用户名: 密码: 验证码:
城市化过程中人工湿地去污模式与强化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以北京未来科技城温榆河水为研究对象,结合未来科技城特殊的功能定位,利用在人工湿地前增加曝气生物滤池的强化系统处理试验,通过曝气生物滤池处理污染物试验、人工湿地基质去污性能试验、人工湿地的植物筛选及去污效果试验、强化人工湿地系统技术去除污染物试验,对曝气生物滤池和人工湿地处理污染物的影响因素、去氮除磷机理及处理效果进行了研究和探讨,旨在解决人工湿地强化污染物去除的问题,主要研究结论如下:
     (1)影响曝气生物滤池处理效果的主要因素是气水比和水力负荷。采用生物陶粒作为试验填料的曝气生物滤池装置在气水比为3:1和水力负荷2.0m3/(m2·h)当流量为15L/h,水力停留时间为0.2h时)的运行条件下,对有机物和NH4+-N的平均去除率分别为64.27%和55.36%,在运行成本和动力消耗上也最低。
     (2)在人工湿地基质除磷和去除污染物试验研究中,钢渣对磷的理论饱和吸附量(G0)为88.07mg/kg,煤渣对磷的理论饱和吸附量(G0)为79.36mg/kg。随着溶液pH值的增大,两种基质吸附磷量都随之逐渐增大。弱碱或酸性条件下,pH值对基质磷的吸附量变化作用不明显,但在碱性条件下增加作用显著。
     (3)在未来科技城现状土壤和水质条件下,凤眼莲对COD的去除率达到72.9%,其次是芦苇和香蒲。多种植物的合理搭配能产生比单一种类更好的景观效果,其中芦苇-香蒲-凤眼莲的组合去除效率最高,对COD的去除率达到了69.2%。
     (4)在单独人工湿地系统技术运行过程中,湿地最佳运行水位为85cm,最佳水力负荷为1.1×10-2m3/(m2.h),最佳pH值为8.5。人工湿地对污染物的去除效果与运行水位的升高成正比,与湿地进水的水力负荷成反比关系。COD/N对湿地系统COD的去除效果影响较小,而对NH4+-N的去除效果影响则较大,在硝化过程中pH值对其影响较大。
     (5)在垂直潜流、水平潜流人工湿地复合系统处理污染物的研究中,复合流湿地对污染物的去除效果相对稳定且最高:复合流人工湿地对COD平均去除率为80.07%,复合人工湿地对NH4+-N的平均去除率为71.85%,对TN的去除率为73.91%;复合人工湿地主要通过填料以及生物膜对磷的吸附、截留作用去除TP,平均去除率为75.64%。在相同试验条件下,复合流人工湿地去除污染物的效果大于单纯的水平流或者垂直流人工湿地,提高幅度约在10%左右。
     (6)针对湿地内部溶解氧分布规律进行的试验表明,要提高湿地硝化反应能力仅凭调节进水溶解氧量是不能达到的,需要试着通过其他途径来调节湿地内部溶解氧分布规律。强化人工湿地系统技术的去污效果优于单独技术的去污效果。
Base on the existed wetland research domestic and international, this paper studied the factors that influenced biologic aerated filter and wetland treatment of contamination, the nitrogen and phosphorus removal mechanism and effect of Wenyu River water in Future Scientific and Technical Centre. The experiments include biologic aerated filter contamination treatment wetland matrix phosphorus removing and its performance wetland plant screening and phosphorus removing effect and wetland system strengthening and contamination removing test. The main results are showed as followings:
     (1) The main factors influencing the biologic aerated filter treatment effect are gas-water ratio and hydraulic loading. When the biologic aerated filter take the bio-ceramic as test fill when gas-water ratio is3:1and hydraulic loading is2.0m3(m2-h)(when the flow is15L/h, hydraulic residence time is0.2h), its removing effect to organics and ammonia nitrogen is the best, which are64.27%and55.36%receptively. At this time, the operation cost and power consumption is the lowest.
     (2) In the test research of constructed wetland matrix phosphorus removing and contamination treatment, steel-slag for phosphorus adsorption capacity of theory (G0) is88.07mg/kg and the coal slag (G0) is79.36mg/kg. With the increasing of pH value, phosphorus adsorption capacity of steel-slag and furnace slag is improving. If slag is in acidic or weak alkaline condition, the pH value is not obviously influence its adsorption capacity, but in alkaline condition the improving effect of pH value is significant.
     (3) In the test of constructed wetland plant screening and phosphorus removing effect, nitrogen and phosphorus removing effect of the cattail and reed are better than others. The biomass and nitrogen and phosphorus content of plants directly determined its nitrogen and phosphorus cumulative performance. By comparing the biomass and nitrogen cumulative performance of reed, water hyacinth, Alisma. cattail, Scirpus validus, lotus, the nitrogen content of cattail is the highest,15.3g/Kg, while water hyacinth is the second and lotus is the lowest,9.9g/kg; the phosphorus content of reed is the highest.7.2g/kg, while cattail is the second and Scirpus validus is the lowest,5.7g/kg.
