用户名: 密码: 验证码:
基于量子点和石墨烯的化学生物传感新方法及环境应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实现水体中污染物的实时、快速、高灵敏和特异性检测,对于监控水污染控制措施的实施、保障水安全等具有重要意义。传统的分析检测技术,如仪器分析等,大多存在仪器昂贵、耗时、操作复杂、专业性较强等问题,已经难以满足实际需求。纳米材料与技术独特的优势和性能为实现水中污染物的检测提供了新的契机,其中量子点材料和石墨烯材料由于具有优异的光学、电学和结构性质,已经被广泛用于构建各种功能性纳米传感器件,但是受传感机制自身缺陷的影响,这些传感检测方法仍然存在灵敏度低、选择性差等问题。本论文针对上述问题,探索了纳米传感检测新方法和新原理,设计了几种基于量子点和石墨烯的新型化学与生物传感器,用于快速、实时、高灵敏和高选择性检测环境中的重金属离子、有毒化合物及重要生物分子等,主要开展了以下几方面的研究:
     (1)采用光辐射法直接制备了高量子产率(60%)的水溶性CdTe量子点,在此基础上,发展了一种新型的层层自组装工艺实现了CdTe量子点在导电玻璃基底的有效固定。固定后的量子点对重金属铜离子表现出较好的选择性和灵敏性,对于低浓度范围的铜离子(0.02-1.0μM),该自组装体系具有较好的可重复使用性能,使用四次后,其荧光强度仍可以恢复到95%以上,在很大程度上克服了传统溶液相量子点在离子检测过程中存在的无法回收利用等缺点;将离子交换反应引入传感设计,构建了基于无机发光材料—dTe纳米棒和有机荧光染料—钙黄绿素蓝的超灵敏荧光比色探针,对铜离子的检出限达到0.13nM,灵敏度是传统量子点荧光探针的60倍,该方法也为构建其它超灵敏荧光比色探针提供了新的思路。
     (2)利用石墨烯材料独特的二维结构和优异的荧光猝灭能力,’发展了基于石墨烯/CdTe量子点的新型荧光免疫传感器用于甲胎蛋白的高灵敏检测,检测限可以达到0.15ng/mL,远低于其它量子点荧光免疫传感器;发展了一种基于胶体石墨烯的新型均相荧光免疫传感器用于水体中MC-LR的快速和高灵敏检测,检测时间小于35min,检出限可以达到0.14μg/L;发展了一种基于滚环扩增(RCA)机理和石墨烯基分子信标的适配子荧光传感器用于环境样品中土霉素的高灵敏和高选择性检测,检出限可以达到0.87nM。此外,石墨烯的引入将传统的基于能量共振转移机理构建的荧光免疫传感系统中供体-受体的有效作用距离从100A提高到223A,为其它高效荧光免疫传感器的构建奠定了基础。
     (3)利用石墨烯对单链DNA和双链DNA不同的结合力,设计了基于石墨烯/T4DNA连接酶的荧光探针,用于快速和高灵敏检测单核苷酸多态性,该探针可以在40分钟内有效检出2.6%的突变DNA,与传统方法相比,具有灵敏度高、响应快等优点,该设计也为实现DNA甲基化,DNA损伤和酶活的检测开辟了新途径。
     (4)通过控制活性氧自由基引发的DNA断裂反应,有效调节石墨烯和DNA之间作用力大小,为构建新型的石墨烯/DNA传感器提供了新的思路。在此基础上,构建了基于石墨烯和脱氧核酶的荧光传感器,用于高灵敏和高选择性检测铜离子,检测限可以达到0.365nM,远低于传统的基于脱氧核酶构建的铜离子荧光传感器;结合核酸结合染料GelRed的发光性质,发展了一种基于石墨烯和脱氧核酶的完全无标记的铜离子荧光传感器,有效避免了传统方法中存在的操作复杂、酶的识别和催化能力低等问题。
     (5)通过控制胶体石墨烯所处环境盐度(NaC、MgCl2)大小,有效调节胶体石墨烯表面电荷分布,从而诱导胶体石墨烯自组装形成“堆叠态”的石墨烯,表现为胶体石墨烯的平均粒径随着体系中盐浓度的增大而增加。而且该构型的石墨烯与传统的胶体石墨烯相比,可以进一步与多种DNA结构自组装形成石墨烯/DNA复合物,在此基础上,构建了基于该石墨烯/DNA复合物的新型荧光传感器,在体外实现了对有毒物质,如铜离子和黄酮类有机物的快速和实时筛选,避免了传统电化学传感器中存在的操作复杂、离线检测等问题,大大拓展了石墨烯在环境检测领域中的应用。
     (6)利用石墨烯材料独特的电子性质以及贵金属材料的催化性能,构建了基于石墨烯材料和贵金属金纳米颗粒的高效类过氧化氢酶,其对过氧化氢酶底物TMB的最大催化氧化速率是商品化的辣根过氧化氢酶的1.3倍。在此基础上,构建了基于纳米人工模拟酶和核酸适配子的新型比色传感器,用于快速和高灵敏检测DNA分子、丙肝病毒、胰岛素分子和酶活等,该方法也为其它无标记适配了比色传感器的设计提供了新的思路。
     综上所述,本论文针对我国水质监测的需求和发展趋势,利用量子点材料和石墨烯材料独特的性质以及分子生物学,生物化学、免疫学等领域相关技术,建立了几种针对水体中典型性污染物的新型化学与生物传感器,实现了纳米传感器的性能调控,揭示了纳米传感检测机理,并阐明了功能化纳米材料的界面反应过程与传感机制之间的内在关系,有利于推动功能性纳米材料在环境监测领域的应用。
It is of great significance to develop new techniques and methods in realizing real-time, rapid, highly sensitive and selective analysis of pollutants in environment, which will play an important role in monitoring the implementation of water pollution control measures and further guaranteeing the drinking water security. Generally, the traditional methods, such as instrumental analysis, are expensive, time-consuming, complicated and necessary for technical skills, which limit their further applications. The development of nanomaterials and nanotechnology with their unique advantages and performance opens new opportunities for the detection of pollutants in water. Among these, quantum dots and graphene-based materials have been widely used to develop the functional nano-devices due to their unique optical, electrical and structural properties. However, these sensing methods still suffer from low sensitivity and poor selectivity originated from the defects in the sensing mechanism. In order to solve the above issues, we have explored the novel methods and principles in nanosensors, and designed several new chem-/bio-sensors sensors based on quantum dots and graphenes for rapid, real-time, highly sensitive and selective detection of environmental heavy metal ions, toxic compounds and biologically important molecules. Several works are as follows:
     (1) A simple photoillumination procedure was developed to produce thiol-capped CdTe quantum dots with high quantum yield (60%). Based on it, a novel layer-by-layer self-assembly technology was developed to immobilize the quantum dots on ITO substrate. It was found that the solid-phase of quantum dot allowed sensitive and selective determination of Cu(Ⅱ) ions. Furthermore, we realized the "on-off-on" detection of Cu(Ⅱ) ions at low concentration levels (0.02-1.0μM). It was observed that the quenched fluorescence could recover to more than95%after four cycles, which overcame the shortcomings of the non-renewable of colloidal quantum dots in the ion detection, thus possessing important application values compared with that in traditional solution assays; A novel ratiometric fluorescent sensor was developed based on inorganic luminescent CdTe nanorods and organic calcein blue through the cation-exchange reaction, which realized the ultrasensitive detection of Cu(Ⅱ) ions with a detection limit of0.13nM. The sensitivity of the ratiometric sensor was enormously enhanced60-fold in comparison with the traditional quantum dot-based sensor. Furthermore, this method can be applied to design other fluorescent sensors for a wide range of metal ions.
     (2) A novel graphene/CdTe quantum dot-based fluoroimmunoassay was developed by taking advantage of the unique two-dimensional structure and the excellent fluorescence quenching efficiency of grapheme, which realized the highly sensitive detection of the biomarker-a fetoprotein. The detection limit was determined to be0.15ng/mL, which was much lower than that of previously reported quantum dot-based fluoroimmunoassay; A novel graphene-based homogenous fluorescence-based immunoassay was developed for rapid and sensitive detection of MC-LR in water samples. The whole assay time was less than35min, and the detection limit was calculated to be0.14μg/L; A novel fluorescent aptasensor was developed for sensitive and sensitive detection of OTC in environmental samples based on RCA technique and graphene-based molecular beacon. The detection limit was calculated to be0.87nM for OTC assay. Moreover, the donor-acceptor distance was estimated to be223A, which significantly broke the distance limit (100A) in traditional fluoroimmunoassay based on energy transfer mechanism. Therefore, graphene can be used as novel acceptor in the design of fluorescent biosensors with high performance.
