用户名: 密码: 验证码:
基于在线数字滤波技术的数字化核能谱仪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贝克勒尔发现了放射线并提出了原子有内核的理论,卢瑟福定义了原子核,他们开创了核物理的先河。薛定谔提出了量子力学,而柯克罗夫特和沃尔顿建立了第一个加速器。这些伟大的成就和随之而来的实验和理论上的发现使我们能够系统地研究核物理。我们目前的知识已经涵盖了核物理的很多方面,如放射性、能谱、核反应、恒星的核聚变等,很多已经在现实生活中得到了应用。但是,无论是实验物理学家还是理论物理学家,都无法提出一种统一的理论来解释所有的物理现象。但是通过高精度的物理测量,我们可以修正和改进现存的理论。核物理研究的实验系统建立在对各种入射粒子特征的测量上。几十年来,粒子探测器输出的电信号都是用模拟的方法来处理,在最后的数据获取和存储才用到数字化技术。
     核能谱是高能物理、核物理、重离子物理等基础研究和核技术应用所需要获取的基本且重要的核信息之一,核能谱获取方法的改进和新型获取方法的研究一直是核测量领域的一个重要研究课题。
     近几年来,伴随着高速ADC、各种数字化器件、实时操作系统和微处理器的快速发展,数字信号处理技术在核物理领域也得到了极大的发展。粒子探测器输出的电信号被数字化后,得到相应的数据,再经过数字信号处理来取得我们所需要的信息。与标准的模拟方法相比,数字化方法能在更简单的电子学系统中实现更复杂的电子学方法,如果成功的话能带来一次大型物理实验装置的革新。同时,随着数字信号处理技术在消费市场的广泛推广,很多工业企业正在积极开发数字化信息处理的各种相关产品,使得数字化系统的成本得到了大幅度降低。根据常用粒子探测器系统输出信号的特点,一套数字化核能谱仪系统应包括波形数字化系统、数字化核信息处理和数据获取系统。数字化核能谱仪系统的研究工作包括:对探测器系统输出信号数字化的研究;核信号的处理原理和方法的研究;对谱仪系统硬件电路设计的研究;数字滤波算法在硬件中实现的研究。本论文在对高速数字化技术充分调研的基础上,通过对各种数字滤波算法的研究,设计并研制一个通用的基于在线数字滤波技术的数字化核能谱仪原型系统,对各种探测器输出的电信号进行在线处理,并在不改变硬件设计的前提下,实现数字滤波器的在线调节功能,为新一代核能谱仪提供技术准备。
     高速ADC采样是数字化核能谱仪的基础,探测器输出信号在经过必要的带宽限制和增益处理后,用40M采样率12bit位的ADC进行数字化,信号处理完全在数字域里进行。在获取核信息的过程中,不可避免地会产生噪声。为了提高能谱的能量分辨率,我们在对核信号仿真和频域分析的基础上,结合数字滤波理论,建立了高斯成形滤波和FIR低通滤波的数字信号处理算法,并用Matlab软件进行了模拟仿真。数字信号处理的实现是本论文的核心,鉴于可编程逻辑器件(FPGA)在数字信号处理方面的诸多优点,本谱仪采用FPGA作为数字信号处理实现的平台。本论文详细介绍了从选择滤波器系数到FPGA逻辑实现的整套软件设计方法。
     本论文的工作的创新点如下:
     1.设计并研制了一个数字化核能谱仪原型系统,用FPGA器件实现了在线触发、滤波、峰值提取等数字化处理过程,为全数字化谱仪的实现提供了技术支持;
     2.简化了硬件结构,减少了模拟电路的复杂性,充分利用了数字处理技术的适应性和灵活性,针对不同的探测器信号给出不同的滤波器参数设置,实现了参数的在线调节功能,增强了系统的通用性,使同一个硬件系统可以用于不同能谱的测量。
     目前,本论文所设计的数字化核能谱仪系统已经经过了一系列电子学测试,测试结果表明电子学系统设计达到了模拟数据采集系统的指标,并用高纯锗探测器进行了实验测试,与传统的多道分析器进行了比较,在相同的测试条件下,得到了比多道分析器更高的能量分辨。
The birth of Nuclear Physics can be traced back to the works of Becquerel and of Rutherford, who discovered radioactivity (Becquerel, 1896) and proposed a theory where the atom has a massive charged core, the nucleus (Rutherford, 1911). A few years later the Quantum Mechanics was developed (Schr¨odinger, 1926) and the first machine to accelerate nuclei were built (Cockcroft and Walton 1930, Van de Graff 1931). These and other experimental and theoretical findings made it possible to begin a systematic study of the nucleus that is still under way.