     (4) In the test of separate constructed wetland system operation, the best operation water is85cm. the best hydraulic loading is1.1×10-2m3(m2-h) and the best pH value is8.5. The contamination removing effect of constructed wetland is proportional to the rising operation water level, but inversely proportional to inflow hydraulic loading. When the hydraulic loading is small, because of long stay of the hydraulic loading, the wetland forms an anaerobic environment, which is not beneficial to its removing effect. Conversely, if the hydraulic loading is too high, the removing effect is also decreasing because of the strong erosion. As organic contamination could be degraded by Aerobic and anaerobic microorganism, ammonia nitrogen must use aerobic nitrification before removing. COD/N has a little effect to the removing of COD in wetland system, and has a better effect to the removing of ammonia nitrogen. PH value has a big effect to nitrification.
     (5)The complex wetland system with both vertical and level undercurrent has a more steady effect to contamination treatment. The COD average remove rate of complex wetland is80.07%, the ammonia nitrogen average remove rate is71.85%, the overall remove rate of total nitrogen is not high, the average remove rate is73.91%, and the average remove rate of total phosphorus is75.64%. Under the same experimental conditions, the contamination treatment effect of vertical undercurrent wetland is better than level undercurrent wetland with10%. The vertical undercurrent constructed wetland has certain advantage in the contamination treatment.
     (6) Through the analysis of the DO distribution in the constructed wetland system, the problem of poor nitration can't be totally solved when changing the concentration of the DO in the inlet water. The other methods must be used to change the DO distribution in the constructed wetland system to improve the effects of decontamination. The effects of decontamination is better when strengthen the technology of the whole constructed wetland than improving separate technology. This is mainly because the advantage of separate technology is used in different stages when dealing with different state of nitrogen contamination. The two technologies complement each other to achieve maximum removal of contamination.
引文
[1]昌平区未来科技城总体规划及北区街区控制性详细规划(研究)公示[R].北京市规划委员会,2009-10-16[2012-07-25].
    [2]陈德强,吴振斌,成水平等.不同湿地组合技术净化污水效果的比较[J].中国给水排水,2003,19(9):12-15.
    [3]张清.人工湿地的构建与应用[J].湿地科学,2011,04.
    [4]梁启斌,刘云根,田昆,杨杨,王万宾.基于Elman网络和小波去噪的人工湿地复合基质对COD
    去除效果的模拟[J].净水技术,2012,6:68-73.
    [5]崔理华,朱夕珍等.几种人工湿地基质磷的吸附特性研究[J].农业环境科学学报,2007,26(3):894-898.
    [6]付融冰,杨海真,顾国维等.人工湿地基质微生物状况与净化效果相关分析[J].环境科学研究,2005,18(6):44-49.
    [7]高吉喜,叶春,杜鹃,等.水生植物对面源污水净化效率研究[J].中国环境科学,1997,17(3):247-251.
    [8]高景峰,彭永臻译.G.乌尔松,B纽厄尔.污水处理系统的建模、诊断和控制[M].北京化学工业出版社,2004,9:9-139.
    [9]管策,郁达伟,郑祥,魏源送.我国人工湿地在城市污水处理厂尾水脱氮除磷中的研究与应用进
    展[J].农业环境科学学报,2012,12
    [10]韩勤有,徐雅娟等.生物塘-人工湿地处理制浆造纸废水工程实践[J].陕西环境,2003,10(3):12-13.
    [11]韩晓丽,海热提等.人工湿地小同水流方式对化粪池出水净化效果研究[J].环境科学与技术2009,31(12):303-308.
    [12]韩晓丽.BAF强化人工湿地技术处理生活污水试验研究[D].北京化工大学博士论文,2010.
    [13]贺锋,吴振斌,成水平等.复合垂直流人工湿地对氮的净化效果[J].中国给水排水,2004,20(10):18-21.
    [14]贺锋.复合垂直流构建湿地水处理技术的设计及对营养物质氮的净化效果[D].中国科学院水生生物研究所博士论文,2004.
    [15]黄辉,赵浩,饶群,徐炎华.人工湿地基质除磷影响因素研究进展[J].环境科学与技术,2006,29(11):112-114.
    [16]环境质量持续好转总体形势依然严峻—国务院新闻办公室中国环境状况新闻发布会实录[J].环境保护,2011(6):8-14.
    [17]张克宁,韩会玲,李文奇,张振宇.不同基质湿地对污水净化效果的研究[J].人民长江,2011,21(9):22-25.
    [18]何占飞,陈园园,荀方飞.混合工艺处理农村生活污水试验研究[J].水资源与水工程学报,2012,12(6):17-22.
    [19]赵丰.水培植物净化城市黑臭河水的效果、机理分析及示范工程[D].华东师范大学博士论文,2012.
    [20]梁威,吴振斌,詹发萃等.人工湿地植物根区微生物与净化效果的季节变化[J].湖泊科学,2004,16(4):312-317.
    [21]凌云,林静,徐亚同.微生物对芦苇人工湿地除磷影响响研究[J].四川环境.2009,28(5):41-43.
    [22]刘超翔,胡洪营,张健等.人工复合中态床处理低浓度农村污水[J].中国给水排水,2002,18(7):1-4.
    [23]刘雯,崔理华.复合人工湿地系统对生活污水净化效果的研究[J].中国环境保护优秀论文集,2005(上册):1077-1081.
