用户名: 密码: 验证码:
生活垃圾高效转运与污染控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以上海市生活垃圾内河集装化转运系统(以下简称“集运系统”)为背景,对集运系统关键工艺和关键设备进行了系统研发;针对生活垃圾集装化转运过程中的恶臭污染控制和渗滤液处理进行了较深入的研究。
     针对不同类型中转站送料机构特点,从技术特性、运行特性、系统环保、投资和节能特性等进行综合比较,并结合集运系统的规模和运行要求,推荐活动地板作为本系统的送料机构。
     集运系统选择预压缩工艺。实验表明,压缩机推头压力上限设置为50t/m2时,可以确保垃圾被压缩到1.0t/m3以上。用Algor软件对压缩机预压腔进行受力情况分析,结果表明,压缩机主要受力部件的最大等效应力约在180MPa左右。外加强梁连接处应力集中,最大等效应力高达400MPa。
     垃圾集装箱是集运系统的核心,本研究成功开发出具备标准接口和高密封性的集装箱,并将结构优化到最佳。采用有限元模拟分析垃圾集装箱在不同工况下的箱体受力和变型情况。结果表明,集装箱底侧梁、底板厚度、底横梁、顶侧梁分别调整为6mm、4.5mm、4mm、4.5mm,在堆码、吊顶、栓固以及横向刚性测试中,集装箱部分位置的最大应力和弹性变形均小于并接近于材料屈服强度(345MPa)。
     基于中转站拖挂车不同的使用工况(其装运的集装箱在重箱与空箱两种情况下都可以与压缩机对接;拖运集装箱在中转站和码头之间周转),选用非线性半刚性悬挂系统。板簧的下弯曲率半径设置为3880mm。
     综合分析老港自卸车的使用工况,确定车辆轴距范围为4300—4400mm;发动机额定功率不小于240kW,最大扭矩不小于1500N-m;车辆最小转弯直径不得大于21m;驱动形式选择6×6底盘。
     通过对EM菌液和其他商品微生物除臭剂的种群结构进行分析,考察其组成和优势菌种,初步探讨EM菌液除臭作用机理。同时分离筛选出适于垃圾填埋场除臭的高效微生物种群。EM菌的急性毒性和皮肤致敏性等毒性实验表明EM菌液对生物无害。
     以集装化垃圾为研究对象,测试了万洁芬生物除臭剂(A)、BIOSTREME除臭剂(B)、EM菌液(C)、YL活性生物复合剂(D)、LA.BIOREASORB除臭药剂+STANDARD除臭药剂(E)喷撒12小时后,集装箱内和垃圾倾倒后周边环境的臭气浓度和挥发性有机物(VOCs)的浓度。VOCs共检测出46种,本研究对其中的八种(二硫化碳、二氯甲烷、乙酸乙酯、苯、一氯甲烷、甲苯、间,对-二甲苯、苯乙烯)进行了对比分析。研究表明:集装箱内臭气浓度的削减效果由高到低依次为:B>A>E>C>D;垃圾倾倒后周边环境的臭气浓度削减效果由高到低依次为:B>A>C>D>E.对于堆存12h后集装箱内VOCs的抑制效果,A对二氯甲烷和乙酸乙酯有去除效果;B对二氯甲烷、乙酸乙酯、苯和甲苯均有去除效果;C仅对乙酸乙酯有去除效果;D对苯、和间,对-二甲苯有较好的去除效果;E仅对乙酸乙酯和一氯甲烷有去除效果。对于倾倒后垃圾仓边界VOCs的抑制效果:A仅对苯无抑制效果;B对所分析的8种气体均有去除效果;C仅对乙酸乙酯无去除效果;D对乙酸乙酯、苯和甲苯有处理效果。E对此8种气体没有削减作用。
     以矿化污泥和粉煤灰作为混合填料构建了生物反应器,研究了矿化污泥的改性及其驯化;对矿化污泥生物反应器水力负荷运行参数进行优化;考察一级矿化污泥生物反应器和二级矿化污泥生物反应器长期运行效果。研究结果表明,添加质量百分比为9.1%的粉煤灰有助于矿化污泥填料改性。水力负荷设置为35.4L渗滤液/m3填料/d是较为经济合理的。采用二级反应器,对垃圾渗滤液具有良好的处理效果,出水水质可以达到COD<300mg/L, NH4+-N<5mg/L。以多重微孔颗粒(矿化垃圾和粉煤灰组成)作为填料构建了生物反应器。研究表明:与矿化垃圾相比,多重微孔颗粒具有更多的蜂窝状结构,更适合微生物的挂膜,且填料通透性好。多重微孔颗粒生物反应床对COD和氨氮的去除效果优于矿化垃圾,其COD平均去除率高于70%,NH_4~+-N平均去除率为83%。采用两级以上串联工艺和回流工艺,总氮去除率可以提高30%以上。微生物群落结构分析表明,多重微孔颗粒床内的生物多样性包括硝化细菌数量均高于矿化垃圾反应床。
The design of key equipments and selection of key process for shanghai municipal solid waste containerized waterway transfer system (CWTS) were carried out, and the new equipments were applied in transfer system. The odor control during the transportation of containerized waste and the new technology for treating leachate were also investigated.
     In consideration of various factors, including technical and operational feasibility, environmental protection, operational cost and energy saving, etc. and operational and scale requirement of containerized waterways transfer system of municipal waste in shanghai, the working floor was recommended serving as waste feeding equipment for this system.
     The pre-compression process was applied in CWTS. The result of experiment showed that the the density of compressd waste is no less than1.0t/m3only if the the pressure of compactor pusher is no less than50t/m2. The Algor software was used to analyze the stress of pre-pressure chamber, and result showed that the maximum equivalent stress of major parts of chamber is less than180MPa. The maximum equivalent stress occurred at connection of reinforced beam, and which is400MPa.
