用户名: 密码: 验证码:
常规武器作用下斜拉桥结构的动力行为分析及损伤评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁是交通运输系统中的枢纽和生命线工程,在战争中具有十分重要的地位和作用。开展常规武器冲击作用下大跨径桥梁结构动力响应分析,探讨高技术兵器对重要桥梁设施破坏作用的特点、程度和规律,研究重要桥梁结。构抗冲击损伤评估方法和战时抢修技术方法,是有着重要学术价值、但目前仍处于空白的研究课题。研究成果将为有关部门制定交通基本建设贯彻国防要求技术政策和技术标准提供理论依据,为重要桥梁设施战时保障方案的编制提供技术支持。依托国家交通战备办公室和中国人民解放军总后勤部军事交通运输部联合下达的《大跨及异型桥梁抢修工程技术可行性研究任务书》([2002]交战办字第43号)项目的支持,本文以斜拉桥结构作为研究对象,通过理论分析和有限元数值模拟分析,在以下六个方面取得了研究成果:
     首先,研究了薄壁构件抗侵彻、爆炸作用的局部破坏效应问题。结构冲击力学行为的突出表现是产生弹坑、震塌和贯穿三种形态的局部破坏。对于斜拉桥这种由薄壁构件组成的结构,贯穿破坏是影响结构抗局部破坏能力的主要因素。依据试验中得到的贯穿破坏形态,从贯穿破坏的机理出发,建构了钢筋混凝土薄壁构件抗侵彻贯穿破坏的工程解析模型和抗接触爆炸贯穿破坏的工程解析模型。模型中充分考虑了迎弹面冲击成坑的抗力效应、混凝土板冲切破坏的抗力效应、双层配筋下板底钢筋和板顶钢筋的抗力效应等因素。通过这两个模型及其解析公式,为评估钢筋混凝土薄壁构件抗侵彻贯穿破坏能力和抗爆炸贯穿破坏能力提供了有效的技术手段。
     其次,针对预应力技术在混凝土薄壁结构中应用广泛,但其抗冲击力学行为的研究目前开展甚少的现状,采用非线性动力有限元方法,模拟分析了预加应力对混凝土板构件抗冲击动力行为的影响。研究表明,预应力在减轻层裂效应、抑制局部裂隙区的形成、提高板在整体振动阶段的抗裂性等方面具有一定作用。
     第三,将对基本构件的研究拓展到对整体结构的动力分析,在结构的整体环境中分析基本构件的力学行为,探究基本构件的局部损伤对结构整体变形的影响。采用非线性动力有限元方法,以一座双塔双索面半飘浮体系混凝土斜拉桥作为研究对象,针对桥塔、桥跨主梁的关键部位,施加导弹战斗部冲击作用,开展了斜拉桥抗冲击动态响应的数值模拟分析,探讨了高技术兵器对斜拉桥结构破坏作用的特点、程度和规律;依据结构损伤状态的数值模拟结果,通过对这种损伤状态引起的结构自振频率和振型上的变异的分析,进一步研究了斜拉桥抗冲击局部损伤对结构整体振动特性的影响。得出了若干对斜拉桥防护设计和抢修技术有参考价值的结论。
     第四,采用非线性动力有限元方法,对不同结构体系—刚构体系、支承体系和漂浮体系斜拉桥抗冲击动态响应进行了数值模拟计算,比较了结构体系形式的不同对斜拉桥抗冲击动力响应的影响,得出有意义的结论:3种结构体系中漂浮体系被撞击区域的局部塑性变形最小;刚构体系中塔抗冲击的塑性动力变形最大,冲击破坏的危险性最大,其桥面系主梁的振动响应也最明显。
     第五,开展了斜拉桥结构抗冲击损伤评估方法的研究。建立了桥梁构件丧失承载力的简化理论判据,并在此基础上,提出了构件损伤程度的具体界定标准;提出了根据局部损伤发生的具体位置和毁伤效果,通过桥梁构件丧失承载力的简化理论判据评估构件损伤程度和通过考察局部损伤引起的结构内力重分布评估结构整体内力状态的危险程度的损伤评估具体方法。
     第六,依据斜拉桥不同特征的损伤状态,提出了具有技术可行性的斜拉桥战时抢修的初步方案。
Bridges are the hinges and lifelines of the traffic systems, especially in wartimes. It is very meaningful but new in technicality to discuss such topics as the dynamic responses, the destructive characteristics and degrees, the damage assessment methods and rush-repair techniques of bridges in wartime at the attack of a conventional weapon. And the technical policies, criterions and transport schemes of the important bridge constructions in traffic systems can be built for the relevant departments, to meet the national defense needs and adapt to the requirements of safety guarantee in wartime. According to "task book of the feasibility research on emergency repair technique of long-span bridge and fly-over bridge ( [2002] Num.43 )", which is jointly issued by Country traffic combat readiness office and military affairs traffic office of the general logistics of PLA of China, the dynamic behaviors of cable-stayed bridges are theoretically analyzed and numerically simulated with the finite element method. The results are given as follows:
     Firstly, the local destructions of thin-walled members subjected to the impaction or explosion loads are discussed. Cratering, scabbing and perforating effects are three typical local damages of the RC structures in the early time responses of structures under impaction or explosion. To cable-stayed bridges, which are consisted mainly of the thin-walled members, perforation is the major factor that influences the resistance of structures to the local damages. Based on the failure modes in perforation experiments and fracture mechanisms, two engineering analytical models for resistance to perforation have been developed for the thin-walled members under impaction and contact detonation respectively. In the models, such factors as cratering resistant force in the front face, punching shear resistant force in the concrete slabs and the resistant forces of rebars with double layer arrangements are sufficiently taken into account. And the effective evaluation methods for the resistant abilities of thin-walled members to perforation under impact and explosive load are developed by means of the given models and analysis formulas.