    [24]罗明,文启凯,陈全家.不同用量的氮磷化肥对棉田上壤微生物区系及活性的影响[J]土壤通报,2000,31(2):67-69.
    [25]雒维国,王世和.潜流型人工湿地对氮污染物的去除效果研究[D].东南大学博士论文,2005.
    [26]籍国东,倪晋仁.人工湿地废水生态处理系统的作用机制[J].环境污染治理技术与设备,2004,5(6):71-75.
    [27]马放,工宏宇,周丹丹.常温下生物陶粒反应器中亚硝酸性硝化的试验研究[J].给水排水,2005,31(10):40-44.
    [28]马源.人工湿地生态系统对高速公路服务设施生活污水处理研究[D].长安大学硕士论文,2010.
    [29]邱立平,马军.曝气生物滤池的短程硝化反硝化机理研究[J].中国给水排水,2002,18(11):1-4.
    [30]邱立平.曝气生物滤池处理生活污水的运行特性和生态学研究[D].哈尔滨工业大学博士论文,2003.
    [31]秦怡.潜流人工湿地处理污染河水的试验研究[D].苏州科技学院硕士论文,2008.
    [32]桑军强,王占生极低温度下两级曝气生物滤池的运行特性[J].中国给水排水,2002,18(7):17-19.
    [33]宋志文,张锡义,汤华崇等.人工湿地污水处理技术及其发展[J].青岛建筑工程学院学报,2004,25(2):58-61.
    [34]孙铁晰.污染生态学[M].北京:科学出版社,2001:323.
    [35]孙志国,陈季华,陈思贫.曝气生物滤池废水深度净化试验研究[J].东华大学学报,2003,29(6):111-114.
    [36]谭洪新,周琪.湿地填料的磷吸附特性及潜流人工湿地除磷效果研究[J].农业环境科学学报,2005,24(2):353-356.
    [37]汤显强,黄岁樑.人工湿地去污机理及国内外应用现状.水处理技术[J].水处理技术,2007,33(2):9-13.
    [38]汤显强,李金中,李学菊等.7种水生植物对富营养化水体中氮磷去除效果的比较研究[J].亚热带资源与环境学报,2007,2(2):8-13.
    [39]汤显强,李金中等.7种水生植物对富营养化水体氮磷去除效果的比较[J].亚热带资源与环境学报,2007,2(2):8-14.
    [40]汤显强.人工潜流湿地净化富营养化水体试验研究[D].南开大学博士论文,2009.
    [41]田文华,文湘华,崔燕平,等.滤料粒径对曝气生物滤池硝化胜能的影响[J].城市环境与城市生态,2004,17(4):24-27.
    [42]帖靖玺,钟云等.二级串联人工湿地处理农村污水的脱氮除磷研究[J]中国给水排水,2007,23(1):88-96.
    [43]王春荣,王宝贞,王琳.温度及氨氮负荷对曝气生物滤池硝化作用的影响[J].中国给水排水,2003,19(5):48-50.
    [44]王占生,刘文君.微污染水源饮用水处理[M].北京,中国建筑工业出版社,2001:77-89138-140.
    [45]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83.
    [46]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002.21(4):51-59.
    [47]项学敏,宋春霞,李彦生等.湿地植物芦苇和香蒲根际微生物特性研究[J].环境保护科学,2004, 30(124):25-38.
    [48]谢曙光,张晓健,王占生.曝气生物滤池最新发展和运用[J].水处理技术,2004,30(1):4-7.
    [49]谢娇,鲍建国,易振辉.人工湿地植物特性的研究及植物配置分析[J].化学工程与装备,2011,4:164-166
    [50]徐栋.复合垂直流人工湿地系统中有机物积累及设计应用研究[J].中国科学院水生生物研究所博士论文,2006.
    [51]徐丽花,周琪.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002,21(10):603-605.
    [52]鄢璐,王世和,钟秋爽,等.强化供氧条件下潜流型人工湿地运行特性[J].环境科学,2007,28(4):736-741.
    [53]鄢璐,王世和,钟秋爽,等.人工湿地强化运行措施研究[J].中国工程科学,2007,9(10):88-90.
    [54]姚重华.环境工程仿真与控制[M].北京,高等教育出版社,2005,5:1-69.
    [55]叶亚玲,鲁梦江.降流式厌氧生物滤池与人工湿地组合处理中小城镇生活污水[J].环境研究与监测,2004,17(1):43-45.
    [56]袁东海,景丽洁等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学,2005,26(1):51-55.
    [57]孙焕顷,范玉贞.香蒲的水体的净化效应[J].安徽农业科学,2007,35(21):76-82.
    [58]曾阳,苗明升,付秀娥,陈琳琳,张高生,任宗明,王亚炜,魏源送.温榆河浮游动物多样性及水质改善效果评价[J].环境科学与技术,2012,35(3):200-205.
    [59]詹德昊.复合垂直流构建湿地长期安全运行机理与对策研究[D].中国科学院水生生物研究所博士论文,2003.
    [60]张建,邵文生,何苗,等.人工湿地处理污染河水冬季运行及升温强化处理研究[J].环境科学,2006,27(8):1560-1564.
    [61]张政,付融冰,顾国维,等.人上湿地脱氮途径及其影响因素分析[J].生态环境,2006,15(6):1385-1390.