     The container is the key equipment in CWTS. This research developed the container, which is with standard interface and high sealing. The structure of container was also optimized. The stress's distribution and deformation of container under different working condition was analyzed using finite element simulation. The results showed that the thickness of bottom side rail, base, crossmember, top side rail was6mm,4.5mm,4mm,4.5mm, respectively, the maximum stress of container is less than and close to the yield strength of material (345MPa).
     The working surrounding of low platform semi-trailer and requirement of rigidity of suspension was analyzed. The results showed that the semi-rigid suspension is recommended to the semi-trailer of CWTS and radius of curvature of plate spring is3880mm.
     The working condition of dump truck was analyzed. The result showed that wheelbase is between4300mm and4400mm, Engine rated power is more than240kw, maximum torque is more than1500Nm, minimum turning diameter is less than21m, the drive type is6*6.
     The community composition of between Effective Microorganisms (EM) and other deodorants was compared and the dominate populations were determined. The action mechanism of odor control for EM was discussed. The community for controlling odor of landfill was selected. The experiments for determining action mechanism and skin sensitization were conducted and results showed that EM is harmless.
     The deodorant applied in control odor of waste landfill included Wan Jiefen biological deodorant (A), BIOSTREME deodorant (B)、EM (C)、YL bioactive composite agent (D)、 LA.BIOREASORB+STANDARD deodorant (E). The effects of these five kinds of deodorant on controlling the odor and VOCs emission from containerized waste, which was sited for12hours, were evaluated. The order of reducing odor in container (from high to low) was B, A, E, C, D. The order of reducing odor in surrounding (from high to low) was B, A, C, D, E. The results of reducing VOCs (carbon disulfide, methylene chloride, ethyl acetate, benzene, methyl chloride, toluene, xylene and styrene) in container showed that A had effect on reducing methylene chloride and ethyl acetate, B had effect on reducing methylene chloride, ethyl acetate, benzene and toluene, C only could reduce ethyl acetate, D had effect on reducing benzene, xylene, E only could reduce ethyl acetate and methyl chloride. The results of reducing VOCs in surrounding showed that A only had no effect on reducing benzene, B could reduce all VOCs, C only had no effect on reducing ethyl acetate, D hand effect on ethyl acetate, benzene and toluene, E had no effect on reducing VOCs.