     (3) A graphene/T4DNA ligase-based fluorescent sensor was designed by taking advantage of the different adsorption affinity of graphene for single-stranded DNA and double-stranded DNA, which realized the rapid and highly sensitive detection of the single nucleotide polymorphism (SNP) compared with traditional methods. The results indicated that it was possible to accurately determine SNP with frequency as low as2.6%within40min. Furthermore, the presented method opened new opportunities for the development of other biosensing platforms for DNA methylation, DNA damage and multiple nucleases activity assay.
     (4) A promising and controllable internal method was developed to regulate the interaction between graphene sheets and DNA based on oxidative DNA damage, which also provided novel basis for the design of other extended graphene/DNA-based sensing platforms. Furthermore, we designed a novel graphene/DNAzyme-based catalytic beacon for Cu(Ⅱ), which allowed the highly sensitive and selective detection of Cu(Ⅱ) in aqueous solution. The detection limit was determined to be0.365nM, which was much lower than that of previously reported DNAzyme-based fluorescent sensors. Base on it, a promising graphene/DNAzyme-based label-free fluorescent sensor for Cu(Ⅱ) detection was developed by means of the unique luminescent property of extrinsic fluorophore GelRed, which avoided the complicated operation and weak performance of DNAzyme in traditional DNAzyme-based sensors.
     (5) Fine control over the surface charge density of colloidal graphene is possible through the control of salt concentration (NaCl or MgCl2) in the solution, thus resulting in the spontaneously assembled stacked-graphene, the average size distribution of which could be increased with the increase of salt concentration. Furthermore, this type of graphene-derived material possessed great capabilities in the capturing of various DNAs independent of their structure compared with the traditional colloidal graphene. Based on it, we designed a novel graphene/DNA-based fluorescent sensor for rapid and real-time screening genotoxic chemicals, such as Cu(II) ions and organic flavonoids, not only avoiding the complex operation and off-line detection in traditional electrochemistry-based sensors, but also improving the signal transduction, thus broadening the graphene-based applications in environemtal monitoring.
     (6) A highly active graphene/Au-NPs-based peroxidase mimetic was constructed in combination with the unique electronic property of graphene and the intrinsic catalytic activity of Au-NPs. It was observed that the calculated values of reaction rate for our catalyst with TMB as substrate was about1.3times higher than those for commercial HRP. Based on it, a novel peroxidase mimetic/aptamer-based colorimetric sensor was developed for rapid and highly sensitive detection of nucleic acids, hepatitis C virus, insulin and enzyme activity. Furthermore, this convenient approach can be applicable to the other extended label-free aptamer-based sensors for colorimetric detection of a broad range of analytes.
     In combination with the needs and development of water quality monitoring, the unique properties of quantum dots and graphenes, and various technologies in molecular biology, biochemistry and immunology, we have designed several novel nanosensors for typical pollutions in water environment, realized the regulation of the sensing performance, revealed the detection mechanism, and illustrated the intrinsic relationship between the interfacial reaction and sensing mechanism in functional nanomaterials, which greatly promoted the application of functional nanomaterials in environmental monitoring.
引文
[1]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science,1996,271(5251): 933-937.
    [2]Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science,1998,281(5385):2013-2016.
    [3]Baker S N, Baker G A. Luminescent carbon nanodots:emergent'nanolights [J]. Angewandte Chemie International Edition,2010,49(38):6726-6744.
    [4]Warner J H, Hoshino A, Yamamoto K, et al. Water-soluble photoluminescent silicon quantum dots [J]. Angewandte Chemie International Edition,2005,44(29):4550-4554.
    [5]Guo S, Wang E. Noble metal nanomaterials:Controllable synthesis and application in fuel cells and analytical sensors [J]. Nano Today,2011,6(3):240-264.
    [6]Brus L. Electronic wave functions in semiconductor clusters:experiment and theory [J]. The Journal of Physical Chemistry,1986,90(12):2555-2560.
    [7]Chan W C W, Maxwell D J, Gao X, et al. Luminescent quantum dots for multiplexed biological detection and imaging [J]. Current Opinion in Biotechnology,2002,13(1):40-46.
    [8]Han M Y, Gao X H, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J]. Nature Biotechnology,2001,19(7):631-635.
    [9]Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science,1998,281(5385):2016-2018.
    [10]Dahan M, Laurence T, Pinaud F, et al. Time-gated biological imaging by use of colloidal quantum dots [J]. Optics Letters,2001,26(11):825-827.
    [11]Costa-Fernandez J M, Pereiro R, Sanz-Medel A. The use of luminescent quantum dots for optical sensing [J]. Trac-Trends in Analytical Chemistry,2006,25(3):207-218.
    [12]Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging [J]. Journal of the American Chemical Society,2007,129(37):11318-11319.
    [13]Shen J, Zhu Y, Chen C, et al. Facile preparation and upconversion luminescence of graphene quantum dots [J]. Chemical Communications,2011,47(9):2580-2582.
    [14]Dabbousi B O, RodriguezViejo J, Mikulec F V, et al. (CdSe)ZnS core-shell quantum dots:synthesis and characterization of a size series of highly luminescent nanocrystallites [J]. Journal of Physical Chemistry B,1997,101(46):9463-9475.
    [15]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites [J]. Journal of the American Chemical Society,1993,115(19): 8706-8715.
    [16]Algar W R, Tavares A J, Krull U J. Beyond labels:A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction [J]. Analytica Chimica Acta,2010,673(1):1-25.
    [17]Algar W R, Susumu K, Delehanty J B, et al. Semiconductor quantum dots in bioanalysis:crossing the valley of death [J]. Analytical Chemistry,2011,83(23):8826-8837.
    [18]Pathak S, Choi S K, Arnheim N, et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization [J]. Journal of the American Chemical Society,2001,123(17):4103-4104.
    [19]Mattoussi H, Mauro J M, Goldman E R, et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein [J]. Journal of the American Chemical Society,2000,122(49): 12142-12150.
    [20]Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels [J]. Nature Methods,2008,5(9):763-775.
    [21]Breus V V, Heyes C D, Tron K, et al. Zwitterionic biocompatible quantum dots for wide pH stability and weak nonspecific binding to cells [J]. ACS Nano,2009,3(9):2573-2580.
    [22]Liu W, Choi H S, Zimmer J P, et al. Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications [J]. Journal of the American Chemical Society,2007,129(47):14530-14531.
    [23]Susumu K, Uyeda H T, Medintz I L, et al. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands [J]. Journal of the American Chemical Society,2007, 129(45):13987-13996.
    [24]Uyeda H T, Medintz I L, Jaiswal J K, et al. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores [J]. Journal of the American Chemical Society,2005,127(11): 3870-3878.
    [25]Stewart M H, Susumu K, Mei B C, et al. Multidentate poly(ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions [J]. Journal of the American Chemical Society,2010,132(28):9804-9813.
    [26]Pellegrino T, Manna L, Kudera S, et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell:a general route to water soluble nanocrystals [J]. Nano Letters,2004,4(4):703-707.
    [27]Luccardini C, Tribet C, Vial F, et al. Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule [J]. Langmuir,2006,22(5):2304-2310.
    [28]Liu W, Greytak A B, Lee J, et al. Compact biocompatible quantum dots via raft-mediated synthesis of imidazole-based random copolymer ligand [J]. Journal of the American Chemical Society,2009,132(2): 472-483.
    [29]Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles [J]. Science,2002,298(5599):1759-1762.
    [30]Wu X Y, Liu H J, Liu J Q, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nature Biotechnology,2003,21(1):41-46.
    [31]Chi C-W, Lao Y-H, Li Y-S, et al. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter:application to label-free thrombin detection [J]. Biosensors and Bioelectronics,2011, 26(7):3346-3352.
    [32]Wang H-Q, Li Y-Q, Wang J-H, et al. Influence of quantum dot's quantum yield to chemiluminescent resonance energy transfer [J]. Analytica Chimica Acta,2008,610(1):68-73.
    [33]Pathak S, Davidson M C, Silva G A. Characterization of the functional binding properties of antibody conjugated quantum dots [J]. Nano Letters,2007,7(7):1839-1845.
    [34]Faure A-C, Hoffmann C I, Bazzi R, et al. Functionalization of luminescent aminated particles for facile bioconjugation [J]. ACSNano,2008,2(11):2273-2282.
    [35]Algar W R, Prasuhn D E, Stewart M H, et al. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry [J]. Bioconjugate Chemistry,2011,22(5):825-858.
