用户名: 密码: 验证码:
碳纤维增强受电弓滑板的制备与性能及摩擦磨损机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力机车是一种现代化的铁路运输工具,受电弓滑板是其导入电能、提供动力的重要受流部件。目前广泛使用的电力机车受电弓滑板主要有浸金属滑板和碳滑板。但是随着电力机车运行速度的不断提高,传统的滑板均显现出不同程度的缺陷,因此亟需研制出具有高导电率、高强度、耐磨损以及具备良好弓网耦合的受电弓滑板。本文采用碳纤维为增强相,铜为导电相,石墨为润滑相,改性酚醛树脂为粘结剂制备了碳纤维增强的树脂热压型和焙烧型受电弓滑板,并对滑板的配方、工艺、物理性能、电弧侵蚀特性和摩擦磨损机理进行了研究。
     采用模压法制备了树脂热压型滑板,研究了模压温度、压力以及模压时间对滑板性能的影响,最终确定合理的模压条件为:预热温度100℃,预热时间6min,热压温度170℃,加压压力60MPa,模压时间60min。采用Minitab软件对不同配方滑板的性能进行模拟分析,确定滑板各配方含量对滑板性能的影响,实验发现:碳纤维含量是影响试样冲击强度的主要因素;导电相铜含量对滑板的电阻率起着至关重要的作用;纤维含量、石墨含量以及酚醛树脂含量对试样的耐磨性能均有较大程度的影响。Minitab拟合分析出试样的最佳配方为:铜网15wt.%、碳纤维布17wt.%、短切碳纤维5wt.%、酚醛树脂33wt.%、石墨22wt.%、铜粉5wt.%以及丁腈橡胶3wt.%;该配方下试样的性能为:电阻率8.63gΩ?m,冲击强度78kJ.m-2,体积磨损率0.558×10-5mm3·N-1·m-1摩擦系数0.200,抗压强度≥200MPa,抗折强度140-200MPa。
     为了提高碳纤维增强受电弓滑板中增强相碳纤维与基体酚醛树脂的浸润性,并提高复合材料的界面强度,本文采用液相氧化/偶联剂涂层法对碳纤维表面进行了改性,并采用拉曼光谱(Raman spectrum, Raman)、光电子能谱(X-ray photoelectron spectroscopy, XPS)、傅里叶红外变换光谱(Fourier transform infrared spectrometer, FTIR)以及扫描电子显微镜(Scanning electron microscope, SEM)对改性前后碳纤维的结构以及形貌进行观察分析并利用纤度仪及万能试验机对碳纤维及其复合材料的力学性能进行了测试,结果表明:随着液相氧化时间的延长,碳纤维的力学性能逐渐下降,表面逐渐被刻蚀,碳纤维表面结构的无序度提高,纤维表面含氧官能团含量逐渐上升。APS偶联剂处理后,硅醇基会与碳纤维表而的活性官能团反应,碳纤维表而的O-C=O官能团含量减少并形成一层薄膜,有利于提高碳纤维的拉伸强度以及断裂伸长率。经过90min液相氧化改性和偶联剂处理后,试样的冲击强度提高了约35%,层间剪功强度升高约37.7%;随着液相氧化处理和偶联剂处理的时间的延长,碳纤维的体积电阻率有不同程度的升高;改性处理使得滑板试样的电阻率略有波动,但变化幅度不大;表而处理可以提高滑板的耐磨性能,经过APS硅烷偶联处理后的滑板磨损量最低,其磨损量比未处理的滑板磨损量降低了约5%。
     实验采用碳化法及液相浸渍致密法制备了焙烧型受电弓滑板并对致密化工艺及效果进行了研究。研究表明:采用800℃碳化处理可提高滑板在瞬间高温下的热稳定性能。经过对酚醛树脂的黏度与温度、浓度的关系分析,得出合理的浸渍条佳为:酚醛树脂乙醇浸渍液浓度60%,浸渍温度60℃,浸渍时间为1.5h。热处理后滑板试样的气孔率较高,电阻率降低约26%,冲击强度明显降低,体积磨损量增加,摩擦系数降低。致密化之后滑板的电阻率、气孔率和体积磨损量都是随着碳化一浸渍次数的增加而逐渐减小;抗压强度、抗弯强度以及硬度均随着碳化-浸渍次数的增加而逐渐提高。对试样进行4次碳化-浸渍致密化处理试样性能较佳,因此在树脂热压型滑板的基础上,综合考虑试样性能以及制备成本等因索,最终采用4次碳化一浸渍工艺来制备树脂焙烧型滑板
     树脂热压型滑板的磨损率随着载流密度的提高而逐渐增大,摩擦系数逐渐减少;磨损率随着摩擦速度的增加有所增大,基本呈线性增长;在相同速度下滑板的载流磨损量明显大于无载流时的磨损量。无载流条件下,试样的磨损率随着接触压力的增加基本呈线性增长,摩擦系数逐渐增大并趋于平稳;载流磨损时,试样的体积磨损量与电压呈U型变化。树脂焙烧型滑板与纯碳滑板未载流时的磨损率差别较小,分别为:0.85×10-5mm3·N-1·m-1和0.91×10-5mm3·N-1·m-1;两种滑板的磨损率均随着电流密度的增加而增加;这两种滑板的载流磨损率亦随着载荷的增加基本呈U型变化,摩擦系数均有降低的的趋势;三种滑板的载流效率均随着电流密度的增加而减小;随着载荷的增加而增大;随着滑行速度的变化先减小后增大
     树脂焙烧型滑板对铜轮及铜盘的磨耗均小于树脂热压型滑板,且载流情况下该滑板对铜盘的磨耗情况与纯碳滑板的情况相似。树脂热压型滑板和树脂焙烧型滑板的力学性能比进口纯碳滑板以及国产某短切纤维增强滑板的力学性能好;,树脂热压型滑板的磨损率与纯碳滑板的磨损率相近,树脂热压型滑板的摩擦系数略高;树脂焙烧型滑板的耐磨性较进口碳滑板的耐磨性稍差,在相同实验条件下,国产某滑板对铜盘的磨耗最大,进口纯碳滑板对铜盘的磨损最小。两种碳纤维增强受电弓滑板的性能均优异于国产某滑板的性能。
     电弧是在摩擦副的接触-分离过程中形成的,是受电弓/导线系统在滑动受流过程中一种常见的现象。在相同条件下,四种滑板的电弧放电程度从低到高分别为:进口纯碳滑板、树脂焙烧型滑板、树脂热压型滑板和国产某滑板滑板在载流摩擦磨损过程中的电弧侵蚀作用主要包括材料转移、熔融喷溅以及蒸发侵蚀。对滑板的摩擦磨损机理进行了研究,结果表明:无载流摩擦磨损条件下,树脂热压型滑板和树脂焙烧型滑板的主要摩擦磨损形式为磨粒磨损和粘着磨损;在载流条件下,滑板的摩擦磨损主要是以电弧侵蚀磨损和氧化磨损为主,伴随着磨粒磨损、粘着磨损等机械磨损形式。
Electric locomotive is a kind of modern railway transport, and pantograph contact strip is the most important unit of electric locomotive to import electricity. At present, widely used pantograph contact strip mainly includes steeped metal contact strip and carbon contact strip. But as the operation speed of the electric locomotive unceasingly increased, all traditional contact strips show different degrees of defects, therefore it is very significant to develop a type of contact strip with high conductivity, high strength, good wear resistance and suitable for contact line. This paper used the carbon fiber as reinforced phase, copper as conductive phase, modified phenolic resin as binder, and graphite as lubrication phase prepare carbon fiber reinforced hot-pressed/calculated contact strip, and also studied the formulation, technology, performance, arc erosion characteristics and wear mechanism.