    [62]张忠样,钱易.废水生物处理新技术[M].北京:清华出版社,2004.
    [63]张雨葵.人工湿地的水力学特性及其处理污染河水试验研究[D].中国环境科学研究院硕士论文,2006.
    [64]中国国家环境保护总局.水和废水监测分析(第四版)[M].北京:中国环境科学出版社,2002:89-283.
    [65]赵晨洋,等.人工湿地与生态景观建设[J].山西建筑.2007(3):54-56.
    [66]中华人民共和国环境保护部[R].中国环境状况公报,2010.
    [67]周巧红,王亚芬,吴振斌.人工湿地系统中微生物的研究进展[J].环境科学与技术,2008,3 1(7):58-61.
    [68]周巧红,吴振斌,付贵萍,等.人工湿地基质中酶活性和细菌生理群的时空动态特征[J].环境科学,2005,26(2):108-112.
    [69]米夕珍,崔理华,刘雯等,垂直流美人蕉模拟人工湿地对化粪池出水的净化效果[J].农业环境科学报,2004,23(4):761-765.
    [70]Adcock P.W., Ganf G.G. Growth characteristics of three macrophyte species growing in a natural and constructed wetland system [J]. Water Sci Technol,1994,29 (4):95-102.
    [71]Andrea S B, Melissa N R, Larry D G, et al. Phosphorous removal by wollastonite:A constructed wetland substrate [J]. Ecological Engineering,2000,15 (2):121-132.
    [72]Annstrong W. Root aeration in wetland condition[M]. In:Hook D D, Crawford R M, eds. Plant life in anaerobic environments Ann Arbor:Ann Arbor Science, Ml,1978:269-297.
    [73]Antoniou P., Hamilton J., Kooprnan B., et al. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria [J]. Water Research,1990,24(1):97-101.
    [74]Ariasetal C.A. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds [J]. Water Research,2001,35(5):1159-1168.
    [75]Armstrong W., Armstrong J., Beekett P.M. Measurement and modeling of oxygen release from roots of Phragnlltes australis. The use of constructed wetlands in water pollution control Oxford: Pergamon,1990,41-51.
    [76]Bahlo K.E., Wach F.G. Purification of domestic sewage with and without faeces by vertical intermittent filtration in reed and rush beds. In:Constructed wetlands in water pollution control. (ed Cooper P.F., Findlater B.C.), Oxford, UK:Pergamon Press.1990:215-221.
    [77]Barko J.W., Gurnnison D., Carpenter S.B. Sediment interactions with submersed macrophyte growth and community dynamics. Aquatic Botany,1991,41:41-65.
    [78]Bavor H.J., Rose R.J., Adeoek P.W. Challenges for the development of advanced constructed Wetlands technology. Water Science and Technology,1995,32(3):13-20.
    [79]Boon A.G. Report of a visit by members and staff of WRs to Germany to investigation the root zone method for treatment of wastewater. WRs Report 376-S/1, Stevenage, UK.1985.
    [80]Breeuwsma A., Lyklema J. Physical and Chemical Adsorption of Ions in the Electrical Double Layer on Hematite [J]. Journal of Soil Science,1973,43(2):437-448.
    [81]Brix B. Use of constructed wetland in water pollution control:historical development, present status, and future perspectives [J]. Water Science and Technology,1994.30:209-223.
    [82]Brix H., Arias C.A, Bubba M. Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands [J].2001.Water Science and Technology,2001,44(11-12):47-54.
    [83]Brix H. Constructed wetlands for municipal wastewater treatment in Europe[M]. In:Global Wetlands:Old World and New, W.J. Mitscch (ed.), Elsevier Seienee,B.V,1994:325-333.
    [84]Brix H. Do macrophytes play a role in constructed treatment wetlands[J]. Water Science and Technology,1997,35(S):11-17.
    [85]Brix H. Trearinent of wastewater in the rhizosphere of wetland plants-the rootzone method[J]. Water Science and Technology,1987,19:107-118.
    [86]Brix H. Treatment of wastewater in the rhizosphere of wetland plants:the root-zone method. Water Sci Technol,1987,19(1-2)107-118.
    [87]Brooks A., Rozenwald M., Geohring L, et al. Phosphorus removal by wollastonite:a constructed wetland substrate [J]. Ecological Engineering,2000,15:121-132.
    [88]Brown D.S., Reed S.C. Inventory of constructed wetlands in the United State[J]. Water Science and Technology,1994,29(4):309-318.
    [89]Busnardo M.J., Gersberg R.M., Langis R., et al. Nitrogen and phosphorus removal by wetland mesocosms subjected to different hydroperiods[J]. Ecol Eng,1992,1 (4):287-307.
    [90]Chappell K.R., Goulder R. Seasonal variation of epiphytic extracellular enzume activity on two freshwater plants, Phragmites australis and Elodea canndensis[J]. Arch. Hydeobiol,1994, 132:237-253.
    [91]Chong S., Garelick H., Revitt D.M., et al. The microbiology associated with glycol removal in constructed wetlands[J]. Water Science and Technology,1999,40(3):99-107.
    [92]Coleman J.. Hench K., Garbutt K., et al. Treatment of domestic wastewater by three wetland plant species in constructed wetlands[J]. Water Air Soil Pollut,2001,128(3-4):283-295.