     Secondly, in spite of the pre-stress methods have been widely applied to thin-walled structures, the investigative experiences of dynamic behaviors of pre-stressed members under impact are deficient now. Simulations for the dynamic responses of pre-stressed concrete slab to impact loading were performed by the nonlinear finite element method. The results show that the pre-compression can effectively mitigate the scabbing effect produced by the reflected tensile waves and restrain the cracks surrounding the local fracture zones, as well as improve anti-cracking performances of structures in the whole vibration and deformation processes.
     Thirdly, it is essential to extend the dynamic analyzing from basic members into the whole structures, to analyze the mechanical behaviors of basic members in the whole structure surroundings, and the influences of local damages on the deformations of the whole structures. With the nonlinear finite element method, numerical simulations for the dynamic responses of a cable-stayed bridge with twin towers and twin-cable planes, of which the important locations are impacted by the high technological weapon, have been done to probe into the damage characteristics and degrees of the whole structure. Considering the simulated damage results, the variations of eigen frequencies and vibration modes caused by the damage states are analyzed, to research the influences of the local damages on the vibration characteristics of the whole structure. Some valuable conclusions are summed out to assist protection designs and rushing repairs of the cable-stayed bridges in the wartime.
     Fourthly, With the nonlinear finite element method, simulations for the dynamic responses of impacted cable-stayed bridges with different structural systems, such as the suspension system, the rigid-frame system and the support system, are proceeded to compare the effects of structural systems on the dynamic behaviors. The results show that the local plastic deformation of the suspension system is the least in three systems. To a rigid-frame system, the largest dynamic plastic deformations are distributed in the intermediate column of pylon, so the bridge pylon is easiest to fracture and the vibration responses of the main longitudinal girder are also most obvious.
     Fifthly, the damage assessment methods of cable-stayed bridges are researched. The simplified theoretical criterion, at which condition the bridge members will loss their load bearing capacities, is established, and provides the foundation for a practical damage criterion to grade damage degrees, which is proposed here. In relation to the damage positions and the destruction effects, the damage assessment methods are presented, in which assessing the damaged members by the simplified theoretical criterion mentioned above and estimating the dangerous degrees of the internal force states of the whole structure, which are caused by the internal force redistribution due to local impacted damages, are adopted.
     Sixthly, based on the damage states with different characteristics, the primary and feasible rush-repair techniques and schemes for cable-stayed bridges are put forward.
引文
[1] 王礼立.应力波基础[M].北京:国防工业出版社,1985
    [2] 马晓青.冲击动力学[M].北京:北京理工大学出版社,1992
    [3] 国家交通战备办公室.外军高技术兵器对交通设施的袭击破坏及对策研究报告(内部资料)[R].2000,12
    [4] 范立础.桥梁工程[M].北京:人民交通出版社,1998
    [5] 叶见曙.结构设计原理[M].北京:人民交通出版社,2000
    [6] 王年桥.防护结构计算原理与设计(内部).解放军理工大学工程兵工程学院,2002
    [7] 方秦.常规武器防护设计原理(内部).解放军理工大学工程兵工程学院,2002
    [8] 王礼立.爆炸与冲击载荷下结构和材料动态响应研究的新进展[J].爆炸与冲击.2001,21(2):81-88.