     The bioreactor was build up with aged sludge as filler. The modification and acclimation of aged sludge, the optimal hydraulic load, the performance of one and two stage bioreactor for treating leachate were investigated. The results showed that the addition9.1%fly ash could improve the performance of bioreactor, the hydraulic load was35.4L/m3/d was feasible and economical, the COD and NH4+N concentration in effluent from two stage reactor was below300mg/L and5mg/L, respectively. The bioreactor was build up with micro-porous particles, which is consisted of aged refuge and fly ash, as filler. The experimental results showed that micro-porous particles have more honeycomb structure, which has good performance in forming biofilm and permeability. Compared to aged refuge bed, the micro-porous particles bed showed the high remove efficiencies of COD and NH4+-N, which is70%and83%, respectively. The removal of total nitrogen could be enhanced30%, when the two stage cascade and reflow process was applied. Community composition was analyzed and results showed that there is higher biological diversity and more nitrifying bacteria in the micro-porous particles bed than aged refuge bed.
引文
[1]李颖,尹荔堃,李蔚然.国内外城市生活垃圾收运系统剖析[J].环境工程,2010,28(S1):250-253
    [2]孙晓杰,王洪涛,陆文静.我国城市生活垃圾收集和分类方式探讨[J].环境科学与技术,2009,32(10):200-202
    [3]杨国栋,蒋建国,谢瑞强等.生活垃圾收运系统规划研究[J].环境卫生工程,2009,17(1):29-32
    [4]严光亮.生活垃圾集装箱在集装化转运系统中的改进技术研究[J].环境卫生工程,2011,19(6):14-16
    [5]上海市环境工程研究院课题组.生活垃圾中转站的形式及其应用[J].上海城市管理职业技术学院学报,2001(1):39-40
    [6]刘长玮.城市生活垃圾收运系统优化模型及其应用研究[D].重庆大学,2007
    [7]盛金良,杨云.我国城市生活垃圾收集模式综述与展望[J].科技资讯,2008,(10):145-147
    [8]贾学斌,刘冬梅,孙喆.用神经元理论优化生活垃圾收运路线[J].哈尔滨工业大学学报,2004,36(6):819-821
    [9]张乃斌.垃圾集运路线最适化规划及地理资讯系统之应用[D].成功大学,1984
    [10]宋薇,刘建国,聂永丰.城市生活垃圾收运路线优化研究[J].环境卫生工程.2008,16(1):11-12,15
    [11]Eugenio de Oliveira Simonetto, Denis Borenstein. A decision support system for the planning of solid waste collection. Waste Management,2007,27 (10):1286-1297
    [12]Andrzej Jaszkiewicz, Pawei Kominek. Genetic local search with distance preserving recombination operator for a vehicle routing problem [J]. European Journal of Operational Research,2003,15 (1):352-364
    [13]张潜,高立群,刘雪梅等.定位运输路线安排问题的两阶段启发式算法[J].控制与决策,2004,19(7):774-777
    [14]王芳芳,秦侠,刘伟.城市生活垃圾收集与运输路线的优化.四川环境,2010,29(4):115-119
    [15]汪爱娇,柴飞.车辆路线问题的平行节约启发式算法[J].物流技术,2003,(11):65-68
    [16]刘长玮.城市生活垃圾收运系统优化模型及其应用研究(硕士学位论文).重庆大学,2007