    [36]Delehanty J B, Medintz I L, Pons T, et al. Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery [J]. Bioconjugate Chemistry,2006,17(4):920-927.
    [37]Prasuhn D E, Deschamps J R, Susumu K, et al. Polyvalent display and packing of peptides and proteins on semiconductor quantum dots:predicted versus experimental results [J]. Small,2010,6(4): 555-564.
    [38]Medintz I L, Konnert J H, Clapp A R, et al. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(26):9612-9617.
    [39]Boeneman K, Mei B C, Dennis A M, et al. Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies [J]. Journal of the American Chemical Society,2009,131(11):3828-3829.
    [40]Medintz I L, Trammell S A, Mattoussi H, et al. Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor [J]. Journal of the American Chemical Society,2003,126(1):30-31.
    [41]Blanco-Canosa J B, Medintz I L, Farrell D, et al. Rapid covalent ligation of fluorescent peptides to water solubilized quantum dots [J]. Journal of the American Chemical Society,2010,132(29): 10027-10033.
    [42]Pons T, Medintz I L, Sapsford K E, et al. On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles [J]. Nano Letters,2007,7(10):3157-3164.
    [43]Prasuhn D E, Blanco-Canosa J B, Vora G J, et al. Combining chemoselective ligation with polyhistidine-driven Self-assembly for the modular display of biomolecules on quantum dots. ACS Nano, 2010,4(1):267-278.
    [44]Yao H, Zhang Y, Xiao F, et al. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases [J]. Angewandte Chemie International Edition,2007,46(23):4346-4349.
    [45]Patolsky F, Gill R, Weizmann Y, et al. Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots [J]. Journal of the American Chemical Society,2003,125(46): 13918-13919.
    [46]Gill R, Willner I, Shweky I, et al. Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates:Probing hybridization and DNA cleavage [J]. The Journal of Physical Chemistry B,2005, 109(49):23715-23719.
    [47]Goldman E R, Balighian E D, Mattoussi H, et al. Avidin:a natural bridge for quantum dot-antibody conjugates [J]. Journal of the American Chemical Society,2002,124(22):6378-6382.
    [48]Chen H H, Ho Y P, Jiang X, et al. Simultaneous non-invasive analysis of DNA condensation and stability by two-step QD-FRET [J]. Nano Today,2009,4(2):125-134.
    [49]Ho Y P, Chen H H, Leong K W, et al. The convergence of quantum-dot-mediated fluorescence resonance energy transfer and microfluidics for monitoring DNA polyplex self-assembly in real time [J]. Nanotechnology,2009,20(9):095103.
    [50]Lidke D S, Nagy P, Heintzmann R, et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction [J]. Nature Biotechnology,2004,22(2):198-203.
    [51]Levy M, Cater S F, Ellington A D. Quantum-dot aptamer beacons for the detection of proteins [J]. ChemBioChem,2005,6(12):2163-2166.
    [52]Vu T Q, Maddipati R, Blute T A, et al. Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth [J]. Nano Letters,2005,5(4):603-607.
    [53]Gerion D, Pinaud F, Williams S C, et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots [J]. The Journal of Physical Chemistry B,2001, 105(37):8861-8871.
    [54]Wolcott A, Gerion D, Visconte M, et al. Silica-coated cdte quantum dots functionalized with thiols for bioconjugation to igg proteins [J]. The Journal of Physical Chemistry B,2006,110(11):5779-5789.
    [55]Smith J E, Wang L, Tan W. Bioconjugated silica-coated nanoparticles for bioseparation and bioanalysis [J]. TrAC-Trends in Analytical Chemistry,2006,25(9):848-855.
    [56]Wu C-S, Oo M K K, Cupps J M, et al. Robust silica-coated quantum dot-molecular beacon for highly sensitive DNA detection [J]. Biosensors and Bioelectronics,2011,26(9):3870-3875.
    [57]Freeman R, Willner I. Optical molecular sensing with semiconductor quantum dots (QDs) [J]. Chemical Society Reviews,2012,41(10):4067-4085.
    [58]Boulesbaa A, Huang Z, Wu D, et al. Competition between energy and electron transfer from CdSe QDs to adsorbed rhodamine B [J]. The Journal of Physical Chemistry C,2009,114(2):962-969.
    [59]Shim M, Wang C, Guyot-Sionnest P. Charge-tunable optical properties in colloidal semiconductor nanocrystals [J]. The Journal of Physical Chemistry B,2001,105(12):2369-2373.
    [60]Chen Y F, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes [J]. Analytical Chemistry,2002,74(19):5132-5138.
    [61]Shang Z B, Wang Y, Jin W J. Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (Ⅱ) and iodide in aqueous solution [J]. Talanta,2009,78(2):364-9.
    [62]Gattas-Asfura K. A, Leblanc R M. Peptide-coated CdS quantum dots for the optical detection of copper(Ⅱ) and silver(Ⅰ) [J]. Chemical Communications,2003,21:2684-2685.
    [63]Jin W J, Fernandez-Arguelles M T, Costa-Fernandez J M, et al. Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions [J]. Chemical Communications,2005,7: 883-885.
    [64]Freeman R, Finder T, Willner I. Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations [J]. Angewandte Chemie International Edition,2009,48(42):7818-7821.
    [65]Wu P, He Y, Wang H-F, et al. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids [J]. Analytical Chemistry,2010,82(4):1427-1433.
    [66]Gill R, Bahshi L, Freeman R, et al. Optical detection of glucose and acetylcholine esterase inhibitors by H2O2-sensitive CdSe/ZnS quantum dots [J]. Angewandte Chemie International Edition,2008,47(9): 1676-1679.
    [67]Tu R, Liu B, Wang Z, et al. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace tnt explosive [J]. Analytical Chemistry,2008,80(9):3458-3465.
    [68]Zou W S, Sheng D, Ge X, et al. Room-temperature phosphorescence chemosensor and rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots [J]. Analytical Chemistry,2010,83(1):30-37.
    [69]Yuan J, Guo W, Wang E. Utilizing a cdte quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide [J]. Analytical Chemistry,2008,80(4):1141-1145.
    [70]Gill R, Freeman R, Xu J-P, et al. Probing biocatalytic transformations with CdSe-ZnS QDs [J]. Journal of the American Chemical Society,2006,128(48):15376-15377.
    [71]Freeman R, Willner I. NAD+/NADH-sensitive quantum dots:Applications to probe NAD+-dependent enzymes and to sense the RDX explosive [J]. Nano Letters,2008,9(1):322-326.
    [72]Wang H-F, He Y, Ji T-R, et al. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water [J]. Analytical Chemistry, 2009,81(4):1615-1621.
    [73]Stringer R C, Gangopadhyay S, Grant S A. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer [J]. Analytical Chemistry,2010,82(10):4015-4019.
    [74]Li H, Li Y, Cheng J. Molecularly imprinted silica nanospheres embedded CdSe quantum dots for highly selective and sensitive optosensing of pyrethroids [J]. Chemistry of Materials,2010,22(8): 2451-2457.
    [75]Zhao Y, Ma Y, Li H, et al. Composite QDs@MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media [J]. Analytical Chemistry,2011,84(1):386-395.
    [76]Liu J, Chen H, Lin Z, et al. Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water [J]. Analytical Chemistry,2010,82(17):7380-7386.
    [77]Ruedas-Rama M J, Hall E A H. Azamacrocycle activated quantum dot for zinc ion detection [J]. Analytical Chemistry,2008,80(21):8260-8268.
    [78]Wang S, Han M-Y, Huang D. Nitric oxide switches on the photoluminescence of molecularly engineered quantum dots [J]. Journal of the American Chemical Society,2009,131(33):11692-11694.
    [79]Medintz I L, Pons T, Trammell S A, et al. Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge [J]. Journal of the American Chemical Society,2008,130(49): 16745-16756.
    [80]Cordes D B, Gamsey S, Singaram B. Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution [J]. Angewandte Chemie International Edition,2006,45(23): 3829-3832.
    [81]Sandros M G, Gao D, Benson D E. A modular nanoparticle-based system for reagentless small molecule biosensing [J]. Journal of the American Chemical Society,2005,127(35):12198-12199. [82] Palaniappan K, Hackney S A, Liu J. Supramolecular control of complexation-induced fluorescence change of water-soluble, β-cyclodextrin-modified CdS quantum dots [J]. Chemical Communications,2004, 23:2704-2705.
    [83]Aguilera-Sigalat J, Casas-Solvas J M, Morant-Minana M C, et al. Quantum dot/cyclodextrin supramolecular systems based on efficient molecular recognition and their use for sensing [J]. Chemical Communications,2012,48(20):2573-2575.