    [9] Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates [J]. Mat Stru. 1991,24: 425
    [10] Comite Euro-International Du Beton. Bulletin D' information NO. 187, Concrete Structures under impact and Impulsive Loading. Lausanne 1988.
    [11] Watstein D. Effect of Straining Rate on the Compressive Strength and Elastic Properties of Concrete [J]. ACI, 1953,49(6): 729-744.
    [12] Hughes B P, Gregory R. Concrete subject to high rates of loading in compression [J]. Magazine of Concrete Research, 1972 (24): 25-36.
    [13] 陈肇元,阚永魁.高标号混凝土用于抗爆结构的若干问题.清华大学抗震抗爆工程研究室主编.科学研究报告集 第4集 钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社,1986.73-83.
    [14] 阚永魁.混凝土在快速变形下的抗拉强度.清华大学抗震抗爆工程研究室主编.科学研究报告集 第4集 钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社,1986.84-89.
    [15] Zielinski A J, Kormeling H W, Reinhardt H W. Experiment on concrete under uniaxial impact tensile loading [J]. RILEM Materials and Structures. 1981,14 (80): 102-112.
    [16] Bischoff P H. Impact behavior of concrete loaded in uniaxial compression [J]. J Engrg Mech, 1995,121(7):685-693
    [17] 蒋昭鏕,陈江瑛,黄德进等.混凝土结构动态安全分析的重要基础—混凝土动态力学性能[J].宁波大学学报.1997,10(2):50-56
    [18] J. W. Tedesco, J. C. Powell, C. Allen Ross and M. L. Hughes. A Strain-Rate-Dependent Concrete Material Model for ADINA [J]. Computers and Structures. 1997,64:1053-1067.
    [19] Luk V K, Forrestal M J. Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectile [J]. Int J Impact Eng. 1987, 6(4): 291-301.
    [20] Forrestal M J, Tzou D Y. A spherical cavity-expansion penetration model for concrete targrts [J]. Int J Solids Structures. 1997 (34): 4127-4146.
    [21] Xu Y, Keer L M, Luk V K. Elastic-cracked model for penetration into unreinforced concrete targets with ogival nose projectiles [J]. Int J Solids Structures. 1997,34 (12): 1479-1491.
    [22] Mastilovic S, Krajcinovic D. High-velocity expansion of a cavity within a brittle material [J]. Journal of the Mechanics and Physics Solids. 1999(47): 577-610.
    [23] L. Agardh, L. Laine. 3D FE-simulation of high-velocity fragment perforation of reinforced concrete slabs [J]. Int J of Impact Engineering. 1999 (22): 911-922.
    [24] 陈大年,S.T.S.Al-Hassani,尹志华等.混凝土的冲击特性描述[J].爆炸与冲击.2001,21(2):89-97
    [25] 蔡四维,蔡敏.混凝土的损伤断裂[M].北京:人民交通出版社,1999.
    [26] Davison L, Stevens A. L. Continuum measures of spall damage [J]. J. Appl. Phys. 1972,43: 988-994.
    [27] 恽寿榕,涂侯杰,梁德寿,张汉萍.爆炸力学计算方法[M].北京:北京理工大学出版社,1995
    [28] Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strain, high strain rates and high pressures[A]. 14th International symposium on ballistics[C]. USA: American Defense prepareness Association, 1993:591-600.
    [29] 宋顺成,才鸿年.弹丸侵彻混凝土的SPH算法[J].爆炸与冲击.2003,23(1):56-60.
    [30] 蔡清裕,崔伟峰,向东等.运用有限元及SPH相结合的方法模拟刚性弹丸侵彻混凝土[C].第七届全国爆炸力学学术会议论文集.北京:北京理工大学出版社,2004:685-689
    [31] 段祝平.爆轰波在混凝土夹层结构中传播特性分析[A].洪友士,应用力学进展[C],北京:科学出版社,2004:26-40.
    [32] Grady D E, Kipp M E. Continuum modeling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics and Mining Science. 1980,17: 147-157.
    [33] Budiansky B, O'Connell R J. Elastic moduli of a cracked solid [J]. International Journal of Solids and Structures. 1976,12: 81-97.