    [17]黄兴华,邱江.固体废弃物收运物流系统导论[M].化学工业出版社,2010:46
    [18]上海城投科技管理部.中转运输专题.科技信息与动态,2008,(4):1-28
    [19]邹梓,林剑,陈娟等.垃圾填埋场臭气评价方法研究[J].地球与环境,2010,38 (1):75-78
    [20]恶臭污染物排放标准[B].环境保护局,GB 14554-93
    [21]生活垃圾填埋场污染控制标准[B].环境保护局,国家质量监督检疫总局.GB16889-2008
    [22]Dincer F, Odabasi M, Muezzinoglu A. Chemical characterization of odorous gases at a landfill site by gas chromatography-mass spectrometry [J]. Journal of Chromatography A,2006,1122 (1-2):222-229
    [23]Scheutz C, Bogner J, Chanton JP, et al. Atmospheric emissions and attenuation of non-methane organic compounds in cover soils at a French landfill [J]. Waste Management,2008,28 (10):1892-1908
    [24]Zou SC, Lee SC, Chan CY, et al. Characterization of ambient volatile organic compounds at a landfill site in Guangzhou, South China [J]. Chemosphere,2003,51 (9):1015-1022
    [25]Ding Ying, Cai Chuanyu, Hu Bin, et al. Characterization and control of odorous gases at a landfill sit:A case study in Hangzhou, China [J]. Waste Management.2012, 32 (2):317-326
    [26]曾智等.多种除臭剂对垃圾压缩转运站除臭效果评价.环境卫生工程,2005,13(1):27-28
    [27]杨军,黄涛.垃圾填埋场渗滤液处理方法及其分析.四川环境,2005,24(1):87-90
    [28]方士,卢航等.两级SBR-PAC吸附混凝法处理垃圾渗滤液的研究.浙江大学学报,2002,28(4):434-439
    [29]Jae-Ho B. Treatment of landfill leachates:ammonia removal via nitrification and denitrification and further COD reduction via Fenton's treatment followed by activated sludge. Water Science Technology.1997,36 (12):341-348
    [30]王里奥,黄本生,吕红等.光催化氧化处理生活垃圾渗滤液.中国给水排水,2003,19(6):56-58
    [31]吴文继,孙亚兵等.中晚期垃圾渗滤液的处理研究.环境污染治理技术于设备,2006,7(2):112-115
    [32]张兰英,韩静磊等.垃圾渗沥液中有机污染物的污染及去除.中国环境科学,1998,18(2):184-188
    [33]郑曼英,李丽桃等.垃圾渗滤液中有机污染物初探.重庆环境科学,1996,18(4):41-43
    [34]杨霞,杨朝辉等.城市生活垃圾填埋场渗滤液处理工艺的研究[J].环境工程,2000,18(5):12-14
    [35]张国庆.垃圾填埋场渗滤液处理技术及应用[J].市政技术,2005,23(1):28-31
    [36]周少奇.垃圾渗滤液水同时好氧厌氧生物处理的生化反应机理.石河子大学学报(自然科学版),2005,23(3):276-279
    [37]倪晋仁,邵世云等.垃圾渗滤液特点与处理技术比较.应用基础与工程科学学报,2004,12(2):148-150
    [38]周益洪,周恭民等.人工湿地处理垃圾渗滤液.环境卫生工程,2005,13(3):10-13
    [39]赵由才等.一种塔式矿化垃圾生物反应床处理生活垃圾填埋场渗滤液的方法.中国专利,200510112117.x[P].2006-06-21
    [40]赵由才,宋玉主编.生活垃圾处理与资源化技术手册.北京:冶金工业出版社,2007,ISBN 978-7-5024-4197-5
    [41]郝广才,张全,赵由才.基于集装化外运与综合型处理的上海城市生活垃圾管理对策[J].环境污染与防治,2006,28(11):834-837
    [42]陆鲁,郭辉东.大型垃圾集装化转运系统中转站主体工艺优化分析[J].环境卫生工程,2007,15(5):23-26
    [43]陆峰.上海市市区生活垃圾内河集装化转运系统集装箱规格方案选择[J].环境卫生工程,2011,19(2):53-58
    [44]黄世伟,莫振伟,张鑫星,杜建军.基于ANSYS的垂直垃圾压缩机有限元分析[J].装备制造技术,2011,(3):62-63