     The formulation and preparation technology of contact strip samples were studied. Contact strip sample was prepared by compression molding, and the influence of mould temperature, mould pressure and mould time to the slide's performance was researched. Finally, the reasonable mould conditions were determined:preheat temperature100℃, preheating time6min, hot pressing temperature170℃, mould pressure60MPa and mould time60min. Using Minitab software simulated and analyzed the performance of contact strip with different formula, to determine the formula content's influence on the slide's performance. It was found that carbon fiber content is the key factor to affect the impact strength of slide sample, that copper content of conductive phase plays an important role in determining the slide's resistivity, and that fiber content, graphite content and phenolic resin content had a great deal of influence on the wear-resisting performance of the sample. The best formula of the slide sample was as follows:copper mesh15wt.%, carbon fiber cloth17wt.%, short carbon fiber5wt.%. phenolic resin33wt.%, graphite22wt.%, copper powder5wt.%and acrylonitrile butadiene rubber3wt.%. The performance of the sample was as follows:resistivity8.63uΩ·m, impact strength78kJ·m-2, volume wear rate0.558×10-5mm3·N-1·m-1, friction coefficient0.200, compressive strength>200MPa and bending strength140-200MPa.
     In order to improve the invasion of enhance phase carbon fiber and matrix phenolic of carbon fiber reinforced pantograph contact strip, and improve the strength of the composite material, liquid phase oxidation/coupling agent coating method is adopted to modify carbon fiber's surface. The structure and morphology of carbon fiber before and after modification were observed by the Raman spectrum (Raman), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrum (FTIR) and Scanning electron microscopy (SEM), and mechanics properties of carbon fiber and its composite materials were tested by the fiber fineness tester and universal testing machine. The results showed that:the mechanical properties of carbon fiber gradually declined with the time of liquid phase oxidation increase, surface was gradually etching, disorder parameter of carbon fiber's surface structure improved, and fiber surface oxygenic functional groups content gradually raised. After treatment of APS coupling agent, silanol group reacted with the carbon fiber surface active functional groups, formed a layer of film in the surface of the carbon fiber, and was beneficial to improving the carbon fiber tensile strength and elongation at break. O-C=O group on the carbon fiber surface would react with silanol group, so O-C=O functional group content on the carbon fiber surface would decrease. After modification treatment on carbon fiber, composite materials'impact strength and interlaminar shear strength were increased. Along with the liquid phase oxidation treatment and coupling agent treatment proceeding, carbon fiber's volume and resistivity increased slightly. The impact of liquid phase oxidation modification treatment on the resistivity of the prepared composite material was not big, and resistance rate of coupling agent modified contact strip declined slightly. Surface treatment could improve the slide wear-resisting performance significantly, after silane coupling treatment, the slide wear was lowest, and it was down about35%than that of untreated.
     In order to improve the thermal stability of contact strip, the experiment used IC method to prepare roasting type pantograph contact strip, and the impregnation process and effect were studied. The800℃carbonization could improve the slide's thermal stable performance in an instant high temperature. The experimental dipping conditions were as below:phenolic resin impregnation liquid ethanol concentration60%, dipping temperature60℃, dipping time1.5h. After heat treatment, resistance rate reduced about26%. the impact strength reduced, volume wear increased and the porosity was higher. It was better to dip samples for4times. After densification, resistivity, porosity and volume wear of the contact strip gradually decreased along with the increase of the time of carbonization-dipping treatment. Compressive strength, bending strength and hardness gradually improved along with the increase of the time of carbonization-dipping treatment.
     With the carrier density of resin hot pressing contact strip rising, its wear rate gradually increased, but the friction coefficient gradually reduced. With the increase of the friction velocity, wear rate increased, basically growing linearly. At the same velocity, the slide's wear under load flow was significantly greater than that under no load flow. In no load flow conditions, the wear rate of sample generally growed linearly with the increase of the contact pressure and friction coefficient increased and ultimately tended to be stable. In load flow conditions, sample's volume wear and voltage was U change. Under no load flow, the wear rate gap of resin roasting slide and pure carbon slide was small, and their values were0.85×10-5mm3·N-1·-m-1and0.91×10-5mm3·N-1·m-1respectively. The wear rate of both slides increased along with the increase of current density. With the increase of friction velocity, friction coefficient trended to decrease. Wear rate of these two types'contact strip was also in U change with load changes. Load flow efficiency of three kinds of slide above referred decreased with the increase of current density, increases with the increase of the load, and increased after first decrease with the change of planing speed.
     The abrasion of the resin roasting contact strip prepared to copper wheel and copper plate was less than resin hot pressing contact strip, and in the current conditions, the abrasion of the contact strip to copper plate is similar with that of pure carbon slide. Resin hot pressing slide and resin roasting contact strip had superior mechanical properties than imported pure carbon contact strip and a certain domestic chopped fiber reinforced slide. In the same conditions, the wear rate of the resin hot pressing contact strip was close with that of pure carbon slide, but friction coefficient of resin hot pressing slide was a bit higher. Wear resistance of resin roasting slide was a bit poorer than that of imported carbon contact strip, and in the same conditions, the abrasion of a certain domestic slide to copper plate was the biggest, and that of imported pure carbon contact strip to copper plate was minimum. The performance of both two kinds of carbon fibre reinforced contact strip prepared was superior to the performance of a certain domestic contact strip.
     In the same conditions, the arc discharge degree from low to high was:import pure carbon contact strip, resin roasting contact strip, resin hot pressing contact strip and a certain domestic contact strip. The arc erosion of contact strip in the process of friction wear with the load flow mainly included material transfer, melt splashing and evaporation erosion. Contact strip's friction and wear mechanism was as follows: under flow friction with no load and wear conditions, the main mechanical friction and wear form of resin hot pressing contact strip and resin roasting contact strip was abrasive wear and adhesive wear, and in the load flow conditions, the mechanical friction and wear form was mainly arc erosion wear and oxidation wear, accompanied with the abrasive wear, adhesive wear and mechanical wear.
引文
[1]Franscois L. Alstom-future trends in railway transportation[J]. Japan Railway & Transport Review,2005,42:4-9.
    [2]迟春阳,周成学,王家襄等.电力机车滑板材料的发展[J].炭素,1999,4:41-43.
    [3]林修洲,朱吴,陈光雄,张卫华,周仲荣.高速电气化铁路弓/网系统的摩擦磨损研究进展[J].润滑与密封,2007,32(2):180-183.
    [4]何吉成.从数据看中国电气化铁路的发展进程[J].上海铁道科技,2011,(2):112-113.
    [5]Javier G, Rafael G, Gabriel G. The European high-speed train network[J]. Journal of Transport Geography,1996,4(4):227-238.
    [6]Aoki S, Kubo S. Present status and problems of contact strips for high speed vehicles' pantographs[J]. Journal Japanese Society Tribologists,1993,38:853-859.