     Our current knowledge of nuclei covers many aspects of nuclear behavior (radioactivity, energy spectra, nuclear reactions, stellar nucleosynthesis,…) and it has found also several practical applications in everyday life. Nevertheless, the difficulty of having a unique theory able to explain completely the behavior of nuclear matter still challenges both theoretical and experimental physicists. From an experimental point of view the goal is to perform high“quality”measurements (high resolution and granularity, low thresholds,…) that can be used to verify and improve the existing theories.
     For decades the electrical output of a particle detector has been analyzed using (rather sophisticated) analog methods, and using digital electronics only for final data conversion, acquisition and storage.
     Nuclear spectrum is one of the most important information needed in the research work of high energy physics, nuclear physics, heavy ion physics and nuclear technology application. The improvement and development of nuclear spectrum measurement method is a focus question for discussion all along in nuclear measure domain.
     In the last few years these technologies have reached such a development status to make them attractive for the nuclear physics field. The electrical output of a particle detector can be digitized and the corresponding data properly processed to extract all the information needed. If successful this approach would allow a major renovation in the organization of large experiments, due to the important electronic simplification and to the greater flexibility of these methods with respect to the standard analog methods. Moreover, because of the wide spread of these technologies in the consumer market, many industrial companies are actively developing various components related to digital information manipulation, thus lowering the general cost of these systems.
     Based on the nuclear detector system output, a set of digital nuclear spectrum measurement system (DNSMS) includes waveform digitizing system (WDS), digital signal processing (DSP) system and data acquisition system. The research content of DNSMS includes study on the following fields: the WDS, the implement principle and method of the DSP system, the design of hardware circuit of the spectrometer, the implement of digital filter in hardware.
     In this thesis, based on investigation in high-speed digital technology and research in a variety of digital filtering algorithms, a common nuclear energy spectrometer prototype system based on online digital signal processing has been designed. It can change the coefficients of the digital filter without changing the hardware design.
     The innovations of this thesis are shown as follows:
     1. Designed and developed a prototype system for digital nuclear spectrum measurement; use FPGA devices to achieve online digital signal processing such as trigger, filter, peak extraction; provide technical support for the realization of the full-digital spectrometer.
     2. Simplify the hardware structure, reduce the complexity of analog circuits, make full use of the adaptability and flexibility of digital processing technology, give a different set of filter coefficients for different detector signal, achieve the online regulatory function, and enhance the versatility of the system, so that the same hardware system can be used for the measurement of different spectra.
引文
[1]虞孝麒。核电子学方法。中国科学技术大学讲义。
    [2]徐克尊。粒子探测技术。中国科学技术大学讲义。
    [3]于敏,胡仁宇,杜祥琬,江文勉,郑绍唐。中国工程物理研究院的核物理、核技术及相关学科的研究,核物理动态,1995,12(4):1-5
    [4]王芝英、楼滨乔等,核电子技术原理,原子能出版社,1989年
    [5] VME Bus Datasheet
    [6] USB Bus Datasheet
    [7] G.Poggi, Appunti sul rumore elettrico, 2002, unpublished.
    [8] W.K.Warburton, M.Momayezi, B.Hubbard-Nelson. Applied Radiation and Isotopes 53 (4):913-920, 2000
    [9] XIA.DXP xMAP, Four-Channel PXI Digital X-ray Processor, http://www.xia.com/products.html
    [10]郗传英。符合多普勒测量系统研制及应用研究。博士论文。
    [11] G.F.Knoll, Radiation detection and measurement, John Wiley & Sons, 1989.
    [12] Helmuth Spieler Lawrence Berkeley,.Physics Division, Berkeley, CA 94720,U.S.A.
    [13] Valentin, Nuclear Instruments & Methods in Physics Research, Section A: A 345(2):337-345, 1994.
    [14] Alan V.Oppenheim, Alan S.Willsky, S.Hamid Nawab. Signals &Systems.1999
    [15] John G.Proakis and Dimitris G.Manolakis数字信号处理:原理、算法与应用。2004
    [16] Sophocles J.Orfanidis, Introduction to Signal Processing. 1999
    [17] A.V.Oppenheim and R.W.Shafer, Digital Signal Processing, Prentice Hall, 1975.
    [18] L. Bardelli, M. Bini, G. Poggi etc. Nuclear Instruments and Methods in Physics Research A 491 (2002) 244–257
    [19] Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, available on http://www.dspguide.com/.