    [45]李淑敏,戴行浩,谭振发,王永盛,刘强.玻璃纤维增强塑料应用于垃圾集装箱的研究[J].环境卫生工程,1995,(1):3-8,24
    [46]梁智飞.新城区生活垃圾转运设施设备选型的探讨[J].环境卫生工程,2010,18(4):34-35
    [47]王元刚.城镇垃圾转运系统设备配置研究[D].华中科技大学,2004
    [48]梁超,郭广寨,吕财玉.生活垃圾内河集装化转运技术管理手册.化学工业出版社,2012:31-38
    [49]Minghua Zhu, Xiumin Fan, Rovetta Alberto, et al. Municipal solid waste management in Pudong New Area, China. [J]. Waste management,2008,29 (3):1227-3123
    [50]汽车国家标准汇编车身与底盘卷.北京:中国标准出版社,1999,ISBN:7-5066-1967-9
    [51]Ding Ying, Cai Chuanyu, Hu Bin, et al. Characterization and control of odorous gases at a landfill site:A Case Study in Hangzhou, China [J]. Waste Management,2012, 32 (2):317-326
    [52]Barlaz M A, Green R B, Chanton J P, Goldsmith C D, Hater G R. Evaluation of a biologically active cover for mitigation of Landfill gas emissions [J]. Environmental Science and Technology.2004,38 (18):4891-4899
    [53]Scheutz C, Bogner J, Chanton JP, et al. Atmospheric emissions and attenuation of Non-methane organic compounds in cover soils at a French Landfill [J]. Waste Management,2008,28 (10):1892-1908
    [54]Zou SC, Lee SC, Chan CY, et al. Characterization of ambient volatile organic compounds at a Landfill Site in Guangzhou, South China [J]. Chemosphere,2003, 51 (9):1015-1022
    [55]Allen M R, Braithwaite A, Hills C C. Trace organic compounds in landfill gas at seven U.K. Waste disposal sites [J] Environmental Science and Technology.1997,31 (4): 1054-1061
    [56]Davoli E, Gangai M L, Morselli L, Tonelli D. Characterisation of odorants emissions from landfills by SPME and GC/MS[J]. Chemosphere,2003,51 (5):357-368
    [57]Stuetz R M, Fenner R A, Engin G. Assessment of odours from sewage treatment works by an electronic nose, H2S Analysis, and Olfactometry [J]. Water Research,1999, 33 (2):453-461
    [58]ComiteEuropeen de Normalisation. Air quality determination of odour concentration by dynamic Olfactometry [B],2003, EN-13725, Brussels:1-70
    [59]Pearce T C. Computational parallels between the biological olfactory pathway and its analogue'The electronic Nose:Part Ⅱ, Sensor-based machine olfaction [J]. Biosystems, 1997,41 (4):69-90
    [60]吉荣康城.臭气(恶臭)的测定与气味传感器[J].环境保护科学,2007,33(4):70-73
    [61]Guz Lukasz, SobczukHenryk, SuchorabZbigniew. Odor measurement by using a portable device with semiconductor gas sensors array [J]. Przemysl Chemiczny,2010, 89 (4):378-381
    [62]El-Fadel M, Findikakis A N, Leckie J O. Environmental impacts of solid waste landfilling [J]. Journal of Environmental Management,1997,50 (1):1-25