    [93]Conley L.M., Dick R.L, Lion L.W. An assessment of the root-zone method of wastewater treatment^]. Res, JWPCE 1991,63:239-247.
    [94]Cooper P.F. Reed bed treatment systems for sewagetreahnent in the United Kingdom-First 10 years experiencefJ]. Water Science and Technology,1995,32(3):317-327.
    [95]Cooper P., Griffin P., Humphries S., et a.1 Design of a hybrid reed bed system to achieve complete nitrification and denitrification of domestic sewage [J]. Water Science and Technology,1999,40(3): 283-289.
    [96]Cooper P. A review of the design and performance of vertical-flow and hybrid reeds bed treatment systems [J]. Water Science and Technology,1999,40(3):1-9.
    [97]Crites R.W., Dombeek G.D.. Wastson R.C., et al. Removal of metals and ammonia in constructed wetlands [J]. Water Environment Research,1997,69(2):132-135.
    [98]Crites R.W. Design criteria and practice for constructed wetlands [J]. Water Science and Technology,1994,29(4):1-6.
    [99]David A.K., David M.B., Gentry L.E., et al. Effectiveness of constructed wetlands in reducing nitrogen and phosphorus export form; agriculture tile drainage[J]. Environmental Quality.2000, (29):1262-1274.
    [100]Drizo A., Frost C.A., Grace J., et al. Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate[J]. Water Res,2000,34(9):2483-2490.
    [101]Drizo A., Frost C.A., Grace J., et al. Physico-chemical screening of phosphate-removal substrates for use in constructed wetland systems. Water Res,1999,33(17):3595-3602.
    [102]Drizo A., Comeau Y., Forget C, et al. Phosphorus Saturation Potential:A Parameter for Estimating the Longevity of Constructed Wetland Systems[J]. Environ Sci Technol,2002,36 (21):4642-4648.
    [103]Drizo A., Frost, C.A., Grace J., et al. Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems[J]. Water Research.1999,33 (7):3595-3602.
    [104]Faulkner S P,Richardson C J. Physieal and chemieal charaeteristies of freshwater wetland Soil[M]. In:Constructed wetlands for wastewatert reahnent-municipal, industry and agricultural. Hammer D A(ed), Chelsea Ml:Lewis Publers,1989:41-72.
    [105]Fraser L.H., Carty S.M., Steer D. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms[J]. Bioresource Technol,2004, 94 (2):185-192.
    [106]Gale P.M., Reddy K.R., Graetz D.A. Nitrogen removal from reclaimed water applied to constructed and natural wetland microcosms[J]. Water Environment Research,1993,65(2): 162-168.
    [107]Garnett T.P., Shabala S.N., Smethurst P.J., et al. Simultaneous measurement of ammonium nitrate and proton fluxes along the length of eucalyptus roots[J]. Plant Soil,2001,236(1):55-62.
    [108]Garver E.G., Dubbe D.R, Pratt D.C. Seasonal patterns in accumulations and partitioning of biomass and macronutrients in Typha spp[J]. Aquat Bot,1988,32(1-2):115-127.
    [109]Gersberg R.M, Elkins B.V, Lyons S.R., et al. Role of aquatic plants in wastewater treatment by artificial wetlands[J]. Water Res,1986,20(3):363-368.
    [110]Gray S., Kinross J., Read P., Marland A. The nutrient capacity of maerl as a substrate in constructed wetland systems for waste treatment[J]. Water Research,2000,34,2183-2190.
    [111]Greenway M., Woolley A. Constructed wetlands in Queensland:perfomance efficiency and nutrient bioaccumulation [J]. Ecological Engineering,1999,12,39-55.
    [112]Greenway M., Woolley A. Constructed wetlands in Queensland:performance efficiency and nutrient bioaccumulation [J]. Ecological Engineering,1999,84(12):2099-2105.
    [113]Griffin P. Ten years experience of treating all flows from combined sewerage systems using package plant and constructed wetland combinations[J]. Water Science and Technology,2003, 48(11-12):93-99.
    [114]Hadada H.R., Mainea M.A., Bonetto C.A. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment[J]. Chemosphere,2006,63(10):1744-1753.
    [115]Hammer D.A., Knight R.L. Designing constructed wetlands for nitrogen removal [J]. Water Science and Technology,1994,29(4):15-27.
    [116]Hammer D.A. Constructed wetlands for wastewater treatment[M]. Michigan:Lewis Publishers Inc.1989,5-20.
    [117]Hatano K., Trerrin C.C., House C.H. Mierobial populations and decomposition activity in three-subsurfaee flow constructed wetlands[M]. In:Constructed wetlands for water quality improvement. Gerald A M. Florida:Lewis Publishers. 1993,540-547.
    [118]Hettiarachchi G.M., Pierzynski G.M. In situ stabilization of soil lead using phosphorus and manganese oxide:influence of plant growth [J]. J Environ Qual,2002,31(2):564-572.
    [119]Ho Y.B. Chemical composition studies on some aquatic macrophytes in three Scottish Lochs.1.Chlorophyll, ash, carbon, nitrogen and phosphorus[J].Hydrobiologia, 1979,63(2):161-166.