    [84]Li H, Qu F. Synthesis of CdTe quantum dots in sol-gel-derived composite silica spheres coated with calix[4]arene as luminescent probes for pesticides [J]. Chemistry of Materials,2007,19(17):4148-4154.
    [85]Kaur N, Singh N, McCaughan B, et al. AND molecular logic using semiconductor quantum dots. Sensors and Actuators B,2010,144(1):88-91.
    [86]Liu J, Yang X, Wang K, et al. A switchable fluorescent quantum dot probe based on aggregation/disaggregation mechanism [J]. Chemical Communications,2011,47(3):935-937.
    [87]Xu X, Liu X, Nie Z, et al. Label-free fluorescent detection of protein kinase activity based on the aggregation behavior of unmodified quantum dots [J]. Analytical Chemistry,2010,83(1):52-59.
    [88]Lei J, Ju H. Fundamentals and bioanalytical applications of functional quantum dots as electrogenerated emitters of chemiluminescence [J]. TrAC-Trends in Analytical Chemistry,2011,30(8): 1351-1359.
    [89]Ding Z, Quinn B M, Haram S K, et al. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots [J]. Science,2002,296(5571):1293-1297.
    [90]Zheng L, Chi Y, Dong Y, et al. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite [J]. Journal of the American Chemical Society,2009,131(13): 4564-4565.
    [91]Myung N, Ding Z, Bard A J. Electrogenerated chemiluminescence of CdSe nanocrystals [J]. Nano Letters,2002,2(11):1315-1319.
    [92]Sun L, Bao L, Hyun B-R, et al. Electrogenerated chemiluminescence from PbS quantum dots [J]. Nano Letters,2008,9(2):789-793.
    [93]Zhang L, Zou X, Ying E, et al. Quantum dot electrochemiluminescence in aqueous solution at lower potential and its sensing application [J]. The Journal of Physical Chemistry C,2008,112(12):4451-4454.
    [94]Zou G, Ju H. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution [J]. Analytical Chemistry,2004,76(23):6871-6876.
    [95]Liu B, Ren T, Zhang J-R, et al. Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water [J]. Electrochemistry Communications,2007,9(4):551-557.
    [96]Liu X, Ju H. Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle [J]. Analytical Chemistry,2008,80(14): 5377-5382.
    [97]Myung N, Bae Y, Bard A J. Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals [J]. Nano Letters,2003,3(8):1053-1055.
    [98]Jiang H, Ju H. Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system [J]. Analytical Chemistry,2007,79(17): 6690-6696.
    [99]Jiang H, Ju H. Enzyme-quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates [J]. Chemical Communications,2007,4:404-406.
    [100]Liu X, Cheng L, Lei J, et al. Formation of surface traps on quantum dots by bidentate chelation and their application in low-potential electrochemiluminescent biosensing [J]. Chemistry-A European Journal, 2010,16(35):10764-10770.
    [101]Wang Y, Lu J, Tang L, et al. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds [J]. Analytical Chemistry,2009,81(23):9710-9715.
    [102]Wang X-F, Zhou.Y, Xu J-J, et al. Signal-on electrochemiluminescence biosensors based on CdS-carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine [J]. Advanced Functional Materials,2009,19(9):1444-1450.
    [103]Cheng L, Liu X, Lei J, et al. Low-potential electrochemiluminescent sensing based on surface unpassivation of CdTe quantum dots and competition of analyte cation to stabilizer [J]. Analytical Chemistry,2010,82(8):3359-3364.
    [104]Liu X, Jiang H, Lei J, et al. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives [J]. Analytical Chemistry,2007,79(21):8055-8060.
    [105]Shan Y, Xu J-J, Chen H-Y. Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS:Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA [J]. Chemical Communications,2009,8:905-907.
    [106]Jie G, Zhang J, Wang D, et al. Electrochemiluminescence immunosensor based on CdSe nanocomposites [J]. Analytical Chemistry,2008,80(11):4033-4039.
    [107]Liu X, Zhang Y, Lei J, et al. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification with self-produced coreactant from oxygen reduction [J]. Analytical Chemistry,2010,82(17):7351-7356.
    [108]Sapsford K E, Berti L, Medintz I L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations [J]. Angewandte Chemie International Edition,2006, 45(28):4562-4589.
    [109]Rogach A L, Klar T A, Lupton J M, et al. Energy transfer with semiconductor nanocrystals [J]. Journal of Materials Chemistry,2009,19(9):1208-1221.
    [110]Clapp A R, Medintz I L, Mattoussi H. Forster resonance energy transfer investigations using quantum-dot fluorophores [J]. ChemPhysChem,2006,7(1):47-57.
    [111]Clapp A R, Medintz I L, Mauro J M, et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors [J]. Journal of the American Chemical Society,2003,126(1): 301-310.
    [112]Boeneman K, Prasuhn D E, Blanco-Canosa J B, et al. Self-assembled quantum dot-sensitized multivalent DNA photonic wires [J]. Journal of the American Chemical Society,2010,132(51): 18177-18190.
    [113]Clapp A R, Medintz I L, Uyeda H T, et al. Quantum dot-based multiplexed fluorescence resonance energy transfer [J]. Journal of the American Chemical Society,2005,127(51):18212-18221.
    [114]Willard D M, Carillo L L, Jung J, et al. CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay [J]. Nano Letters,2001,1(9):469-474.
    [115]Peng H, Zhang L, Kjallman T H M, et al. DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA [J]. Journal of the American Chemical Society,2007, 129(11):3048-3049.
    [116]Medintz I L, Berti L, Pons T, et al. A reactive peptidic linker for self-assembling hybrid quantum dot-DNA bioconjugates [J]. Nano Letters,2007,7(6):1741-1748.
    [117]Jiang G, Susha A S, Lutich A A, et al. Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection [J]. ACS Nano,2009,3(12):4127-4131.
    [118]Zhou D, Ying L, Hong X, et al. A compact functional quantum dot-DNA conjugate:preparation, hybridization, and specific label-free DNA detection [J]. Langmuir,2008,24(5):1659-1664.
    [119]Zhang C-Y, Yeh H-C, Kuroki M T, et al. Single-quantum-dot-based DNA nanosensor [J]. Nature Materials,2005,4(11):826-831.
    [120]Zhang C-Y, Johnson L W. Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows [J]. Analytical Chemistry,2006,78(15):5532-5537.
    [121]Zhang C-Y, Hu J. Single quantum dot-based nanosensor for multiple DNA detection [J]. Analytical Chemistry,2010,82(5):1921-1927.
    [122]Zhang Y, Zhang C-Y. Sensitive detection of microma with isothermal amplification and a single-quantum-dot-based nanosensor [J]. Analytical Chemistry,2011,84(1):224-231.
    [123]Zhao D, Chan W H, He Z, et al. Quantum dot-ruthenium complex dyads:recognition of double-strand DNA through dual-color fluorescence detection [J]. Analytical Chemistry,2009,81(9): 3537-3543.
    [124]Snee P T, Somers R C, Nair G, et al. A ratiometric CdSe/ZnS nanocrystal pH sensor [J]. Journal of the American Chemical Society,2006,128(41):13320-13321.
    [125]Li M, Wang Q, Shi X, et al. Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer [J]. Analytical Chemistry,2011,83(18): 7061-7065.
    [126]Chen C-Y, Cheng C-T, Lai C-W, et al. Potassium ion recognition by 15-crown-5 functionalized CdSc/ZnS quantum dots in H2O [J]. Chemical Communications,2006,3:263-265.
    [127]Wu C-S, Khaing Oo M K, Fan X. Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled dnazymes [J]. ACS Nano,2010,4(10):5897-5904.
    [128]Freeman R, Bahshi L, Finder T, et al. Competitive analysis of saccharides or dopamine by boronic acid-functionalized CdSe-ZnS quantum dots [J]. Chemical Communications,2009,7:764-766.
    [129]Freeman R, Finder T, Bahshi L, et al. P-cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis [J]. Nano Letters,2009,9(5):2073-2076.
    [130]Xia Y, Song L, Zhu C. Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly [J]. Analytical Chemistry,2011,83(4):1401-1407.
    [131]Zhang C-Y, Johnson L W. Single quantum-dot-based aptameric nanosensor for cocaine [J]. Analytical Chemistry,2009,81(8):3051-3055.
    [132]Liu J, Lee J H, Lu Y. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes [J]. Analytical Chemistry,2007,79(11):4120-4125.