    [63]Eklund B, Anderson E P, Walker B L, Burrows D B. Characterization of landfill gas composition at the Fresh Kills Municipal Solid-waste Landfill [J]. Environmental Science and Technology,1998,32 (15):2233-2237
    [64]Gostelow P, Parsons S A, Stuetz R M. Odour Measurements for Sewage Treatment Works [J]. Water Research,2001,35 (3):579-597
    [65]莫测辉,蔡全英,吴启堂等.我国一些城市污泥中多环芳烃(PAHs)的研究.环境科学学报,2001,21(5):613-618
    [66]莫测辉,蔡全英,吴启堂等.城市污泥中有机污染物的研究进展.农业环境保护,2001,20(4):273-276;
    [67]郭鄢兰,张永平,赵建红等.太原市污水厂生活污水污泥性质的调查.环境卫生工程,1994,(2):6-9
    [68]乔显亮,骆永明,吴胜春.污泥的土地利用及其环境影响.土壤,2000,32(2):79-85
    [69]邹绍文,张树清,王玉军等.中国城市污泥的性质和处置方式及土地利用前景.Chinese Agricultural Science Bulletin,2005,21 (1):198-201
    [70]赵丽君,杨意东,胡振苓.城市污泥堆肥技术研究.中国给水排水,1999,15(9):58-60
    [71]林云琴,周少奇.我国污泥处理、处置与利用现状.能源环境保护,2004,18(6):15-18
    [72]付融冰,杨海真,甘明强.中国城市污水厂污泥处理现状及其进展.环境科学与技术,2004,27(5):108-110
    [73]张华.污泥改性及其在填埋场中的稳定化过程研究(博士学位论文).上海:同济大学,2007
    [74]赵由才,柴晓利,牛冬杰.矿化垃圾基本特性研究.同济大学学报(自然科学版),2006,34(10):1360-1364
    [75]赵由才,黄仁华.大型垃圾填埋场稳定化过程与再利用[J].中国城市环境卫生2000(1):20-24
    [76]潘终胜,赵由才.矿化垃圾反应床处理渗滤液的工程应用[J].中国给水排水,2006,22(06):58-61
    [77]楼紫阳,赵由才,柴晓利,牛冬杰.垃圾填埋场渗滤液性质研究进展[J].环境污染与防治,2005,27(05):358-362
    [78]石磊.矿化垃圾生物反应床处理垃圾渗滤液的工艺与机理研究(博士学位论文).上海:同济大学,2005
    [79]魏云梅,马建立,朱英,赵由才.矿化污泥基本特性及作为污水处理生物填料可行性分析.中国科技论文在线
    [80]李亚峰,孙凤海等.粉煤灰处理废水的机理及应用.矿业安全与环保,2001,28(2):30-32
    [81]刘国光,刘兴旺等.粉煤灰吸附性能的研究.环境科学研究,1994,7(5):62-64
    [82]刘供伯,沈旦申等.上海市粉煤灰应用技术手册.上海:同济大学出版社,1995
    [83]马悦红.粉煤灰特性及综合利用.西北电力技术,2004,32(3):45-48
    [84]刘国光,刘兴旺等.粉煤灰吸附性能的研究.环境科学研究,1994,7(5):62-64
    [85]刘金荣,杜黎明.粉煤灰特性及高附加值综合利用概述.信息导报,2006:18(4):46-48
    [86]朱伟萍.利用粉煤灰处理废水.煤炭工程,2006,(4):73-75
    [87]刘相才.运用系统工程进行城市污水和电厂粉煤灰综合治理研究.环境科学丛刊,1998,9(4):48-54
    [88]匡少平,徐倩.利用粉煤灰中活性炭的吸附能力治理含铬废水.环境污染与防治, 2003,25(4):240-242
    [89]赵由才,魏云梅,李鸿江等.利用矿化污泥处理老龄垃圾渗滤液的方法.中国,200710044011,2008-03-05
    [90]江南大学.陈坚等.一种用电化学-厌氧-好氧膜生物反应器组合系统处理垃圾渗滤液的技术.中国,03158354.7[P].2004-09-15
    [91]北京工商大学.汪苹等.一种好氧硝化/反硝化和混凝技术处理垃圾渗滤液的方法.中国,2006.10140868.7[P].2007-03-07
    [92]Waste recyling and Processing Services NSW. THAKUR Anand, et al. Leachate treatment and disposal process and apparatus. PCT/AU2001/000368[P].2001-10-18
    [93]徐峥勇等.一种循环回灌与人工湿地联用的渗滤液处理方法及其设施.中国,200610136773.8[P].207-07-11
    [94]黄仁华,石磊,赵由才.矿化垃圾生物反应床处理渗滤液的示范工程研究.环境卫生工程,2006,14(3):1-6
    [95]刘克锋,韩劲.土壤肥料学.北京:中国建筑工业出版社,1995