    [7]Ding T, Chen GX, Bu J, Zhang WH. Effect of temperature and arc discharge on friction and wear behaviors of carbon strip/copper contact wire in pantograph-catenary systems[J]. Wear, 2011,271:1629-1636.
    [8]华公平,丁春华.铁路机车受电弓碳滑板材料研究[J].金属热处理,2008,33(2):28-33.
    [9]李世珷.我国电气化铁路发展的历程及前景[J].郑铁科技通讯,2006,(1):1-5.
    [10]Azevedo C R F, Sinatora A. Failure analysis of a railway copper contact strip[J]. Engineering failure analysis,2004,11:829-841.
    [11]He D H, Manory R. A novel electrical contact material with improved self-lubrication for railway current collectors[J]. Wear,2001,249(7):626-636.
    [12]Oskar F. Perspectives for a future high-speed train in the Swedish domestic travel market[J]. Journal of Transport Geography,2008,16(4):268-277.
    [13]陈振华,涂川俊,陈刚等.改性树脂基滑板制备及其热磨损性能研究[J].中国有色金属学报,2007,17(11):1785-1789.
    [14]鹤木,孝典,张耀宏.受电弓滑板用碳/金属纤维复合材料[J].国外机车车辆工艺,1994,(6):11-13.
    [15]迁村太郎,金祥林,张达恭.滑板用材料[J].国外机车车辆工艺,2000,(1):45-46.
    [16]梁若清,冯勇祥,陆木林.日本电力机车受电弓滑板的发展及浸渍金属碳滑板的开发 [J].机车电传动,1994,(5):45-47.
    [17]Ebeling K. High-speed railways in Germany[J]. Japan Railway & Transport Review,2005, (40):36-45.
    [18]潘连明,张国荣,钱中良等.电力机车受电弓滑板[J].机车车辆工艺,2001,3:1-4.
    [19]Jia S G, Liu P, Ren FZ, Tian BH, Zheng MS, Zhou GS. Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways[J]. Wear,2007, 262:772-777.
    [20]胡建红,陈敬超,李强,阉杏丽.电力机车用滑动集电材料的研究及其选用[J].电工材料,2004,(1):28-42.
    [21]杨连威.高性能电机车受电弓滑板的研究[D].沈阳:东北大学,2005,2-9.
    [22]张秀兰.电力机车受电弓滑板的调查分析[J].中国铁路,1996,(11):16-17.
    [23]侯明,孙乐民,李爱娜.电力机车受电弓滑板的现状[J].粉末冶金技术,2006,24(3):223-226,
    [24]Wei Q, Xu LX, Shi HJ. Study on network structure C-Cu composites of pantograph slide plates[J]. Advanced Materials Research,2011,150:941-946.
    [25]戴春意,俞明昌. 电力机车受电弓滑板的选用[J].机车电传动,1998,3:39.40
    [26]王泽华.复合材料在高速列车上的应用[J].机械工程材料,2001,25(10):1-4
    [27]钱中良.粉末冶金电力机车受电弓滑板的研究概况[J].粉未冶金工业,2007,17(4):43-46.
    [28]Nagasawa H, Kato K. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current[J]. Wear,1998,216:179-183.
    [29]Suckchoon K. A study of friction and wear characteristics of copper-and iron-bases sintered material[J]. Wear,1993,162-164(2):1123-1128.
    [30]涂川俊.树脂型受电弓滑板材料的制备与磨损特性及抗磨机理研究fD].湖南:湖南大学,2009.
    [31]Bouchoucha A, Zaidi H, kadiri E K, Paulmier D. Influence of electric fields on the tribological behaviour of electrodynamical copper/steel contacts[J]. Wear,1997,203-204: 434-441.
    [32]Shunichi K, Kojli K. Effect of arc discharge on wear rate of Cu-impregnated Carbon Strip in unlubricated Sliding against Cu trolley under electric current [J]. Wear,1998,216:172-178.
    [33]张晓娟,孙乐民.受电弓滑板和接触网导线材料的现状及展望[J].河南科技大学学报,2006,27(6):4-7.
    [34]Kim J W, Chae H C, Park B S. State sensitivity analysis of the pantograph system for a high-speed rail vehicle considering span length and static uplift force[J]. Journal of Sound and Vibration,2007,303:405-427.
    [35]曲春浴,路宗奎.浅谈电力机车受电弓滑板发展趋势[J].炭素,2008(3):45-48.
    [36]肖军,张鹏,杜云慧,刘汉武.电力机车受电弓滑板材料的发展[J].铁道机车车辆.2005,25(6):65-68.
    [37]Wang Y A, Li J X, Yan Y, Qiao LJ. Effect of surface film on sliding friction and wear of copper-impregnated metallized carbon against a Cu-Cr-Zr alloy[J]. Applied Surface Science, 2012,258(7):2362-2367.
    [38]Shangguan B, Zhang YZ, Xing JD, Sun LM, Chen Y. Comparative study on wear behaviors of metal-impregnated carbon material and C/C composite under electrical sliding[J]. Tribology Transactions,2010,53:933-938.
    [39]久保俊一.碳系滑板材料[J].国外机车车辆,2008,(4):31-33.
    [40]Smith R A. Railway speed-up:A Review of its history technical developments and future prospects[J]. JSME International Journal,2004,47(2):444-450.
    [41]邓明丽,吴广宁,张雪原,何常红,叶强.电力机车受电弓发展综述[J].电气化铁道,2008,(1):43-47.
    [42]Shunichi K, Kojli K. Effect of arc discharge on the wear rate and wear mode transition of a copper impregnated metallized carbon contact strip sliding against a copper disk [J]. Tribology International,1999(32):367-377.
    [43]卢文博.层状结构受电弓滑板的制备及性能研究[D].博士学位论文,山东大学,2012.
    [44]Mochizuki A. Conventional Line speed Increases and Development of Shinkansen[J]. Japan Railway & Transport Review,2011, (57):42-49.
    [45]Campos J, Rus G. Some stylized facts about high-speed rail:A review of HSR experiences around the world[J]. Transport Policy,2009, (16):19-28.
    [46]涂川俊,陈振华,陈刚.炭系电力机乍受电弓滑板材料的研究进展.炭素技术,2007, 26(4):23-29.
    [47]刘志远,罗平.浸金属碳滑板的研制[J].电碳,1995,(2):8-14.
    [48]Kubo S C, Kato K. Effect of arc discharge on the wear rate and wear mode transition of a copper-impregnated metallized carbon contact strip sliding against a copper disk[J]. Tribology International,1999,32:367-378.
    [49]姚汤伟,朱建华,米建吕.电力机车受电弓滑板选型探讨[J].机车电传动,2007,(2):71-72.
    [50]久保俊一.新干线受电弓碳系滑板的研制[J].国外机车车辆工艺,2003,(6):21-25.
    [51]Moustafa S F, EI-Badry S A, Sanad A M. Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders[J]. Wear,2002,253(7-8):699-710.
    [52]杨连威,姚广春,陆阳.新型高性能电力机车车受电弓滑板的研究[J].材料导报,2005,19(11):136-139.
    [53]Guo B, Jin Y P, Yu B, et al. Material design and performance of powder metallurgy pantograph slider[J]. Materials for Mechanical Engineering,2004,28(3):31-33.
    [54]Korab J, Stefanik P, Kavecky S, Sebo P, Korb G. Thermal expansion of cross-ply and wove carbon fibre-copper matrix composites[J]. Composites:Part A,2002,33:133-136.