    [133]Dennis A M, Rhee W J, Sotto D, et al. Quantum dot-fluorescent protein FRET probes for sensing intracellular pH [J]. ACS Nano,2012,6(4):2917-2924.
    [134]Bahshi L, Freeman R, Gill R, et al. Optical detection of glucose by means of metal nanoparticles or semiconductor quantum dots [J]. Small,2009,5(6):676-680.
    [135]Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors [J]. Nature Materials,2003,2(9):630-638.
    [136]Medintz 1 L, Clapp A R, Melinger J S, et al. A reagentless biosensing assembly based on quantum dot-donor forster resonance energy transfer [J]. Advanced Materials,2005,17(20):2450-2455.
    [137]Clapp A R, Pons T, Medintz I L, et al. Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications [J]. Advanced Materials,2007,19(15):1921-1926.
    [138]Goldman E R, Medintz I L, Whitley J L, et al. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor [J]. Journal of the American Chemical Society,2005,127(18): 6744-6751.
    [139]Tang B, Cao L, Xu K, et al. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles [J]. Chemistry-A European Journal,2008,14(12):3637-3644.
    [140]Oh E, Hong M-Y, Lee D, et al. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles [J]. Journal of the American Chemical Society,2005,127(10):3270-3271.
    [141]Oh E, Lee D, Kim Y-P, et al. Nanoparticle-based energy transfer for rapid and simple detection of protein glycosylation [J]. Angewandte Chemie International Edition,2006,45(47):7959-7963.
    [142]Dennis A M, Bao G. Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes [J]. Nano Letters,2008,8(5):1439-1445.
    [143]Skajaa T, Zhao Y, van den Heuvel D J, et al. Quantum dot and Cy5.5 labeled nanoparticles to investigate lipoprotein biointeractions via forster resonance energy transfer [J]. Nano Letters,2010,10(12): 5131-5138.
    [144]Choi Y, Kang T, Lee L P. Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells [J]. Nano Letters,2008,9(1):85-90.
    [145]Boeneman K, Delehanty J B, Susumu K, et al. Intracellular bioconjugation of targeted proteins with semiconductor quantum dots [J]. Journal of the American Chemical Society,2010,132(17):5975-5977.
    [146]Medintz I L, Clapp A R, Brunei F M, et al. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates [J]. Nature Materials,2006,5(7):581-589.
    [147]Prasuhn D E, Feltz A, Blanco-Canosa J B, et al. Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions [J]. ACS Nano,2010,4(9):5487-5497.
    [148]Huang Y, Zhao S, Shi M, et al. Intermolecular and intramolecular quencher based quantum dot nanoprobes for multiplexed detection of endonuclease activity and inhibition [J]. Analytical Chemistry, 2011,83(23):8913-8918.
    [149]Freeman R, Finder T, Gill R, et al. Probing protein kinase (CK2) and alkaline phosphatase with CdSe/ZnS quantum dots [J]. Nano Letters,2010,10(6):2192-2196.
    [150]Ghadiali J E, Cohen B E, Stevens M M. Protein kinase-actuated resonance energy transfer in quantum dot-peptide conjugates [J]. ACS Nano,2010,4(8):4915-4919.
    [151]Shi L, De Paoli V, Rosenzweig N, et al. Synthesis and application of quantum dots FRET-based protease sensors [J]. Journal of the American Chemical Society,2006,128(32):10378-10379.
    [152]Kim Y-P, Oh Y-H, Oh E, et al. Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface [J]. Analytical Chemistry,2008,80(12):4634-4641.
    [153]Ghadiali J E, Lowe S B, Stevens M M. Quantum-dot-based FRET detection of histone acetyltransferase activity [J]. Angewandte Chemie International Edition,2011,50(15):3417-3420.
    [154]Suzuki M, Husimi Y, Komatsu H, et al. Quantum dot FRET biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination [J]. Journal of the American Chemical Society,2008,130(17):5720-5725.
    [155]Lowe S B, Dick J A G, Cohen B E, et al. Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot-peptide conjugates [J]. ACS Nano,2011,6(1):851-857.
    [156]Pons T, Medintz I L, Sapsford K E, et al. On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles [J]. Nano Letters,2007,7(10):3157-3164.
    [157]Boeneman K, Deschamps J R, Buckhout-White S, et al. Quantum dot DNA bioconjugates: attachment chemistry strongly influences the resulting composite architecture [J]. ACS Nano,2010,4(12): 7253-7266.
    [158]Wang S, Mamedova N, Kotov N A, et al. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates [J]. Nano Letters,2002,2(8):817-822.
    [159]Cui D, Pan B, Zhang H, et al. Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection [J]. Analytical Chemistry,2008,80(21):7996-8001.
    [160]Liang G-X, Pan H-C, Li Y, et al. Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods [J]. Biosensors and Bioelectronics,2009,24(12): 3693-3697.
    [161]Chen L, Zhang X, Zhou G, et al. Simultaneous determination of human enterovirus 71 and coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay [J]. Analytical Chemistry, 2012,84(7):3200-3207.
    [162]Long F, Gu C, Gu A Z, et al. Quantum dot/carrier-protein/haptens conjugate as a detection nanobioprobe for FRET-based immunoassay of small analytes with all-fiber microfluidic biosensing platform [J]. Analytical Chemistry,2012,84(8):3646-3653.
    [163]Nikiforov T T, Beechem J M. Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and alexa fluor fluorophores [J]. Analytical Biochemistry, 2006,357(1):68-76.
    [164]Wei Q, Lee M, Yu X, et al. Development of an open sandwich fluoroimmunoassay based on fluorescence resonance energy transfer [J]. Analytical Biochemistry,2006,358(1):31-37.
    [165]Samia A C S, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy [J]. Journal of the American Chemical Society,2003,125(51):15736-15737.
    [166]Hsieh J-M, Ho M-L, Wu P-W, et al. Iridium-complex modified CdSe/ZnS quantum dots; a conceptual design for bifunctionality toward imaging and photosensitization [J]. Chemical Communications,2006,6:615-617.
    [167]Shi L, Hernandez B, Selke M. Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites [J]. Journal of the American Chemical Society,2006,128(19):6278-6279.
    [168]Zenkevich E I, Sagun E I, Knyukshto V N, et al. Quantitative analysis of singlet oxygen ('O2) generation via energy transfer in nanocomposites based on semiconductor quantum dots and porphyrin ligands [J]. Journal of Physical Chemistry C,2011,115(44):21535-21545.
    [169]Tsay J M, Trzoss M, Shi L X, et al. Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates [J]. Journal of the American Chemical Society,2007,129(21):6865-6871.
    [170]Bakalova R, Ohba H, Zhelev Z, et al. Quantum dot anti-CD conjugates:are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? [J]. Nano Letters,2004,4(9):1567-1573.
    [171]Neuman D, Ostrowski A D, Absalonson R O, et al. Photosensitized NO release from water-soluble nanoparticle assemblies [J]. Journal of the American Chemical Society,2007,129(14):4146-4147.
    [172]McLaurin E J, Greytak A B, Bawendi M G, et al. Two-photon absorbing nanocrystal sensors for ratiometric detection of oxygen [J]. Journal of the American Chemical Society,2009,131(36): 12994-13001.
    [173]Biju V, Itoh T, Baba Y, et al. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube [J]. The Journal of Physical Chemistry B,2006,110(51):26068-26074.
    [174]Jander S, Kornowski A, Weller H. Energy transfer from CdSe/CdS nanorods to amorphous carbon [J]. Nano Letters,2011,11(12):5179-5183.
    [175]Carrillo-Carrion C, Lendl B, Simonet B M, et al. Calix[8]arene coated CdSe/ZnS quantum dots as C60-nanosensor [J]. Analytical Chemistry,2011,83(21):8093-8100.
    [176]Quach A D, Crivat G, Tarr M A, et al. Gold nanoparticle-quantum dot-polystyrene microspheres as fluorescence resonance energy transfer probes for bioassays [J]. Journal of the American Chemical Society, 2011,133(7):2028-2030.
    [177]Dyadyusha L, Yin H, Jaiswal S, Quenching of CdSe quantum dot emission, a new approach for biosensing [J]. Chemical Communications,2005,3201-3203
    [178]Yang P, Zhao Y, Lu Y, et al. Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots:a fluorescence resonance energy transfer probe for optical visual detection of copper(Ⅱ) ions [J]. ACS Nano,2011,5(3):2147-2154.
    [179]Wargnier R, Baranov A V, Maslov V G, et al. Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies [J]. Nano Letters, 2004,4(3):451-457.
    [180]Rogach A L, Klar T A, Lupton J M, et al. Energy transfer with semiconductor nanocrystals [J]. Journal of Materials Chemistry,2009,19(9):1208-1221.