    [120]Hocking P.J. Seasonal dynamics of production, and nutrient accumulation and cycling by Phragmites australis (Cav.) Trin. ex Steudel in a nutrient enriched swamp in inland Australia. I. Whole plants[J]. Aust J Mar Freshwater Res.1989,40(4):445-464.
    [121]Hosomi M., Murakami A., Sudo R. A four-year mass balance for a natural wetland treatment system receiving domestic wastewater [J]. Water Science and Technology.1994.30(8):235-244.
    [122]Huett D.O. Diagnostic leaf nutrient standards for low chill peaches in subtropical AustraliafJ]. Aust J Exp Agric,1997 37(1):119-126.
    [123]Hundal H.S. A mechanism of phosphate adsorption onNarrabri medium clay loam soil[J]. Journal of Agricultural Science,1988,(111):155-158.
    [124]Ibekwe A.M., Grieve C.M., Lyon S.R. Characterization of mierobial communities and composition in constructed dairy wetland wastewater effluent[J]. Applied and Environmental Microbiology,2003,69(9):5060-5069.
    [125]Kadlec R., Knight R., Vymazal J., Brix H., Cooper P., Haberl R. Constructed wetlands for pollution control:processes, design, and operation[M]. International Water Association Scientific and Technical report, No.8, London, UK:IWA Publishing,2000.
    [126]Jae Y.K., John W.D., Robert R.L., et al. A comparative evaluation of money-based and energy-based cost-benefit analyses of tertiary municipal wastewater treatment using forested wetlands vs. sand filtration in Louisiana[J]. Ecological Economics,2004,49:331-347.
    [127]Jay S.W., Suzanne E.B., Curtis P.J. Sediment storage of phosphorus in a northern prairie wetlands receiving municipal and agro-industrial wastewater[J]. Ecological Engineeing.2000, 14(1):127-138.
    [128]Jespersen D.N., Sorrell B.K., Brix H. Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis[J]. Aquatic Botany.1998.61:165-180.
    [129]Johansson L. Blast furnace slag as phosphorous sorbents-column studies[J]. Science of the Total Environment.1999,229:89-97.
    [130]Johnston C.A. Sediments and nutrient retention by freshwater wetlands:effects on surface water quality[J]. CRC Crit Rev Environ Control,1991,21(5-6):491-565.
    [131]Kaasik A., Vohla C, Mo'tlep R., et al. Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands[J]. Water Research,2008,42:1315-1323.
    [132]Kadlec R.H., Knight R.L., Vymazal J.,et al. Constructed wetlands for pollution control:processes, performance, design and operation[M].Scientific and Technical Report No.8.London, UK:IWA Publishing,2000.
    [133]Kadlec R.H., Knight R.L. Treahnent wetlands [M]. Boca Raton, FL:Lewis Publishers,1996.
    [134]Kadlec R.H., Tanner C.C., Hally V.M., et al. Nitrogen spiraling in subsurface-flow constructed wetlands:implications for treatment response[J]. Ecological Engineering,2005,25:365-381.
    [135]Kadlec R.H., Tanner C.C., Hally V.M., et al. Nitrogen spiraling in subsurface-flow constructed wetlands:implications for treatment response[J]. Ecol Eng,2005,25(4):365-381.
    [136]Kangas P.C. Ecological Engineering Principles and practice[M].Boca Raton FL:Lewis Publishers,2004.
    [137]Kim S.Y., Geary P.M. The impact of biomass harvesting on phosphorus uptake by wetland plants[J]. Water Science and Technology,2001,44(11/12):61-67
    [138]Klomjek P., Nitisorawt S. Constructed treatment wetland a study of eight plant species under saline conditions[J]. Chemosphere,2005,58(5):585-593.
    [139]Korkusuz E.A., Bekiioglu M., Demirer G.N. Use of blast furnace granulated slag as a substrate in vertical flow reed beds:Field application[J]. Bioresource Technology,2007,98:2089-2101.
    [140]Lazarova V., Nogueira R., Manem J., Melo L. Control of nitrification efficiency in a new biofihn[J]. Water Science and Technology,1995,36(1):31.
    [141]Li L.F., Li Y.H., Biswas D.K., et al. Potential of constructed wetlands in treating the eutrophic wate:Evidence from Taihu Lake of China[J]. Bioresour Technol,2008,99(6):1656-1663.
    [142]Lin Y.F., Jing S.R., Wang T.W., et al. Effects of macrophytes and external carbon sources on nitrate removal from ground water in constructed wetlands[J]. Environmental Pollution.,2002.119: 413-420.
    [143]Lyllette C, John W.D., John M.R., et al. An economic analysis of using wetlands for treatment of shrimp processing wastewater-a case study in Dulac, LA[J]. Ecological Economics,2000,33: 93-101.
    [144]Maehlum T., Jessen P.D., Warner W.S. Cold-climate constructed wetlands[J]. Water Science and Technology,1995,32(3):95-101.
    [145]Maine, M.A. et al., Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland, Journal of Environmental Management[J], doi:10.1016/j.jenvman.2007.10.004.
    [146]McJannet C.L., Keddy P.A., Pick F.R. Nitrogen and phosphorus tissue concentrations in 41 wetland plants:a comparison across habitats and functional groups[J]. Funct Ecol,1995, 9(2):231-238.