    [55]陈宁.金属-碳复合材料导电弓滑板的耐磨性[J].国外机车车辆工艺.1998,6:25-30.
    [56]Yuan H, Wang C G, Lu W B and Zhang S. Preparation and tribological behavior of carbon fiber reinforced pantograph slide plate[J]. Advanced Materials Research,2012,430-432: 378-382.
    [57]Chen Z H, Tu C J, Chen D, Xia J T, Yan H G. Preparation and tribological investigation of resin-matrix contact strip with variable current[J]. Materials Science and Technology,2009, 25(5):607-613.
    [58]Tu C J, Chen Z H, Xia J T. Thermal wear and electrical sliding wear behaviors of the polyimide modified polymer-matrix pantograph contact strip[J]. Tribology International,2009, 42:995-1003.
    [59]Jeitschko W, Nowotny H. Die K. Structur von Ti3SiC2-Ein neuer komp:excarbid-type. Monatsch Chemcal,1967,98:329-337.
    [60]Li S B, Cheng L F, Zhang L T. The morphology of oxides and oxidation behavior of Ti3SiC2-based composite at high temperature[J]. Composites Science and Technology,2003,63: 813-819.
    [61]翟洪祥,汪长安Ti3SiC2材料在受电弓滑板中的应用研究[J].机车电传动,2003,(S1):43-45.
    [62]李娜,张弘,于正平.受电弓滑板-接触导线摩擦磨损机理与特性分析[J].中国铁道科学,1996,17(4):63-68.
    [63]刘建军,朱波,王成国.电力机车受电弓滑板的技木现状[J].机械工程师,2003,10:23-24.
    [64]Matsuyama S. A short history of the materials for current collection pantograph slider and contact wire[J]. Toyo Denki Review,2000,106:10-18.
    [65]Matsuyama S. Electric contact tribological behavior of pantograph[J]. Toyo Denki Review, 1995,91:52-60.
    [66][德]凯尔A,默尔W A,维纳里库E,赵华人译.电接触和电接触材料[J].北京:机械工业出版社,1993.
    [67]Li B, Zhang C R, Cao F, Wang S Q, Chen B, Li J S. Effects of fiber surface treatments on mechanical properties of T700 carbon fiber reinforced BN-Si3N4 composites[J]. Materials Science and Engineering A,2007,471:169-173.
    [68]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002.
    [69]Rabinowicz E, Dunn L A, Russell P G.A study of abrasive wear under three-body conditions[J]. Wear,1961,4:345-355.
    [70]Rabinowicz E. Friction and wear of materials[M]. New York:University of Michigan,1965.
    [71]Archard J F. Contact and rubbing of flat surface[J]. Journal of Applied Physics,1953,24: 981-988.
    [72]克拉盖尔斯基等.摩擦磨损计算原理[M].北京:机械工业出版社,1982.
    [73]李庶.银基复合电接触材料滑动电摩擦磨损性能研究[D].安徽:合肥工业大学,2009.
    [74]He D H, Manory R, Sinkis H. A sliding wear tester for overhead wires and current collectors in light rail systems[J]. Wear,2000,239(1):10-20.
    [75]Zhao H, Barber G C, Liu J. Friction and wear in high speed sliding with and without electrical current[J]. Wear,2001,249(5-6):409-414.
    [76]Jia S G, Liu P, Ren F Z. Wear behavior of Cu-Ag-Cr alloy wire under electrical sliding[J]. Materials Science and Engineering A,2005.398 (1-2):262-267.
    [77]Lawson D K, Dow T A. The sparking and wear of high current density electrical brushes[J]. Wear,1985,102:105-125.
    [78]Cho Y H. Numerical simulation of the dynamic responses of railway overhead contact lines to a moving pantograph, considering a nonlinear dropper[J]. Journal of Sound and Vibration, 2008,315:433-454.
    [79]戴利民,林吉忠,丁新华.滑板材料受流摩擦时接触点瞬态温升对磨损性能的影响[J].中国铁道科学,2002,23(2):111-117.
    [80]Wu X X, Li Z B. Model on sputter erosion of electrical contact material[J]. Proceeding of 48th IEEE Holm Conference on Electric Contact,2002:29-34.
    [81]Cenna A A, Doyle J, Page N W. Wear mechanisms in polymer matrix composites abraded by bulk solids[J]. Wear,2000,240(1-2):207-214.
    [82]Kubo S, Kato K. Effect of arc discharge on wear rate of Cu-impregnated carbon contact strip in unlubricated sliding against Cu trolley under electric current[J]. Wear,1998,216(2): 172-178.
    [83]张敏,凤仪.电流对碳纳米管-银-石墨复合材料摩擦磨损能的影响[J].摩擦学学报,2005,25(4):328-332.
    [84]李鹏,张水振,孙乐民.受电摩擦磨损的研究现状[J].河南科技大学学报,2002,23(4):34-37.
    [85]Hirotaka K, Masahiro T, Yoshiroet I. Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide[J]. Wear,2003,255:573-577.
    [86]风仪,张敏,徐屹.外加载荷对碳纳米管-银-石墨复合材料电磨损性能的影响[J].中国有色金属学报,2005,15(]0):1483-1488.
    [87]Senouci A. Wear mechanism in graphite-copper electrical sliding contact[J]. Wear,1999, 225-229:949-952.
    [88]蒋洪军,孟永刚.电场对Al2O3/Cu摩擦磨损特性的影响及其机理研究[J].中国科学E辑,1998,(6):491-498.
    [89]蒋洪军,孟永刚.外加电压对三氧化二铝/黄铜摩擦副摩擦行为的主动控制试验研究. 摩擦学学报,1999,(3):244-249.
    [90]He D H, Manory R R, Grady N. Wear of railway contact wires against current collector material[J]. Wear,1998,215:146-155.
    [91]Zaidi H, Csapo E, Nery H, Paulmier D, Mathia T. Friction coefficient variation in a graphite-graphite dynamical contact crossed by an electric current[J]. Surface and Coating Technology,1993,62(1-3):388-392.
    [92]Csapo E, Zaidi H, Paulmier D, Kadiri E K, Bouchoucha A, Pobert F. Influence of the electrical current on the graphite surface in an electrical sliding contact[J]. Surface and Coating Technology,1995,76-77:421-424.
    [93]荣命哲,鲍芳,万江文.银金属氧化物触头电弧侵蚀特性研究[J].电工技术学报,1997,12(4):6-10.
    [94]Lu C T, Bryant M D. Thermoelastic evolution of contact area in mound temperatures in carbon graphite electrical contract[J]. Wear,1994,174:137-146.
    [95]Asai H. Electric contacts and its application[J]. The 8th ICECP, Tokyo,1976.
    [96]Bares J A, Argibay N, Mauntler N. High current density copper-on-copper sliding electrical contacts at low sliding velocities[J]. Wear,2009,267(1-4):417-424.
    [97]王其平.电器电弧理论[M].北京:机械工业出版社,1991.
    [98]王贵青,陈敬超,孙加林.电力机车受电弓滑板的研究状况及发展趋势[J].材料导报,2003,17(1):18-20.
    [99]Kie B P, Schmieder S电气化铁道接触网[M].北京:中国电力出版社,2004:388-389.
    [100]Li W, Chen Z H, Li J. Preparation of PAN/phenolic-based carbon/carbon composites with flexible twopreg carbon fiber[J]. Materials Science and Engineering A,2008,485:481-486.