    [181]Schrier J, Wang L-W. Shape dependence of resonant energy transfer between semiconductor nanocrystals [J]. The Journal of Physical Chemistry C,2008,112(30):11158-11161.
    [182]Franzl T, Klar T A, Schietinger S, et al. Exciton recycling in graded gap nanocrystal structures [J]. Nano Letters,2004,4(9):1599-1603.
    [183]Franzl T, Shavel A, Rogach A L, et al. High-rate unidirectional energy transfer in directly assembled CdTe nanocrystal bilayers [J]. Small,2005,1(4):392-395.
    [184]Mayilo S, Hilhorst J, Susha A S, et al. Energy transfer in solution-based clusters of CdTe nanocrystals electrostatically bound by calcium ions [J]. The Journal of Physical Chemistry C,2008, 112(37):14589-14594.
    [185]Lee J, Govorov A O, Kotov N A. Bioconjugated superstructures of CdTe nanowires and nanoparticles:multistep cascade forster resonance energy transfer and energy channeling [J]. Nano Letters, 2005,5(10):2063-2069.
    [186]Wang C-H, Chen C-W, Wei C-M, et al. Resonant energy transfer between CdSe/ZnS type Ⅰ and CdSe/ZnTe type Ⅱ quantum dots [J]. The Journal of Physical Chemistry C,2009,113(35):15548-15552.
    [187]Clapp A R, Medintz I L, Fisher B R, et al. Can luminescent quantum dots be efficient energy acceptors with organic dye donors? [J]. Journal of the American Chemical Society,2005,127(4): 1242-1250.
    [188]Hildebrandt N, Charbonniere L J, Beck M, et al. Quantum dots as efficient energy acceptors in a time-resolved fluoroimmunoassay [J]. Angewandte Chemie International Edition,2005,44(46): 7612-7615.
    [189]Morgner F, GeiBler D, Stufler S, et al. A quantum-dot-based molecular ruler for multiplexed optical analysis [J]. Angewandte Chemie International Edition,2010,49(41):7570-7574.
    [190]Lutich A A, Jiang G, Susha A S, et al. Energy transfer versus charge separation in type-II hybrid organic-inorganic nanocomposites [J]. Nano Letters,2009,9(7):2636-2640.
    [191]Charbonniere L J, Hildebrandt N, Ziessel R F, et al. Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy [J]. Journal of the American Chemical Society,2006,128(39):12800-12809.
    [192]Geiβler D, Charbonniere L J, Ziessel R F, et al. Quantum dot biosensors for ultrasensitive multiplexed diagnostics [J]. Angewandte Chemie International Edition,2010,49(8):1396-1401.
    [193]Huang X, Li L, Qian H, et al. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET) [J]. Angewandte Chemie,2006,118(31):5264-5267.
    1194] Wang H-Q, Li Y-Q, Wang J-H, et al. Influence of quantum dot's quantum yield to chemiluminescent resonance energy transfer [J]. Analytica Chimica Acta,2008,610(1):68-73.
    [195]Yao H, Zhang Y, Xiao F, et al. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases [J]. Angewandte Chemie International Edition,2007,46(23):4346-4349.
    [196]Freeman R, Liu X, Willner I. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSc/ZnS quantum dots [J]. Journal of the American Chemical Society,2011,133(30):11597-11604.
    [197]Liu X, Freeman R, Golub E, et al. Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/g-quadruplexes [J]. ACS Nano,2011,5(9): 7648-7655.
    [198]Xia Z, Xing Y, So M-K, et al. Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation [J]. Analytical Chemistry,2008,80(22):8649-8655.
    [199]Kumar M, Zhang D, Broyles D, et al. A rapid, sensitive, and selective bioluminescence resonance energy transfer (BRET)-based nucleic acid sensing system [J]. Biosensors and Bioelectronics,2011,30(1): 133-139.
    [200]Zhang Y, So M-K, Loening A M, et al. HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots [J]. Angewandte Chemie International Edition,2006,45(30): 4936-4940.
    [201]So M-K, Loening A M, Gambhir S S, et al. Creating self-illuminating quantum dot conjugates [J]. Nature Protocols,2006,1(3):1160-1164.
    [202]So M-K, Xu C, Loening A M, et al. Self-illuminating quantum dot conjugates for in vivo imaging [J]. Nature Biotechnology,2006,24(3):339-343.
    [203]Selmarten D, Jones M, Rumbles G, et al. Quenching of semiconductor quantum dot photoluminescence by a π-conjugated polymer [J]. The Journal of Physical Chemistry B,2005,109(33): 15927-15932.
    [204]Zhang Y, Jing P, Zeng Q, et al. Photoluminescence quenching of CdSe core/shell quantum dots by hole transporting materials [J]. The Journal of Physical Chemistry C,2009,113(5):1886-1890.
    [205]Chen L, Zhang X, Zhang C, et al. Dual-color fluorescence and homogeneous immunoassay for the determination of human enterovirus 71 [J]. Analytical Chemistry,2011,83(19):7316-7322.
    [206]Gao X, Nie S. Doping mesoporous materials with multicolor quantum dots [J]. The Journal of Physical Chemistry B,2003,107(42):11575-11578.
    [207]Li J, Zhao X-W, Zhao Y-J, et al. Colloidal crystal beads coated with multicolor CdTe quantum dots: microcarriers for optical encoding and fluorescence enhancement [J]. Journal of Materials Chemistry,2009, 19(36):6492-6497.
    [208]Yang X T, Zhang Y. Encapsulation of quantum nanodots in polystyrene and silica micro-/nanoparticles [J]. Langmuir,2004,20(14):6071-6073.
    [209]Nann T, Mulvaney P. Single quantum dots in spherical silica particles [J]. Angewandte Chemie International Edition,2004,43(40):5393-5396.
    [210]Giri S, Sykes E A, Jennings T L, et al. Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes [J]. ACS Nano,2011,5(3):1580-1587.
    [211]Stsiapura V, Sukhanova A, Artemyev M, et al. Functionalized nanocrystal-tagged fluorescent polymer beads:synthesis, physicochemical characterization, and immunolabeling application [J]. Analytical Biochemistry,2004,334(2):257-265.
    [212]Wang X, Boschetti C, Ruedas-Rama M J, et al. Ratiometric pH-dot ANSors [J]. Analyst,2010, 135(7):1585-1591.
    [213]Eastman P S, Ruan W, Doctolero M, et al. Qdot nanobarcodes for multiplexed gene expression analysis [J]. Nano Letters,2006,6(5):1059-1064.
    [214]Zheng Z, Li X, Dai Z, et al. Detection of mixed organophosphorus pesticides in real samples using quantum dots/bi-enzyme assembly multilayers [J]. Journal of Materials Chemistry,2011,21(42): 16955-16962.
    [215]Zheng Z, Zhou Y, Li X, et al. Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots [J]. Biosensors and Bioelectronics, 2011,26(6):3081-3085.
    [216]Goldman E R, Anderson G P, Tran P T, et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays [J]. Analytical Chemistry,2002,74(4):841-847.
    [217]Goldman E R, Clapp A R, Anderson G P, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents [J]. Analytical Chemistry,2003,76(3):684-688.
    [218]Hu M, Yan J, He Y, et al. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip [J]. ACS Nano,2009,4(1):488-494.
    [219]Gerion D, Chen F, Kannan B, et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays [J]. Analytical Chemistry,2003, 75(18):4766-4772.
    [220]Liang R Q, Li W, Li Y, et al. An oligonucleotide microarray for microrna expression analysis based on labeling RNA with quantum dot and nanogold probe [J]. Nucleic Acids Research,2005,33(2):el7
    [221]Medintz I L, Sapsford K E, Clapp A R, et al. Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots [J]. The Journal of Physical Chemistry B,2006, 110(22):10683-10690.
    [222]Tavares A J, Noor M O, Vannoy C H, et al. On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer [J]. Analytical Chemistry,2011,84(1):312-319.
    [223]Algar W R, Krull U J. Multidentate surface ligand exchange for the immobilization of CdSe/ZnS quantum dots and surface quantum dot-oligonucleotide conjugates [J]. Langmuir,2008,24(10):5514-5520.
    [224]Algar W R, Krull U J. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer [J]. Langmuir,2008,25(1):633-638.
    [225]Algar W R, Krull U J. Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer [J]. Analytical Chemistry,2009,81(10): 4113-4120.
    [226]Algar W R, Krull U J. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer [J]. Analytical Chemistry,2009,82(1):400-405.