    [20] Bonnie C. Baker Microchip Anti-Aliasing, Analog Filters for Data Acquisition System. Technology Inc. 1999
    [21] H. Koeman. PRINCIPLE OF OPERATION AND PROPERTIES OF A TRANSVERSAL DIGITAL FILTER.1 23(1):1 69-180, 1975.
    [22] Luigi Bardelli, Diploma Thesis, University of Florence, 2001
    [23] G. Pasqualia, R. Ciaranfib, L. Bardelli etc. Nuclear Instruments and Methods in PhysicsResearch A 570 (2007) 126–132
    [24] Robert Grzywacz. Nuclear Instruments and Methods in Physics Research B 204 (2003) 649–659
    [25] W.K. Warburton, M. Momayezi, B. Hubbard-Nelson etc. Applied Radiation and Isotopes, Volume 53,Number 4, 15 November 2000 , pp. 913-920(8)
    [26] J. Bas(?) lio Simo8 es, Carlos M.B.A. Correia. Nuclear Instruments and Methods in Physics Research A 422 (1999) 405-410
    [27] Andrey Georgiev and Werner Gast. IEEE Transactions on Nuclear Science 40:770-779, 1993.
    [28] Wen Xiangyang, Wei Yixiang. Nuclear Instruments and Methods in Physics Research A 560 (2006) 346–351
    [29] Peter D. Olcott, Anthony Fallu-Labruyere, Frezghie Habte etc. Nuclear Science Symposium Conference Record, 2006. IEEE Publication Date: Oct. 29 2006-Nov. 1 2006 Volume: 3,On page(s): 1909-1911
    [30] ug_fir_compiler.pdf Altera datasheet
    [31] Technical proposal for the“Advanced Gamma Tracking Array”(AGATA) project, available on http://agata.pd.infn.it/.
    [32] M.A. Deleplanque et al., Nucl. Instr. and Meth. A 430 (1999) 292.
    [33] A. Pullia, A. Geraci, and G. Ripamonti. Nuclear Instruments & Methods in Physics Research, Section A 439(2-3):378-384, 2000.
    [34] H.Koeman, Philips Reserch Lab. Eindhoven, The Netherlands 1973.
    [35] AD9224 datasheet
    [36] Cyclone III Device Handbook, CIII5V1-2.0, 2008, Altera Corporation
    [37] AD8047 datasheet
    [38] CY7C68013 datasheet, Revised January 15, 2002, Cypress Semiconductor Corporation
    [39] EZ-USB FX2 Technical Reference Manual, Rev.A, 2008, Cypress Semiconductor Corporation
    [40] EZ-Loader Design Notes, 1998, Cypress Semiconductor Corporation
    [41] S. Riboldi, R. Abbiati, A. Geraci, and E.Gatti, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 4, AUGUST (2005) 954-958
    [42] E. Gatti, A. Geraci, Nuclear Instruments & Methods in Physics Research, Section A: 417(1):131一136, 1998.
    [43] Alberto Pullia, IEEE Nuclear Science Symposium & Medical Imaging Conference.1:722-725, 1997.
    [44] F.S.Goulding, IEEE, NS.41(4)(1994)1140-1145.
    [45] E. Gatti and V. Radeka, IEEE Tram. Nucl. Sci. NS-25(l) (1978) 676
    [46] V. Jordanov and G.F. Knoll, Nucl. Instr. and Meth. A345(1994) 337
    [47] E.Gatti, A.Geraci, G.Ripamonti. Nucl.Instr.and Meth. Vol. A381, pp.117-127, 1996
    [48] A.Geraci, G.Ripamonti, A.Pullia.Nucl. Instr.and Meth. Vol. A403, pp.455-464, 1998
    [49] E.Gatti, A.Geraci, G.Ripamonti. Nucl.Instr.and Meth. Vol. A417, pp.131-136, 1998
    [50]飞思科技产品研发中心。Matlab 7辅助信号处理技术应用。电子工业出版社。2005
    [51] DSP Builder User Guide, Rev.6.1, Altera Corporation, December 2006
    [52]潘松,黄继业,王国栋,现代DSP技术,西安电子科技大学出版社,2003
    [53] Yamin Li and Wanming Chu, Implementation of Single Precision Floating Point Square Rooton FPGAs, Proc. Of the IEEE Symposium on FPGAs for Custom Computing Machines, Napa,California, USA, April 1997
    [54] Brad Brannon and Rob Reeder. Understanding High Speed ADC Testing and Evaluation. http://www.anolog.com
    [55] IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters_2000
    [56] Agilent 33250A Manual, Agilent, Inc.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700