    [101]Choi M H, Jeon B H, Chung I J. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites[J]. Polymer,2000,41:3243-3252.
    [102]Shangguan Q Q, Cheng X H. Friction and wear of rare earths modified carbon fibers filled PTFE composite under dry sliding condition[J]. Applied Surface Science,2007,253:9000-9006.
    [103]卢文博,干成国,袁华.炭化温度对层状结构受电弓滑板性能的而影响[J].功能材料,2011(9):1635-1638.
    [104]Yuan H, Wang C G, Zhang S, Lin X. Effect of Surface Modification on Carbon Fiber and its Reinforced Phenolic Matrix Composite[J]. Applied Surface Science,2012,259:288-293.
    [105]袁华,王成国,卢文博,陈旸,乔琨.碳纤维增强受电弓滑板的性能表征[J].功能材料,2011,42(6):1094-1096.
    [106]Odeshi A G, Mucha H, Wielage B. Manufacture and characterization of a low cost carbon fibre reinforced C/SiC dual matrix composite[J]. Carbon,2006,44:1994-2001.
    [1]唐路林,里乃宁,吴培熙.高性能酚醛树脂及其应用技术[M].北京:化学工业出版社,2009.
    [2]Manocha L M, Bhatt H, Manocha S M. Development of carbon/carbon composites by co-carbonization of phenolic resin and oxidised pan fibers[J]. Carbon,1996,34 (7):841-849.
    [3]Liu Y L, Chen Y J. Novel thermosetting resins based on 4-(N-maleimidophenyl) glycidylether:Ⅱ.Bismaleimides and polybismaleimides[J]. Polymer,2004,45(6):1797-1804.
    [4]Brydson J A.23-Phenolic Resins[J]. Plastics Materials (Seventh Edition),1999,635-667.
    [5]吴培熙,沈健.特种性能树脂基复合材料[M].北京:化学工业出版社,2003,397-399.
    [6]William D D. Chapter 20-Phenolic resins:some chemistry, technology, and history[J]. Adhesion Science and Engineering,2002,869-945.
    [7]方科,任永杰,张洋.高性能摩阻材料用酚醛树脂[J].北京化工大学学报,1999,26(4):33-35.
    [8]涂川俊.树脂型受电弓滑板材料的制备与磨损特性及抗磨机理研究[D].博士学位论文,湖南大学,2009.
    [9]Jia S G, Liu P, Ren F Z, Tian B H, Zheng M S, Zhou G S. Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways[J]. Wear,2007, 262:772-777.
    [10]Xian G J, Zhang Z. Sliding wear of polyetherimide matrix composites:Ⅱ.Influence of graphite flakes[J]. Wear,2005,258(5-6):783-788.
    [11]胡忠良.高阻电刷材料的制备及其磨损行为与机理的研究[M].长沙:湖南大学,2008,50-57.
    [12]Hirotaka K, Masahiro T, Yoshiroet I. Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide[J]. Wear,2003,255:573-578.
    [13]Csapo E, Zaidi H, Paulmier D, Kadiri E K, Bouchoucha A, Robert F. Influence of the electrical current on the graphite surface in an electrical sliding contact[J]. Surface and coating technology,1995,76-77(Part 2):421-424.
    [14]赵彦文.碳材料高速载流摩擦磨损性能研究[D].河南:河南科技大学,2009.
    [15]Bouchoucha A, Zaidi H, kadiri E K, Paulmier D. Influence of electric fields on the tribological behaviour of electrodynamical copper/steel contacts[J]. Wear,1997,203-204: 434-441.
    [16]Mcbride J W, Pechrach K, Weaver P M. Arc root commutation from moving contacts in low voltage devices[J]. IEEE Transactions on Components and Packaging Technologies,2001,24(3): 331-336.
    [1]黄发荣,周燕.先进树脂基复合材料[M].北京:化学工业出版社,2008.
    [2]吴令云,吴家棋,吴成鸥MINITAB软件入门[M].北京:高等教育出版社,2012.
    [3]Dimitrovova Z, Faria L. Finite element modeling of the resin transfer molding process based on homogenization techniques[J]. Computers & Structures,2000,76(1-3):379-397.
    [4]Dominguez J C, Alonso M V, Oliet M, Rojo E, Rodriguez F. Kinetic study of a phenolic-novolac resin curing process by Theological and DSC analysis[J]. Thermochimica Acta, 2010,498(1-2):39-44.
    [5]Dominguez J C, Alonso M V, Oliet M, Rodriguez F. Chemorheological study of the curing kinetics of a phenolic resol resin gelled[J]. European Polymer Journal,2010,46(1):50-57.
    [6]唐路林,里乃宁,吴培熙.高性能酚醛树脂及其应用技术[M].北京:化学工业出版社,2009.
    [7]Reghunadhan C P N, Bindu R L, Ninan K N. Thermal characteristics of addition-cure phenolic resins[J]. Polymer Degradation and Stability,2001,73(2):251-257.
    [8]王小妹,阮文红.高分子加工原理与技术[M].北京:化学工业出版社,2006.
    [9]肖承敏.一种计算模压压力的新方法[J].塑料科技,1991,(1):27-29.
    [10]Kubo S, Kato K. Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current[J]. Wear,1998,216:172-176.
    [11]廖亚平,易茂中,杨琳.载流条件下C/C-Cu复合材料的摩擦磨损行为[J].粉末冶金材料科学工程,2009,14(6):385-390.
    [12]杨连威.高性能电力机车受电弓滑板的研究[D].辽宁:东北大学,2005.
    [13]Yang T P, Kwei T K, Pearce E M. Blends and interpenetrating networks of phenolic resins and polyamides[J]. Journal of Applied Polymer Science,1990,41:1327-1332.
    [14]李新明,李晓林,苏志强,张洋.丁腈橡胶共聚改性酚醛树脂[J].热固性树脂,2002,17(3):11-14.
    [15]刘发喜,徐庆玉,代三威,王洛礼.酚醛树脂改性研究新进展[J].粘接,2008,29(7):44-47.
    [16]Hartshorn S R. Structural adhesive:chemistry and technology[M]. New York:Plenum Press, 1986:94-102.
    [17]熊传溪,闻荻江.聚合物基导电复合材料的导电机理[J].玻璃钢/复合材料,1985,5:36-39.
    [18]Odeshi A G, Mucha H, wielage B. Manufacture and characterization of a low cost carbon fibre reinforced C/SiC dual matrix composite[J]. Carbon,2006,44:1994-2001.
    [19]袁华,王成国,卢文博.于美杰,陈旸,乔琨.碳纤维增强受电弓滑板的性能表征[J].功能材料,2011.42(6):1094-1096.
    [20]李奇楠,徐晓轩,武中臣,宋宁,张存洲,俞钢.多光谱辐射测温的正交多项式回归方法[J].光谱学与光谱分析,2006,12:2173-2176.
    [21]马超,王新平,张雷,周科朝.碳纤维增强Ag-MoS2复合材料的摩擦磨损性能[J].中国有色金属学报.2012,22(11):3074-3080.
    [22]Lin W, Xi X R, Yu C S. Research of silver plating nano-graphite filled conductive adhesive[J]. Synthetic Metals,2009,159:619-624.