    [96]张琪,方海兰,黄懿珍等.土壤阳离子交换量在上海城市土壤质量评价中的应用.土壤,2005,37(6):679-682
    [97]许光辉,郑洪元.土壤微生物分析方法手册.北京:农业出版社,1986
    [98]郝文英,李良谟.土壤微生物研究法.北京:科学出版社,1985
    [99]乐毅全,王士芬.环境微生物学.北京:化学工业出版社,2005
    [100]刘研萍,王宝贞DTRO技术在我国垃圾渗滤液处理中的应用[J].中国城市环境卫生,2006,12(1):24-30
    [101]Oron Gideon, Gillerman Leonid, Bick Amos, et al. A twostage membrane treatment of secondary effluent for unrestricted reuse andsustainable agricultural production[J]. Desalination,2006,187 (3):335-345
    [102]李忠亮.管式反渗透工艺处理垃圾渗滤液.工业水处理,2011,31(2):77-78
    [103]左俊芳,宋延冬,王晶.碟管式反渗透(DTRO)技术在垃圾渗滤液处理中的应用.膜科学与技术,2011,31(2):110-115
    [104]蒋宝军,谢杰,王剑寒.碟管式反渗透垃圾渗滤液处理系统运行效能及分析.吉林建筑工程学院学报,2007,24(2):34-36
    [105]生活垃圾填埋场污染控制标准.环境保护部,国家质量监督检疫总局,GB16889-2008
    [106]何旭敏等.膜分离技术的应用[J].厦门大学学报(自然科学版),2001,40(2):495-502
    [107]Strathman H, Rapp H T, Eigenberger G. Proceedings of International Membrane Science and Technology Conference[C]. (IMSTEC 92 Sydney Australia) 1992:22-26
    [108]TukeoK., MitsutoshiN., HiroshiN., etal. Availability of membranetechnology for purifying and concentrating oligoscharides[J]. Europen Food Research and Technology, 2002,214 (5):435-475
    [109]安树林.膜科学技术实用教程[M].北京:化学工业出版社,2005
    [110]武江津,刘桂中,孙长虹.膜分离技术在垃圾渗滤液处理中的研究与应用[J].膜科学与技术,2007,27(6):1-5
    [111]楼紫阳,赵由才,张全.渗滤液处理处置技术及工程实例[M].北京:化学工业出版社,2007:224
    [112]卢石.垃圾渗滤液膜法处理工艺流程及其技术难点.广西轻工业2010,26(10):116-117
    [113]侯磊,王增长.MBR反应器处理垃圾渗滤液的探讨[J].科技情报开发与经济,2010,20(11):134-136
    [114]Melvin E Andersen, Micaela B Reddy, Kathleen P Plotzke. Are highly lipophiloc volatile compounds expected to bioaccumulate with repeated exposures [J]. Toxicology Letters,2008,179 (2):85-92
    [115]林晓东.垃圾收运系统绩效评估模型及其应用研究[D].重庆大学,2009
    [116]Balaguer-Datiz, Giselle, Krishnan, Nikhil. Life cycle comparison of two options for MSW management in puertorico-. Thermal treatment vs. modern landfilling.2008 Proceedings of the 16th Annual North American Waste to Energy Conference, NAWTEC16,2008:141-146
    [117]Bernstad A, Jansen JL. A life cycle approach to the management of household food waste:A Swedish full-scale case study [J]. Waste management,2011,31 (8):1879-1896
    [118]Ozkan A, Altan M, Banar M, Ayday C. Optimization of solid waste collection and transportation routes by using GIS [J]. Wseas Transactions on Environment and Development,2006 (2):1322-1327
    [119]马培东,黄川,王里奥,邓晓美.城市生活垃圾转运站经济合理性研究[J].环境卫生工程,2006,14(6):14-16,19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700