    [34] Taylor L M, Chen E P, Kuszmaul J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Journal of Computer Methods in Applied Mechanics and Engineering. 1986,55: 301-320.
    [35] 张风国,李恩征.大应变、高应变率和高压强条件下混凝土的计算模型[J].爆炸与冲击.2002,22(3):198-202.
    [36] 武海军,黄风雷,金乾坤等.弹体贯穿钢筋混凝土数值模拟[J].爆炸与冲击.2003,23(6):545-550.
    [37] 钱伟长.穿甲力学[M].北京:国防工业出版社,1984
    [38] 曲建波.细长弹对混凝土的侵彻效应研究[D].西南交通大学研究生硕士学位论文.2001,9.
    [39] 中华人民共和国国家军用使用标准.防护工程防常规武器结构设计规范(秘密).中国人民解放军总参谋部总后勤部,1998
    [40] Heuze F E.弹体对岩石材料(特别是岩石)侵入研究的综述[J].防护工程.1994,(2):96-113
    [41] Forrestal M J, Altaian B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectile into concrete target [J]. International Journal of Impact Engineering. 1994,15: 395-405
    [42] Forrestal M J, Tzou D Y. A spherical cavity-expansion penetration model for concrete targrts [J]. Int J Solids Structures. 1997 (34): 4127-4146.
    [43] 刘云飞,王天运,蒋沧如.弹体侵彻混凝土深度计算公式分析[J].武汉理工大学学报.2004,26(1):49-52
    [44] 白以龙.冲击荷载下材料的损伤和破坏.冲击动力学进展.王礼立,余同希,李永池编.合肥:中国科技大学出版社.1992
    [45] 白以龙,汪海英.内禀Deborah数在破坏现象中的意义[A].洪友士,应用力学进展[C],北京:科学出版社,2004:13-20.
    [46] 郑全平,钱七虎,周早生等.钢筋混凝土震塌厚度计算公式对比研究[J].工程力学.2003,20(3):47-53
    [47] Twisdale L A. Sues R H. Lavlle F M. Reliability-based analysis and design methods for reinforced concrete protective structure [R]. Air Force Civil Engineering Support Agency, Tyndall Air Force Base, Florida, ESL-TR-92-40, April 1993.
    [48] Lok T S. Steel-fibre-reinforced concrete panels exposed to air blast loading[J]. Proceedings of the Institution of Civil Engineers, Structure and Buildings. 1999,134(4): 319-331
    [49] 卢国强.钢筋混凝土-钢板组合结构抗爆作用的试验研究与动力分析[D].同济大学研究生博士学位论文,1997
    [50] 柳员春,方秦.爆炸荷载作用下钢板混凝土组合结构的波动分析[J].防护工程,1997,44(3):8-14
    [51] 袁峻山.爆炸荷载作用下钢纤维混凝土抗冲击性能研究[D].空军工程学院硕士学位论文,1998
    [52] 俞茂宏.混凝土强度理论及其应用[M].北京:高等教育出版社,2002
    [53] Luk V K, Forrestal M J. Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectile [J]. Int J Impact Eng. 1987,6(4): 291-301.
    [54] Xu Y, Keer L M, Luk V K. Elastic-cracked model for penetration into unreinforced concrete targets with ogival nose projectiles [J]. Int J Solids Structures. 1997,34 (12): 1479-1491.
    [55] Mastilovic S, Krajcinovic D. High-velocity expansion of a cavity within a brittle material [J]. Journal of the Mechanics and Physics Solids. 1999(47): 577-610.
    [56] 王明洋,张胜民,国胜兵.接触爆炸作用下钢板-钢纤维混凝土遮弹层设计方法(Ⅰ)[J].爆炸与冲击.2002,22(1):40-45
    [57] 王安宝,杨秀敏,王年桥等.化爆作用下板柱节点冲切破坏的试验研究及分析[J].爆炸与冲击.2001,21(3):184-192
    [58] Gadala M S. Wang J. ALE formulation and its application in solid mechanics[J]. Comput Methods Appl. Mech. Engrg. 1998,167:33-55
    [59] Ted Belytschko,Wing Kam,Brian Moran.连续体和结构的非线性有限元[M].庄茁.清华大学出版社,2002
    [60] J.O.HallquisL LS-DYNA Theoretical Manual. Livermore Software Technology Corporation,Livermore. 1998
    [61] Livermore Software Technology Corporation. LS-DYNA Keyword User's Manual.(970v). Livermore. 2003
    [62] 黄晨光,董永香,李思忠等.无量纲形式的混凝土靶侵彻经验公式[A].洪友士,应用力学进展[C],北京:科学出版社,2004:333-338.