    [23]唐谊平,刘磊,赵海军,朱建华,胡文彬.短碳纤维增强铜基复合材料的摩擦磨损性能研究[J].材料工程,2007,(4):53-60.
    [24]Xia L, Jia B B, Zeng J. Wear and mechanical properties of carbon fiber reinforced copper alloy composites[J]. Mater Charact,2009,60:363-371.
    [25]Hirotaka K, Masahiro T, Yoshiro I, Kazuo W, Yoshinori S. Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide[J]. Wear,2003, 255:573-578.
    [1]冼杏娟.纤维增强复合材料界面的力学行为[J].力学进展,1992,22(4):464-478.
    [2]Bouix J, Berthet M P, BOSSELT F. Physico-chemistry of interfaces in inorganic-matrix composites[J]. Composites Science and Technology,2001,61:355-362.
    [3]贺福,杨永岗,王润娥.碳纤维表面处理对层间剪切断裂形貌的影响[J].高科技纤维与应用,2002,27(4):27-30.
    [4]Xu B, Wang X S, Lu Y. Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide[J]. Applied Surface Science,2006,253(5):2695-2701.
    [5]Srace A S, Jurgen S. Electrografting of 3-methyl thiophene and carbazole random copolymer onto carbon fiber:Characterization by FTIR-ATR, SEM, EDS[J]. Surface and Coating Technology,2002,160(2-3):227-238.
    [6]Elzbieta P, Paul G R. Bulk and surface chemical functionalities of type Ⅲ PAN-based carbon fibers[J]. Carbon,2003,41 (10):1905-1915.
    [7]Shim J W, Park S J, Ryu S K. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers[J]. Carbon.2001,39(11):1635-1642.
    [8]Linsay B, Abelm L, Watts J F. A study of electrochemically treated PAN based carbon fibers by IGC and XPS[J]. Carbon,2007,45(12):2433-2444.
    [9]Vickers P E, Watts J F, Perruchot C. The surface chemistry and acid-base properties of a PAN-based carbon fibre[J]. Carbon,2000,38(5):675-89.
    [10]Dilsiz N, Wightman J P. Surface analysis of unsized and sized carbon fibers[J]. Carbon, 1999,37(7):1105-1114.
    [11]Toyoda M, katoh H, Inagaki M. Intercalation of nitric acid into carbon fibers[J]. Carbon, 2001,39:2231-2237.
    [12]Ishifune M, Suzuki R, Mima Y, Uchida K, Natsuki Y, Shigenori K. Novel electrochemical surface modification method of carbon fiber and its utilization to the preparation of functional electrode[J]. Electrochimica Acta,2005,51:14-22.
    [13]Ma K M, Wang B C, Chen P, Zhou X. Plasma treatment of carbon fibers:Non-equilibrium dynamic adsorption and its effect on the mechanical properties of RTM fabricated composites[J]. Applied Surface Science,2011,257:3824-3830.
    [14]Wen H C, Yang K, Ou K L. Effects of ammonia plasma treatment on the surface characteristics of carbon fibers[J]. Surface & Coatings Technology,2006,200:3166-3169.
    [15]Xie Y J, Callum A S H, Xiao Z F, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites:A review[J]. Composites:Part A.2010.41:806-819.
    [16]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [17]石峰辉,代志双,张宝艳.碳纤维表而性质分析及其对复合材料界面性能的影响[J].航空材料学报,2010,30(3):43-47.
    [18]侯永平,王皓静,王飞红.阳极氧化对PAN基高模量碳纤维表而的影响[J].化学新型材料,2007,35(4):34-36.
    [19]Sze S K, Siddique N, Sloan J J, Escribano R. Raman spectroscopic characterization of carbonaceous aerosols [J]. Atmospheric Environment,2001,35(3):561-568.
    [20]李东风,王浩静,下心葵.PAN基碳纤维在石墨化过程中的拉曼光谱[J].光谱学与光谱分析,2007,27(11):2249-2253.
    [21]张敏,朱波,王成国,魏晗兴.碳纤维在电化学处理中的拉曼光谱研究[J].光谱学与光谱分析,2010,30(1):105-108.
    [22]Sadeaky A, Muckenhuber H, Grothe H. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon,2005,43(8): 1731-1742.
    [23]Leszek N, Paul W J. Raman spectroscopic characterization of graphite:a re-evaluation of spectra/structure correlation[J]. Carbon,1993,31(8):1313-1317.
    [24]Steven D G, Chakravarthy S K S, Glyn L B, He G R. Surface characterization of carbon fibers using angle-resolved XPS and ISS[J]. Carbon,1995,5:587-595.
    [25]Lee W H, Lee J G, Peucroft P J. XPS study of carbon fiber surfaces treated by thermal oxidation in a gas mixture of O2/(O2+N2)[J].Applied Surface Science,2001,171:136-142.
    [26]Sarac A S, Tofail S A M, Serantoni M. Surface characterisation of electrografted random poly [carbazole-co-3-methylthiophene] copolymers on carbon fiber:XPS, AFM and Raman spectroscopy[J]. Applied Surface Science,2004,222:148-165.
    [27]刘杰,郭云霞,梁节英.碳纤维表面电化学氧化的研究[J].化学进展,2004,23(3):282-285.
    [28]袁华,王成国,卢文博,张珊,陈旸,于美杰.PAN基碳纤维表面液相氧化改性研究[J].航空材料学报,2012,32(2):65-68.
    [29]Li B, Zhang CR, Cao F, Wang SQ, Chen B, Li JS. Effects of fiber surface treatments on mechanical properties of T700 carbon fiber reinforced BN-Si3N4 composites[J]. Material Science and Engineering A,2007,471:169-173.
    [30]杨序纲.复合材料抖面[M].北京:化学工业出版社,2010.
    [31]Fu H J, Ma C Q, Kuang N H, Luan S L. Interfacial Properties Modification of Carbon Fiber/Polyarylacetylene Composites[J]. Chinese Journal of Aeronautics,2007,20:124-128.
    [32]Park S J, Jin J S. Effect of silane couping agent on interphase and performance of glass fiber/unsaturated polyester composites[J]. Journal of Colloid and Interface Science,2001,242: 174-179.
    [33]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010.
    [34]Patis O, Loidle D, Peterlik H. Texture of PAN- and Pitch-based carbon fibers[J]. Carbon, 2002,40(3):551-555.
    [35]Li D F, Wang H J, Wang X K. Effect of microstructure on the modulus of PAN-based carbon fibers during high temperature treatment and hot stretching graphitization[J]. Journal of Materials Science,2007,42(12):4642-4649.
    [36]曹伟伟,米波,井敏.王成国.PAN基碳纤维在表面处理中的拉曼光谱研究[J].光谱学与光谱学分析,2008,28(12):2885-2889.
    [37]Bares J A, Argibay N, Mauntler N. High current density copper-on-copper sliding electrical contacts at low sliding velocities[J]. Wear,2009,267(1-4):417-424.
    [1]Ma X C, He G Q, He D H, Chen C S, HU Z F. Sliding wear behavior of copper-graphite composite material for use in maglev transportation system [J]. Wear,2008,20:1087-1092.
    [2]Zhao H, Barber G C, Liu J. Friction and wear in high speed sliding with and without electrical current[J]. Wear,2001,249:409-414.
    [3]戴利民.滑板材料受流摩擦磨损性能的研究[D].铁道部科学研究院,2001.