    [147]Mehlum T., Stalnacke P. Removal efficiency of three cold-climate constructed wetlands treating domestic wastewater:Effects of temperature, seasons, loading rates and input concentrations[J]. Water Science and Technology,1999.40(3):273-281.
    [148]Mitsch W. J., Gosselink J. G..Wetlands[M]. New York:Van Nostrand Reinhold Company 2000:920.
    [149]Murray-Guide C, Heatley J.E., Karanfil T. Performance of a hybrid reverse osmosis constructed wetland treatment system for brackish oil field produced water[J], Water Research.2003.37(3): 705-713.
    [150]Nerella S., Weaver R., Lesikar B.J., et al. Improvement of domestic wastewater quality by subsurface flow constructed wetlands[J]. Bioresource Technol,2000,75(1):19-25.
    [151]Nivala J., Hoos M.B., Cross C, Wallace S., Parkin G. Treatment of landfill leachate using an aerated horizontal subsurface-flow constructed wetland[J]. Science of the Total Environment,2007,380,19-27.
    [152]Njau K.N., Minja R.J.A., Katima J.H.Y. Pumice soil:a potential wetland substrate for treatment of domestic wastewater [J]. Water Science and Technology,2003,48(5):85-92.
    [153]Noorvee A., Poldvere E., Mander U. The effect of pre-aeration on the purification processes in the long-teen performance of a horizontal subsurface flow constructed wetland[J]. Science of the Total Environment,2007,380:229-236.
    [154]Painter H.A., Loveless H.E. Effect of temperature and pH vaiue on the growth-rate constant of nitrifying bacteria in the activated sludge process[J]. Water Research,1983,17,237-248.
    [155]Petteerew E.L., Kalff J.Water flow and clay retention in submerged maerophyte bed Canadian Journal of Fisheries and Aquatic Sciences,1992,42:2483-2489.
    [156]Prochaska C.A., Zouboulis A.I. Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate[J]. Ecological Engineering,2006,26: 293-303.
    [157]Pullin B.P., Hammer D.A. Aquatic plants improve wastewater treatment[J]. Water Environ.Technol,1991,3(3):3640.
    [158]Reddy K.R, D'Angelo E.M. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands[J]. Water Science and Technology.1997.35,1-10.
    [159]Reddy K.R, D'Angelo E.M. Biogeochemical indicators to evaluate pollution removal efficiency in constructed wetlands[J]. Water Sci Technol,1997,35(5):1-10.
    [160]Reddy K.R, DeBusk W.F. Nutrient storage capabilities of aquatic and wetland plants[M]. In: editors. Aquatic plants for water treatment and resource recovery.Orlando. Florida:Magnolia Publishing,1987.337-357.
    [161]Reed S.C, Brown D. Subsurface flow wetlands-a performance evaluation[J]. Water Environment Research,1995,67(2):244-248.
    [162]Richardson C.J., Craft C.B. Effective Phosphorus retention in wetlands:fact or fiction In Constructed wetlands for water quality improvement[M]. Moshiri G A (ed). Boea Raton Lewis Publishers.1993:271-282.
    [163]Richardson C.J., Qian S.S. Long trem phosphorus assimilative capacity in freshwater wetlands:a new paradigm for sustamng ecosystem structure and function[J].Environmental Science and Technology.1999,33(10):1545-1551.
    [164]Richardson C.J. Mechanism controlling phosphonrs retention capacity in wetlands[J]. Science. 1985,228:1424-1427.
    1165] Rivera R., Warren A., Curds C.R., et al. The application of the root zone method for the treatment and reuse of high-strength abattoir waste in Mexico[J]. Water Sci Technol,1997.35(5):271-278.
    [166]Rogers K.H., Breen A.J.,Chick A.J. Nitrogen removal in experimental wetland treatment systems: evidence for the role of aquatic plants[J]. Res J Water Pollut Control F,1991,63 (7):934-941.
    [167]Romero J.A., Comin F.A., Gareia C. Restored wetlands as filters to remove nitrogen[J] Chemosphere.1999, (39):323-332.
    [168]Roques H., Nugroho-Jeudy L., Lebugle A. Phosphorus removal from wastewater by half-burned dolomite[J].Water Research,1991,25,959-965.
    [169]Sakadevan K., Bavor H.J. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems[J]. Water Research,1998,32,393-399.
    [170]Savin M.C., Amador L.A. Biodegradation of norflurazon in a bog soil[J]. Soil Biology & Biochemictry,1998,30:275-284.
    [171]Schulz C, Gelbrecht J., Rennert B. Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow[J]. Aquaculture,2003, 217:207-221.
    [172]Shalla G, John K., Paul R., Angus M. The nutrient assimilative capacity of maerl as a substrate in constructed wetland systems for waste treatment[J]. Water Research,2000,34:2183-2190.
    [173]Shammas N.K. Interaction of temperature, pH and biomass on the nitrification process[J]. JWPCF,1986,58(1):52-59.
    [174]Shammas. Interaction of temperature, pH and biomass on the nitrification process [J].Research Journal of Water Pollution Control Fed,1986,58:52-59.
    [175]Somes N.L.G., Breen P.F., Wong T.H.F. Integrated hydrologic and botanical design of stormwater control wetlands[M]. In:Proe.Sth Intemat. Conf. Wetland Systems for Water pollution Control. pp.w/4-1-w/4-8.Vienna, Austria:University fur Bodenkultur wien,1996.