    [63] Krauthammer T. Shallow-Buried RC Box-Type structures[J]. Journal of Structural Engineering. 1984,110(3): 637-651
    [64] Krauthammer T. Bazeos N, Holmquist T J. Modified SDOF Analysis of RC Box-Type structures [J]. Journal of Structural Engineering. 1986,112(4): 726-744
    [65] 方秦,柳锦春,张亚栋等.爆炸荷载作用下钢筋混凝土梁的破坏形态有限元分析[J].工程力学.2001,18(2):1-8.
    [66] 柳锦春,方秦,龚自明等.爆炸荷载作用下钢筋混凝土梁的动力响应及破坏形态分析[J].爆炸与冲击.2003,23(1):25-30
    [67] 杨桂通.塑性动力学[M].北京:高等教育出版社,2000
    [68] 李国豪.工程结构抗爆动力学[M].上海:上海科学技术出版社,1989
    [69] Q Fang. Response characteristics of buried structures subjected to impulsive loading[C]. IN:Proc. of Sixth International Symposium on the International of Nonnuclear Munitions with Structures, Florida, 1993. 277-277
    [70] 欧阳春,赵国志,杜中华等.弹丸垂直侵彻钢筋混凝土介质的工程解析模型[J].爆炸与冲击.2004,24(3):273-30
    [71] Avraham N. Dancygier. Effect of reinforcement ratio on the resistance of reinforced concrete to hard projectile impact[J]. Nuclear Engineering and Design. 1997(172):233-245
    [72] 相凤翔,任辉启.从我驻南使馆被炸现场看精确制导侵彻弹药的破坏效应[J].中国人民防空.2001,125:45-47
    [73] F. Ragueneau, F. gatuingt. Inelastic behavior modeling of concrete in low and high strain rate dynamics[J]. Computers and Structures. 81(2003):1287-1299
    [74] X. Teng, T. Wierzbicki. Dynamic shear plugging of beams and plates with an advancing crack[J]. International Journal of Impact Engineering. 31(2005): 667-698
    [75] 江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1995
    [76] Islam S, Park R. Test on slab-column Connections with shear and unbalanced flexure[J]. Journal of the Structures Division. 1976,102(ST-3):549-568
    [77] JIAN Da-hua, SHEN Jing-hua. Strength of concrete slabs in punching shear[J]. Journal of Structural Engineering. 1986,112(12): 2578-2591
    [78] 楼板及基础冲切强度组.钢筋混凝土板和基础冲切强度的试验研究[J].建筑结构学报.1987,(4):12—22
    [79] 余志武.钢筋混凝土板和基础的极限承载力计算及破坏类型判别方法[J].建筑结构学报.1990,11(4):46-54
    [80] 李定国,舒兆发,余志武.无抗冲切钢筋的钢筋混凝土板柱连接冲切强度的试验研 究[J].湖南大学学报.1986,13(3):22-35
    [81] 严宗达.用双剪强度理论解混凝土板冲切的轴对称问题[J].工程力学.1996,13(1):1-7
    [82] A.N. Dancygier, D.Z.Yankelevsky. High strength concrete response to hard projectile impact[J]. Int J. Impact Engng. 1996,18(6):583-599
    [83] 董哲仁.钢筋混凝土非线性有限元法原理与应用[M].北京:中国铁道出版社,1993
    [84] 王明洋,张胜民,国胜兵.接触爆炸作用下钢板-钢纤维混凝土遮弹层设计方法(Ⅱ)[J].爆炸与冲击.2002,22(2):163-168
    [85] 张想柏,杨秀敏,陈肇元等.接触爆炸钢筋混凝土板的震塌效应[J].清华大学学报.2006,46(6):765-768
    [86] DENG Guoqiang, DONG Jun, ZHANG Xiangbai. Numerical simulation of explosion damage shape of RC slab under contact detonation[A]. Proc the 2nd Int Conf on Protection of Structures Against Hazards[C]. Singapore: CI-Premier Conf Org. 2004:155-158
    [87] 郑全平,周早生,钱七虎等.钢筋混凝土中的震塌问题[J].岩土力学与工程学报.2003,22(8):1393-1398