    [4]Liu H P, Carnes R W, Gully J H. Measurement and prediction of brush interface temperature at sliding electrical contact[J]. The 38th IEEE Holm Conference on Electrical Contact,1993: 143-148.
    [5]刘锦,刘秀军,胡子君,李同起.碳/碳复合材料致密化影响因素的研究进展[J].天津工业大学学报,2010,29(1):31-35.
    [6]Lee K J, Wu C H, Cheng H Z, Kuo C C, Tseng H C, Liao W K, Wei S F. Carbonization rate and impregnation methods on the tribological behavior of carbon/carbon composites[J]. Procedia Engineering,2012,36:341-348.
    [7]Ning X, Ishida Hatsuo. Phenolic materials via ring-opening polymerization:symthesis and characterization of bisphenol-A based benzoxazines and their polymers[J]. Journal of Polymer Science:Part B,1994,32:1121-1129.
    [8]钟涛生,易贸中,葛毅成,黄伯云.炭纤维增强碳基复介材料增密方法及其特点[J].金属热处理,2009,34(2):112-115.
    [9]Michaud V, Mortensen A. Infiltration pressing of fibre reinforced composites:governing phenomena[J]. Composites,2001,32:981-996.
    [10]Liu Y L, Chen Y J. Novel thermosetting resins based on 4-(N-maleimidophenyl) glycidylether:Ⅱ-Bismaleimides and polybismaleimides [J]. Polymer,2004,45(6):1797-1804.
    [11]汪树军.有机高分子树脂碳化过程中结构基团的变化[J].石油大学学报,2001,25(3):45-48.
    [12]胡忠良.高阻电刷材料的制备及其磨损行为与机理的研究[M].湖南:湖南大学,2008.
    [13]Schulze B, Peth S. Hubbermann E M, Schwarz K. The influence of vacuum impregnation on the fortification of apple parenchyma with quercetin derivatives in combination with pore structures X-ray analysis[J]. Journal of Food Engineering,2012,109(3):380-387.
    [14]余鹏,崔振铎,朱胜利,杨贤金,毛祖莉.浸渍-碳化工艺对碳/碳复合材料力学性能的影响[J].材料热处理学报,2011,32(10):33-36.
    [15]Guillemin A, Degraeve P, Noel C, Saurel R. Influence of impregnation solution viscosity and osmolarity on solute uptake during vacuum impregnation of apple cubes (var. Granny Smith)[J]. Journal of Food Engineering,2008,86(4):475-483.
    [16]Mordike B L, Kielbinski M, Kielbinski M. Effect of tungsten content on the properties and structure of cold extruded Cu-W composite materials[J]. Powder Metallurgy International,1991, 23(2):91-95.
    [17]王建方.炭纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究[M].长沙:国防科学技术大学,2003,107-109.
    [18]涂川俊.树脂型受电弓滑板材料的制备与磨损特性及抗磨机理研究[D].湖南:湖南大学,2009.
    [19]Kim J I, Rhee K Y, Park S J. Interactive effects of pore size control and carbonization temperatures on supercapacitive behaviors of porous carbon/carbon nanotube composites[J]. Journal of Colloid and Interface Science,2012,377(1):307-312.
    [20]李贺军,费杰,齐乐华,付业伟,李新涛,王鹏云.孔隙率对炭纤维增强纸基摩擦材料摩擦磨损性能的影响[J].无机材料学报,2007,22(6):1159-1164.
    [21]Manocha L M, Bhatt H, Manocha S M. Development of carbon/carbon composites by co-carbonization of phenolic resin and oxidised pan fibers[J]. Carbon,1996,34(7):841-849.
    [22]Ju C P, Lee K J, Wu H D, Chen C L. Low-energy wear behavior of polyacrylonitrile, fiber-reinforced, pitch-matrix., carbon-carbon composites [J]. Carbon,1994,32(5):971-977.
    [23]周红英,刘建军,黄寒星.碳化温度对C/C复合材料微观结构及热性能的影响[J].宇航材料工艺,2005,(2):47-51.
    [24]Ferran E M D, Harris B. Compression strength of polyester resin reinforced with steel wires[J]. Composite Materials,1970, (4):62-72.
    [25]蒋郑海,张若棋.碳纤维织物增强树脂复合材料准静态压缩力学性能实验[J].强度与环境,2005,32(3):39-44.
    [26]翟可为,陈立,钟立明,江克斌.单向纤维增强复合材料纵向压缩强度细观分析理论评述[J].工业建筑.2011,41:613-619.
    [27]Yan g W, Wei Y G. Progressive damage along kink bands in fiber-reinforced composite blocks under compression[J]. International Journal of Damage Mechanics,1992, (1):80-101.
    [28]何建.轻骨料碳纤维混凝土宏观力学性阽能及习惯构的试验研究[D].湖南:南华大学,2007.
    [29]Yudin V E, Goykhman M Y, Balik K. Glogar P, Gubanova G N, Kudriavtsev V V. Carbonization behaviour of some polyimide resins reinforced with carbon fibers[J]. Carbon, 2000,38(1):5-12.
    [30]蒋文忠.碳索工艺学[M].北京:冶金工业出版社,2009.
    [31]Wang Y Q, Wang A S D. Microstructure/property relationship in three-dimensionally braided composites[J]. Composites Science and Technology,1995,53(2):213-222.
    [32]杨序纲.复合材料界面[M].北京:化学工业出版社,2010.
    [33]Shunichi K, Koji K. Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley underelectric current [J]. Wear,1998,216:172-178.
    [34]He D H, Manory R. A novel electrical contact material with improved self-lubrication for railway current collectors[J]. Wear,2001,249:626-636.
    [35]于澍,李溪滨,刘根山.热解炭结构对炭/炭复合材料摩擦磨损性能的影响[J].中南工业大学学报(自然科学版).2002,33(6):613-616.
    [36]Pieter S, Gustaaf S. The lubricity of graphite flake inclusions in sintered polyimides affected by chemical reactions at high temperatures [J]. Carbon,2008,46(7):1072-1084.
    [1]Guo B, Jin Y P, Yu B. Material design and performance of powder metallurgy pantograph slider[J]. Materials for Mechanical Engineering,2004,28(3):31-33.
    [2]杨连威,姚广春,陆阳.新型高性能电力机车受电弓滑板的研究[J].材料导报,2005,19(11):136-139.
    [3]Cenna A A, Doyle J, Page N W. Wear mechanisms in polymer matrix composites abraded by bulk solids[J]. Wear,2000,240(1-2):207-214.
    [4]李庶.银基复合电接触材料滑动电摩擦磨损性能研究[D].安徽:合肥工业大学,2009.
    [5]He D H, Manory R, Sinkis H. A sliding wear tester for overhead wires and current collectors in light rail systems[J]. Wear,2000,239(1):10-20.
    [6]Jia S G, Liu P, Ren F Z. Wear behavior of Cu-Ag-Cr alloy wire under electrical sliding[J]. Materials Science and Engineering A,2005,398 (1-2):262-267.
    [7]涂川俊.树脂型受电弓滑板材料的制备与磨损特性及抗磨机理研究[D].湖南:湖南大学,2009.
    [8]Cho Y H. Numerical simulation of the dynamic responses of railway overhead contact lines to a moving pantograph, considering a nonlinear dropper[J]. Journal of Sound and Vibration, 2008,315:433-454.