    [227]Thakar R, Chen Y, Snee P T. Efficient emission from core/(doped) shell nanoparticles:applications for chemical sensing [J]. Nano Letters,2007,7(11):3429-3432.
    [228]Wu P, He Y, Wang H-F, et al. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids [J]. Analytical Chemistry,2010,82(4):1427-1433.
    [229]Wang H-F, He Y, Ji T-R, et al. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water [J]. Analytical Chemistry, 2009,81(4):1615-1621.
    [230]He Y, Wang H-F, Yan X-P. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids [J]. Analytical Chemistry,2008,80(10): 3832-3837.
    [231]He Y, Wang H-F, Yan X-P. Self-assembly of Mn-doped ZnS quantum dots/octa(3-aminopropyl)octasilsequioxane octahydrochloride nanohybrids for optosensing DNA [J]. Chemistry-A European Journal,2009,15(22):5436-5440.
    [232]Wu P, Miao L-N, Wang H-F, et al. A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots [J]. Angewandte Chemie International Edition, 2011,50(35):8118-8121.
    [233]Yan H, Wang H-F. Turn-on room temperature phosphorescence assay of heparin with tunable sensitivity and detection window based on target-induced self-assembly of polyethyleneimine capped Mn-doped ZnS quantum dots [J]. Analytical Chemistry,2011,83(22):8589-8595.
    [234]Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, et al. Modelling the optical response of gold nanoparticles [J]. Chemical Society Reviews,2008,37(9):1792-1805.
    [235]Lee J, Javed T, Skeini T, et al. Bioconjugated Ag nanoparticles and CdTe nanowires:metamaterials with field-enhanced light absorption [J]. Angewandte Chemie International Edition,2006,45(29): 4819-4823.
    [236]Lakowicz J R. Radiative decay engineering 5:Metal-enhanced fluorescence and plasmon emission [J]. Analytical Biochemistry,2005,337(2):171-194.
    [237]Petryayeva E, Krull U J. Localized surface plasmon resonance:Nanostructures, bioassays and biosensing-a review [J]. Analytica Chimica Acta,2011,706(1):8-24.
    [238]Bardhan R, Grady N K, Cole J R, et al. Fluorescence enhancement by Au nanostructures:nanoshells and nanorods [J]. ACS Nano,2009,3(3):744-752.
    [239]Munechika K, Chen Y, Tillack A F, et al. Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms [J]. Nano Letters,2010,10(7):2598-2603.
    [240]Chen Y, Munechika K, Ginger D S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles [J]. Nano Letters,2007,7(3): 690-696.
    [241]Schneider G, Decher G, Nerambourg N, et al. Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes [J]. Nano Letters,2006,6(3): 530-536. [242] Kulakovich O, Strekal N, Yaroshevich A, et al. Enhanced luminescence of CdSe quantum dots on gold colloids [J]. Nano Letters,2002,2(12):1449-1452.
    [243]Chan Y-H, Chen J, Wark S E, et al. Using patterned arrays of metal nanoparticles to probe plasmon enhanced luminescence of CdSe quantum dots [J]. ACS Nano,2009,3(7):1735-1744.
    [244]Farcau C, Astilean S. Silver half-shell arrays with controlled plasmonic response for fluorescence enhancement optimization [J]. Applied Physics Letters,2009,95(19):193110.
    [245]Liu N, Prall B S, Klimov V I. Hybrid gold/silica/nanocrystal-quantum-dot superstructures:synthesis and analysis of semiconductor-metal interactions [J]. Journal of the American Chemical Society,2006, 128(48):15362-15363.
    [246]Guerrero A R, Aroca R F. Surface-enhanced fluorescence with shell-isolated nanoparticles (SHINEF) [J]. Angewandte Chemie International Edition,2011,50(3):665-668.
    [247]Tovmachenko O G, Graf C, van den Heuvel D J, et al. Fluorescence enhancement by metal-core/silica-shell nanoparticles [J]. Advanced Materials,2006,18(1):91-95.
    [248]Pompa P P, MartiradonnaL, Torre A D, et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control [J]. Nature Nanotechnology,2006,1(2):126-130.
    [249]Song J-H, Atay T, Shi S, et al. Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons [J]. Nano Letters,2005, 5(8):1557-1561.
    [250]Ming T, Zhao L, Yang Z, et al. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods [J]. Nano Letters,2009,9(11):3896-3903
    [251]Govorov A O, Bryant G W, Zhang W, et al. Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies [J]. Nano Letters,2006,6(5):984-994.
    [252]Govorov A O, Lee J, Kotov N A. Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles [J]. Physical Review B,2007,76(12):125308.
    [253]Munechika K, Chen Y, Tillack A F, et al. Quantum dot/plasmonic nanoparticle metachromophores with quantum yields that vary with excitation wavelength [J]. Nano Letters,2011,11 (7):2725-2730.
    [254]Zaiba S, Lerouge F, Gabudean A M, et al. Transparent plasmonic nanocontainers protect organic fluorophores against photobleaching [J]. Nano Letters,2011,11 (5):2043-2047.
    [255]Pfeiffer M, Lindfors K, Wolpert C, et al. Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna [J]. Nano Letters,2010,10(11):4555-4558.
    [256]Wang C H, Chen C W, Chen Y T, et al. Surface plasmon enhanced energy transfer betwee.n type Ⅰ CdSe/ZnS and type Ⅱ CdSe/ZnTe quantum dots [J]. Applied Physics Letters,2010,96(7):071906.
    [257]Su X R, Zhang W, Zhou L, et al. Multipole-plasmon-enhanced forster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects [J]. Applied Physics Letters,2010, 96(4):043106.
    [258]Ma X, Tan H, Kipp T, et al. Fluorescence enhancement, blinking suppression, and gray states of individual semiconductor nanocrystals close to gold nanoparticles [J]. Nano Letters,2010,10 (10): 4166-4174.
    [259]Ray K, Szmacinski H, Lakowicz J R. Enhanced fluorescence of proteins and label-free bioassays using aluminum nanostructures [J]. Analytical Chemistry,2009,81(15):6049-6054.
    [260]Wilson R, Nicolau D V. Separation-free detection of biological molecules based on plasmon-enhanced fluorescence [J]. Angewandte Chemie International Edition,2011,50(9):2151-2154.
    [261]Malicka J, Gryczynski I, Lakowicz J R. Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces [J]. Analytical Chemistry,2003,75(17):4408-4414.
    [262]Robelek R, Niu L, Schmid E L, et al. Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry [J]. Analytical Chemistry,2004,76(20):6160-6165.
    [263]Chan Y H, Chen J X, Liu Q S, et al. Ultrasensitive copper(Ⅱ) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots [J]. Analytical Chemistry,2010,82(9):3671-3678.
    [264]Aslan K, Geddes C D. Microwave-accelerated metal-enhanced fluorescence:platform technology for ultrafast and ultrabright assays [J]. Analytical Chemistry,2005,77(24):8057-8067.
    [265]Nusz G J, Marinakos S M, Curry A C, et al. Label-free plasmonic detection of biomolecular binding by a single gold nanorod [J]. Analytical Chemistry,2008,80(4):984-989.
    [266]Ray K, Badugu R, Lakowicz J R. Metal-enhanced fluorescence from CdTe nanocrystals:a single-molecule fluorescence study [J]. Journal of the American Chemical Society,2006,128(28): 8998-8999.
    [267]Zhang J, Fu Y, Chowdhury M H, et al. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer:coupling effect between metal particles [J]. Nano Letters,2007,7(7): 2101-2107.
    [268]Jenning T L, Singh M P, Strouse G F. Fluorescent lifetime quenching near d= 1.5 nm gold nanoparticles:probing NSET validity [J]. Journal of the American Chemical Society,2006,128(16): 5462-5467.
    [269]Singh M P, Strouse G F. Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle [J]. Journal of the American Chemical Society,2010,132(27):9383-9391.
    [270]Yun C S, Javier A, Jennings T, et al. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier [J]. Journal of the American Chemical Society,2005,127(9):3115-3119.
    [271]Ganesh N, Zhang W, Mathias P C, et al. Enhanced fluorescence emission from quantum dots on a photonic crystal surface [J]. Nature Nanotechnology,2007,2(8):515-520.
    [272]Lodahl P, Driel A F, Nikolaev I S, et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals [J]. Nature,2004,430(7000):654-657.
    [273]Yang S T, Cao L, Luo P G, et al. Carbon dots for optical imaging in vivo [J]. Journal of the American Chemical Society,2009,131(32):11308-11309.
    [274]Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging [J]. Journal of the American Chemical Society,2007,129(37):11318-11319.