    [88] 何建,王善,唐平.爆炸荷载作用下混凝土板的塑性动力响应[J].哈尔滨工业大学学报.2005,37(6):798-800
    [89] 唐献述,龙源,王树民等.接触爆炸作用下板的塑性变形分析与实验[J].解放军理工大学学报.2006,7(3):242-246
    [90] 叶序双.爆炸作用基础[M].解放军理工大学工程兵工程学院,2001
    [91] 周听清.爆炸动力学及其应用[M].中国科学技术出版社,2001
    [92] 腾智明,罗福午,施岚青.钢筋混凝土基本构件[M].第二版,北京:清华大学出版社,1987
    [93] Dowling A R, Harding J, Campbell J D. The dynamic punching of metals[J]. J. Inst Metals. 1970,98:215-224
    [94] Campbell J D, Ferguson W G. The temperature and strain-rate dependence of the shear strength of mild steel[J]. Phil. Mag. 1970,21:63-82
    [95] Golidsmith W, Finnegan S A. Penetration and perforation processes in metal targets at and above ballistic velocities[J]. Int J. Mech. Sci. 1971,13:843-866
    [96] 余同希,W.J.斯壮.塑性结构的动力学模型[M].北京:北京大学出版社,2002
    [97] Jones N. Structural Impact[M]. Cambridge: Cambridge University Press, 1989
    [98] 俞载道.结构动力学基础[M].上海:同济大学出版社,1987
    [99] 卓家寿.弹塑性力学中的广义变分原理[M].第二版,北京:中国水利水电出版社,2002
    [100] 中华人民共和国交通部.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTGD62-2004).北京:人民交通出版社,2004
    [101] 方秦,钱七虎.防护结构设计中应变速率效应问题[J].爆炸与冲击.1997,17(2):103-110.
    [102] 曾攀.有限元分析与应用[M].北京:清华大学出版社,2004
    [103] 凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004
    [104] 吕和祥,蒋和洋.非线性有限元[M].北京:化学工业出版社,1992
    [105] 黄克智,薛明德,陆明万.张量分析[M].第二版,北京:清华大学出版社,2003
    [106] 王爱俊,戴棣,乔新.高速碰撞中Lagrange有限元方法及其应用[J].南京航空航天大学.1998,30(6):675-679
    [107] 白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005
    [108] 黄克智,黄永刚.固体本构关系[M].北京:清华大学出版社,1999
    [109] Zhong Z H. Finite Element Procedures for Contact-Impact Problems[M]. Oxford University Press, 1993
    [110] 王勖成.有限单元法[M].北京:清华大学出版社,2003
    [111] Peric D, Owen D R J. Computational model for 3-D contact problems with friction based on the penalty method[J]. Int. J. Num. Meth. Eng., 1992,35:1289-1309
    [112] 何长江,于志鲁,范中波.混凝土动态冲击问题的一种欧拉数值方法[J].爆炸与冲击.2002,22(2):152-157
    [113] 刘士林,梁智涛,侯金龙,孟凡超.斜拉桥[M].北京:人民交通出版社,2002
    [114] 陆新征,江见鲸.世界贸易中心飞机撞击后倒塌过程的仿真分析[J].土木工程学报.2001,34(6):8-10
    [115] Peric D, Owen D R J. Computational model for 3-D contact problems with friction based on the penalty method[J]. Int. J. Num. Meth. Eng., 1992,35:1289-1309
    [116] 过镇海.混凝土的强度和变形-试验基础和本构关系[M].北京:清华大学出版社,1997
    [117] Ottosen N S. A failure criterion for concrete[J]. ASCE. 1977,103(EM1): 527-535
    [118] 范立础.桥梁抗震[M].上海:同济大学出版社,1997
    [119] 刘效尧,蔡健,刘晖.桥梁损伤诊断[M].北京:人民交通出版社,2002
    [120] 强士中,邵旭东.桥梁工程[M].北京:高等教育出版社,2004
    [121] 袁辉,黄亚新,王建平.钢筋混凝土桥跨主梁战时毁伤模式初探[J].解放军理工大学学报.2004,5(1):64-67
    [122] 卓尚木,季直仓等.钢筋混凝土结构事故分析与加固[M].北京:中国建筑工业出版社,1999
    [123] 谌润水,胡钊芳,帅长斌.公路旧桥加固技术与实例[M].北京:人民交通出版社,2002
    [124] 郭永琛,叶见曙.桥梁技术改造[M].北京:人民交通出版社,1991
    [125] 杨文渊,徐犇.桥梁维修与加固[M].北京:人民交通出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700