    [9]蛾利民.滑板材料受流摩擦磨损性能的研究[D].北京:铁道部科学研究院,2001.
    [10]贾步超.载流条件下Cr18Ni9Ti/浸金属碳摩擦磨损性能研究[D].成都:西南交通大学,2008.
    [11]涂川俊,陈振华,夏金童等.硅油浸渍对树脂基滑板/铜抗电弧侵蚀磨损性能的影响[J].中国有色金属学报,2008,18(8):1479-1486.
    [12]Kang S, Brecher C. Cracking mechanisms in AgSnO2 contact materials and their role in the erosion process[J]. IEEE Translate on CHMT,1989,12(1):32-38.
    [13]Tu J P, Qi W X, Yang Y Z. Effect of aging treatment on the electrical sliding wear behavior of Cu-Cr-Zr alloy[J]. Wear,2001,249(10-11):1021-1027.
    [14]张塞丹,陈光雄,杨红娟.接触压力对碳滑板/铜接触线载流序擦磨损性能的影响[J].润滑与密封,2012,37(9):41-45.
    [15]Dong L, Chen G X, Zhu M H. Wear mechanism of aluminum-stainless steel composite conductor rail sliding against collector shoe with electric current[J]. Wear,2007,263:598-603.
    [16]董霖,陈光雄,周仲荣.载流磨损的最佳法向载荷三维关系模型研究[J].机械设计与制造,2010(2):123-125.
    [17]Zhao H, Barber G C, Liu J. Friction and wear in high speed sliding with and without electrical current[J]. Wear,2001,249(5-6):409-414.
    [18]Hirotaka K, Masahiro T, Yoshiroet I. Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide[J]. Wear,2003,255:573-578.
    [19]胡道春.滑板材料载流摩擦磨损中电弧侵蚀特性研究[M].河南:河南科技大学,2008.
    [20]赵彦文,王晓峰,白玲,孙乐民.紫铜/铬青铜摩擦副载流效率研究[J].热加工工艺,2011,40(12):25-27.
    [21]Zhang Y Z, Zhang G D. Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles[J]. Tribology Letter,2004,17(1):91-96.
    [22]韩晓明,高飞,宋宝韫,符蓉.摩擦速度对铜基摩擦材料摩擦磨损性能影响[J].摩擦学学报,2009,29(1):89-95.
    [23]田磊,孙乐民,上官宝,张永振,杨正海,李雪飞.摩擦速度对铜/碳复合材料载流摩擦磨损性能的影响[J].机械工程材料,2012,36(9):69-72.
    [24]He D H, Rafael M. A novel electric contact material with improved self-lubrication for railway current collectors[J]. Wear,2001,249:626-636.
    [25]冀盛亚,孙乐民,刘敬超,张永振.电弧能量对铜基粉末冶金/铬青铜摩擦副载流效率及载流稳定性的影响[J].润滑与密封,2010,35(11):68-73.
    [26]Borahoa O B电力机车供电接触导线磨损预报[J].国外机车车辆工艺,2007,(1):33-34.
    [27]Yoshitada W. High-speed sliding characteristics of Cu-Sn-based composite materials containing lamellar solid lubricants by contact resistance studies[J]. Wear,2008,264(7-8): 624-631.
    [28]华公平,丁春华.铁路机车受电弓碳滑板材料研究[J].金属热处理,2008,33(2):28-33.
    [1]Matsuyama S. Electric contact tribological behavior of pantograph[J]. Toyo Denki giho,1995, 91:52-60.
    [2]Lu C T, Bryant M D. Thermoelastic evolution of contact area in mound temperatures in carbon graphite electrical contract[J]. Wear,1994,174:137-146.
    [3]Bares J A, Argibay N, Mauntler N. High current density copper-on-copper sliding electrical contacts at low sliding velocities[J]. Wear,2009,267(1-4):417-424.
    [4]He D H, Manory R, Sinkis H. A sliding wear tester for overhead wires and current collectors in light rail systems[J]. Wear,2000,239(1):10-20.
    [5]Shunichi K, Kojli K. Effect of arc discharge on the wear rate and wear mode transition of a copper impregnated metallized carbon contact strip sliding against a copper disk[J]. Tribology International,1999,32 (7):367-377.
    [6]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002,309.
    [7]Cenna A A, Doyle J, N.W. Page, et al. Wear mechanisms in polymer matrix composites abraded by bulk solids[J]. Wear,2000,240(1-2):207-214.
    [8]胡道春.滑板材料载流摩擦磨损中电弧侵蚀特性研究[D].河南:河南科技大学,2011.
    [9]Turner M J B, Swinnerton B R G. Sparking and arcing in electrical machines[J]. Proceedings Institution Electrical Engineering,1966,113(8):1376-1386.
    [10]吴积钦,钱清泉.受电弓与接触网系统电接触特性[J].中国铁道科学,2008,29(5):106-109.
    [11]张冠生.电器理论基础[M].北京:机械工业出版社,1989.
    [12]吴积钦,钱清泉.弓网系统电弧侵蚀接触线时的热分析[J].铁道学报,2008,30(3):31-34.
    [13]涂川俊.树脂型受电弓滑板材料的制备与磨损特性及抗磨机理研究[D].湖南:湖南大学,2009.
    [14]Jia S G, Liu P, Ren F Z. Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways[J]. Wear,2007,262(7-8):772-777.
    [15]Xian G J, Zhang Z. Sliding wear of polyetherimide matrix composites:Ⅱ. Influence of graphite flakes[J]. Wear,2005,258(5-6):783-788.
    [16]Tu C J, Chen Z H, Chen D. Tribological behavior and wear mechanism of the resin binder contact strip against copper with electrical current[J]. Transfer Nonferrous Metal Society of China,2008,18(5):1157-1163.
    [17]荣命哲,冯建兴,杨武.低压电器电触头材料的电弧侵蚀[J].低压电器,1998,(1):13-16.
    [18]Chen Z K, Sawa K. Effect of arc behavior on material transfer:a review[J]. IEEE Transfer and Packaging, Manufacture Technology,1998,21:310-321.
    [19]Swingler J, Mcbrider J M. The erosion and arc characteristics of AgCdO and AgSnO2 contact materials under DC break conditions[J]. Electrical Contact-Proceeding of the 41th IEEE Holm Conference,1995:381-392.
    [20]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002.
    [21]Chen G X, Yang H J, Zhang W H, Wang X, Zhang S D, Zhou Z R. Experimental study on arc ablation occurring in a contact strip rubbing against a contact wire with electrical current[J]. Tribology International,2013,46(1):88-94.
    [22]Tu C J, Chen Z H, Xia J T. Thermal wear and electrical sliding wear behaviors of the polyimide modified polymer-matrix pantograph contact strip[J]. Tribology International,2009, 42(6):995-1003.
    [23]Ding T, Chen G X, Wang X, Zhu M H, Zhang W H, Zhou W X. Friction and wear behavior of pure carbon strip sliding against copper contact wire under AC passage at high speeds[J]. Tribology International,2011,44(4):437-444.
    [24]Ding T, Chen G X, Bu J,. Zhang W H. Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph-catenary systems[J]. Wear,2011,271 (9-10):1629-1636.
    [25]Yang H J, Luo R Y. A novel bronze-impregnated carbon strip containing Al2O3 particles for subway current collectors[J]. Wear,2011,271(9-10):675-681.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700