    [176]Sorrell B.K., Boon P.I. Biogeochemistry of billabong sediments. Ⅱ. Seasonal variations in methane production[J]. Freshwater Biology,1992,27:435-445.
    [177]Steer D., Eraser L., Boddy J., and Seibert B. Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent[J]. Ecological Engineering, 2002,18:429-440.
    [178]Steer D., Fraser L.H., Boddy J., et al. Efficiency of small constructed wetlands for subsurface treatment of single family domestic effluent[J]. Ecol Eng,2002,18(4):429-440.
    [179]Stotmeister U., Wionner A., Kuschk P., et al. Effects of Plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances.2003.22:93-117.
    [180]Stottrneister U., WieSner A., Kuschk P.. et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnol Adv,2003,22(1-2):93-117.
    [181]Sun G.Z., Zhao Y.Q., Allen S. Enhanced removal of is matter and ammonia-nitrogen in a column experiment of tidal flow constructed wetland system[J]. J Biotechnol,2005,115(2):189-197.
    [182]Suzuki M., Fujii T. Simultaneous removal of phosphate and ammonium ions from wastewater by composite adsorbent[J]. In Proceedings of Water Pollution Control in Asia, Bangkok, 1988:239-245.
    [183]Tanner C.C. Plants for constructed wetland treatment systems:A comparison of the growth and nutrient uptake[J]. Ecol End,1996,7(1):59-83.
    [184]Tanner C.C, Sukias J.P.S., Upsdell M.P. Relationships between loading rates and pollutant removal during maturation of gravel-bed constructed wetlands [J]. Journal of Environmental Quality,1998,27:448-458.
    [185]Taylor et al. A Mechanism of Phosphate Adsorption on Soil and Anion Exchange Resin Surfaces[J]. Soil Science Society of America Journal.1978.42:434.
    [186]Thable T.S. Einbau und abbau von stickstoffverbindungen aus abwasser in der wurzelraumanlage othfresen,dissertation, gesamthochschule kassel[D]. University Hessen.1984.
    [187]Toet S., Bouwman M., Cevaal A., et al. Nutrient removal through autumn harvest of Phragmites anstralis and Typha latifolia shoots in relation to nutrient loading in a wetland system used for polishing sewage treatment plant effluent[J]. J Environ Sci Health.2005,40(6-7):1133-1156.
    [188]Ugurlu A.. Sahnan B. Phosphorus removal by fly ash[J]. Environmental International,1998. 24:911-918.
    [189]US EPA. Manual:Constructed wetlands treatment of municipal wastewaters. Cincinnati, Ohio. EPA/625/R-99/010.2000.
    [190]Vmazal J., Brix H., Cooper P. et al. Removal mechanisms and types of constructed wetlands in EuropefM]. Leiden:Baekhuys Publishers,1998:17-66.
    [191]Vymazal J., Kropfelova L. Growth of Phragmites australis and Phalaris anmdinaeea in constructed wetlands for wastewater treatment in the Czech Republic[J]. Ecol Eng, 2005,25(5):606-621.
    [192]Vymazal J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment,2007,380 (1-3):48-65.
    [193]Vymazal J. Removal of nutrients in various types of constructed wetlands[J]. Sci Total Environ, 2007,380(l-3):48-65.
    [194]Vymazal J. Algae and element cycling in wetlands. Chelsea, Michigan:Lewis Publishers,1995:698.
    [195]Wallace S., Parkin G.., Cross C.张林,张海良译. Design and operation on man-made wetland for sewage treatment in cold regions[J].中国环保产业 CEPI, 2003:40-42.
    [196]Wallace S. Engineered wetlands lead the way[J]. Land and Water,2004,48(5):13-16.
    [197]White K.D. Enhancement of nitrogen removal in subsurface flow constructed wetlands employing 2-stage configuration, an unsaturated zone, and recirculation[J]. Water Science and Technology,1995,32(3):29-67.
    [198]Worrall P., Peberdy K.J.. Millett M.C. Constaicted wetlands and nature conservation[M]. In: proc.5lh Intemat. Conf. Wetland Systems for Water Pollution Control. pp.V/1-V/1-9 Vienna, Anstria:Universit, fur Bodenkultur wien,1996.
    [199]Worrall P., Peberdy K.J., Millet M.C.Constructed wetlands and nature conservation[J].Water Sci Technol,1997.35(5):205-213.
    [200]Xu D.F., Xu J.M., Wu J.J., Muhammad A. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems[J]. Chemosphere,2006,63:344-352.
    [201]Yuan C.L., Zhang J.M., Duan J.X., Wang J. Characteristics of chemical composition of fly ash from power station[J]. Electric Power Environment Safty,1998,14:9-14.
    [202]Zhu T., Jenssen P.D., Maehlum T., Krogstad T. Phosphorus sorption and chemical characteristics of lightweight aggregate(LWA)-Potential filter media in treatment wetlands[J]. Water Science and Technology,1997,35(5):103-108.
    [203]Zhu T., Maehlum T., Jenssen P.D., Krogstad T. Phosphorous sorption characteristics of a light-weight aggregate[J]. Water Science and Technology,2003,48(5):93-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700