主轴轴承内部油膜阻尼研究[J].润滑与密封,2011,36(6):65-68.
    [199]Roelands C. Correlation aspects of viscosity-temperature-pressure relationship of lubricating oils[D]. Delft, Netherlands:Delft University of Technology,1966.
    [200]Trachman E, Cheng H. Thermal and non-Newtonian effects on traction in elasto-hydrodynamic contacts[C]. Proceedings of the Institution of Mechanical Engineers, the Second Symposium on Elasto-hydrodynamic Lubrication, Leeds,1972.
    [201]马庆芳,方荣生.实用热物理性质手册[Z].北京:中国农业机械出版社,1986.
    [202]张永红,苏华,刘志全等.行星齿轮传动系统的瞬态热分析[J].航空学报,2000,21(6):542-544.
    [203]Barnsby R M. Life rating for modern rolling bearings [C]. ASME Paper 98-TRIB-57, ASME/STLE Tribology Conference, Toronto,1998.
    [204]Ioannides E, Bergling G, Gabelli A. An analytical formulation for the life of rolling bearings[J]. Acta Polytech. Scand., Acta Polytechnica Scandinavica-Mechanical engineering series,1999,137:1-77.
    [205]Harris T A. Prediction of ball fatigue life in a ball/V-ring test rig[J]. ASME Journal of Tribology,1997,119:365-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700