    [275]Zheng L, Chi Y, Dong Y, et al. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite [J]. Journal of the American Chemical Society,2009,131(13): 4564-4565.
    [276]Lin Z, Xue W, Chen H, et al. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing [J]. Analytical Chemistry,2011,83 (21):8245-8251.
    [277]Liu S, Tian J Q, Wang L, et al. Hydrothermal treatment of grass:a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(Ⅱ) ions [J]. Advanced Materials,2012,24(15):2037-2041.
    [278]Zhu A W, Qu Q, Shao X L, et al. Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions [J]. Angewandte Chemie International Edition, DOI:10.1002/anie.201109089.
    [279]Zhao H X, Liu L Q, Liu Z D, et al. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots [J]. Chemical Communications, 2011,47(9):2604-2606.
    [280]Pan D Y, Zhang J C, Li Z, et al. Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles [J]. Chemical Communications,2010,46(21):3681-3683.
    [281]Shen J H, Zhu Y H, Yang X L, et al. Graphene quantum dots:emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices [J]. Chemical Communications,2012,48(31):3686-3699.
    [282]Li L S, Yan X. Colloidal graphene quantum dots [J]. The Journal of Physical Chemistry Letters,2010, 1(17):2572-2576.
    [283]Mueller M L, Yan X, Dragnea B, et al. Slow hot-carrier relaxation in colloidal graphene quantum dots [J]. Nano Letters,2011,11(1):56-60.
    [284]Mueller M L, Yan X, McGuire J A, et al. Triplet states and electronic relaxation in photoexcited graphene quantum dots [J]. Nano Letters,2010,10(7):2679-2682.
    [285]Eda G, Lin Y Y, Mattevi C, et al. Blue photoluminescence from chemically derived graphene oxide [J]. Advanced Materials,2010,22(4):505-509.
    [286]Pan D, Zhang J, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J]. Advanced Materials,2010,22(6):734-738.
    [287]Yan X, Cui X, Li B, et al. Large, Solution-processable graphene quantum dots as light absorbers for photovoltaics [J]. Nano Letters,2010,10(5):1869-1873.
    [288]Zhu S J, Tang S J, Zhang J H, et al. Control the size and surface chemistry of graphene for the rising fluorescent materials [J]. Chemical Communications,2012,48(38):4527-4539.
    [289]Varnavski O, Ramakrishna G, Kim J H, et al. Critical size for the observation of quantum confinement in optically excited gold clusters [J]. Journal of the American Chemical Society,2010,132 (1): 16-17.
    [290]Shang L, Dong S J, Nienhaus G U. Ultra-small fluorescent metal nanoclusters:synthesis and biological applications [J]. Nano Today,2011,6(4):401-418.
    [291]Huang C C, Yang Z S, Lee K H, et al. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II) [J]. Angewandte Chemie International Edition,2007,46(36):6824-6828.
    [292]Lin Y H, Tseng W L. Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type Ⅵ-stabilized gold nanoclusters [J]. Analytical Chemistry,2010,82(22): 9194-9200.
    [293]Shang L, Dong S J. Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(Ⅱ) [J]. Journal of Materials Chemistry,2008,18(39):4636-4640.
    [294]Lan G Y, Huang C C, Chang H T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions [J]. Chemical Communications,2010,46(8):1257-1259.
    [295]Ho J A, Chang H C, Su W T. DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions [J]. Analytical Chemistry,2012,84(7): 3246-3253.
    [296]Yue Y, Liu T Y, Li H W, et al. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(Ⅰ) ions [J]. Nanoscale,2012,4(7): 2251-2254.
    [297]Roy S, Palui G, Banerjee A. The as-prepared gold cluster-based fluorescent sensor for the selective detection of As-Ⅲ ions in aqueous solution [J]. Nanoscale,2012,4(8):2734-2740.
    [298]Goswami N, Giri A, Bootharaju M S, et al. Copper quantum clusters in protein matrix:potential sensor of Pb2+ ion [J]. Analytical Chemistry,2011,83 (24):9676-9680.
    [299]Huang C C, Chiang C K, Lin Z H, et al. Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching [J]. Analytical Chemistry,2008,80(5):1497-1504.
    [300]Shiang Y C, Lin C A, Huang C C, et al. Protein A-conjugated luminescent gold nanodots as a label-free assay for immunoglobulin G in plasma [J]. Analyst,2011,136(6):1177-1182.
    [301]Wen F, Dong Y, Feng L, et al. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing [J]. Analytical Chemistry,2011,83(4):1193-1196.
    [302]Zhou Z X, Du Y, Dong S J. Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor [J]. Analytical Chemistry,2011,83(13):5122-5127.
    [303]Shiang Y C, Huang C C, Chang H T. Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose [J]. Chemical Communications,2009,23:3437-3439.
    [304]Shang L, Dong S. Sensitive detection of cysteine based on fluorescent silver clusters [J]. Biosensors and Bioelectronics,2009,24(6):1569-1573.
    [305]Huang Z, Pu F, Lin Y, et al. Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds [J]. Chemical Communications,2011,47(12):3487-3489.
    [306]Guo W, Yuan J, Dong Q, et al. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification [J]. Journal of the American Chemical Society,2010,132(3):932-934.
    [307]Yeh H C, Sharma J, Han J J, et al. A DNA-silver nanocluster probe that fluoresces upon hybridization [J]. Nano Letters,2010,10(8):3106-3110.
    [308]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669.
    [309]Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials,2007,6(3):183-191.
    [310]Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene [J]. Science,2008,320(5881):1308.
    [311]Pang S P, Hernandez Y, Feng X L, et al. Graphene as transparent electrode material for organic electronics [J]. Advanced Materials,2011,23(25):2779-2795.
    [312]Loh K P, Bao Q, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications [J]. Nature Chemistry,2010,2(12):1015-1024.
    [313]Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene [J]. Solid State Communications,2008,146(9-10):351-355.
    [314]Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters,2008,8(3):902-907.
    [315]Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science,2008,321(5887):385-388.
    [316]Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum hall effect in graphene [J]. Science,2007,315(5817):1379.
    [317]Bai H, Li C, Shi G Q. Functional composite materials based on chemically converted graphene [J]. Advanced Materials,2011,23(9):1089-1115.
    [318]Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide:synthesis, properties, and applications [J]. Advanced Materials,2010,22(35):3906-3924.
    [319]Shang N, Papakonstantinou P, McMullan M, et al. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes [J]. Advanced Functional Materials,2008,18(21):3506-3514.
    [320]Zhou M, Zhai Y and Dong S, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide [J]. Analytical Chemistry,2009,81(14):5603-5613.
    [321]Shan C, Yang H, Song J, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene [J]. Analytical Chemistry,2009,81(6):2378-2382.
    [322]Wang Y, Shao Y, Matson D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing [J]. ACS Nano,2010,4(4):1790-1798.
    [323]Shan C, Yang H, Han D, et al. Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene [J]. Biosensors and Bioelectronics,2010,25(6):1504-1508.
    [324]Guo S J, Wen D, Zhai Y, et al. Ionic liquid-graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene [J]. Biosensors and Bioelectronics,2011,26(8): 3475-3481.
    [325]Zhang Q, Wu S, Zhang L, et al. Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry [J]. Biosensors and Bioelectronics,2011,26(5): 2632-2637.
    [326]Guo C X, Lei Y, Li C M. Porphyrin functionalized graphene for sensitive electrochemical detection of ultratrace explosives [J]. Electroanalysis,2011,23(4):885-893.
    [327]Guo Y, Guo S, Ren J, et al. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability:synthesis and host-guest inclusion for enhanced electrochemical performance [J]. ACS Nano,2010,4(7):4001-4010.
    [328]Lv W, Guo M, Liang M H, et al. Graphene-DNA hybrids:self-assembly and electrochemical detection performance [J]. Journal of Materials Chemistry,2010,20(32):6668-6673.
    [329]Guo S, Wen D, Zhai Y, et al. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet:one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing [J]. ACS Nano,2010,4(7): 3959-3968.
    [330]Shan C, Yang H, Han D, et al. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing [J]. Biosensors and Bioelectronics,2010,25(5):1070-1074.
    [331]Du D, Liu J, Zhang X, et al. One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: preparation, characterization and application for detection of organophosphorus agents [J]. Journal of Materials Chemistry,2011,21(22):8032-8037.
    [332]Wang K, Liu Q, Guan Q M, et al. Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of rapheme and CdS nanocrystals [J]. Biosensors and Bioelectronics,2011,26(5):2252-2257.
    [333]Zhang Y, Yuan R, Chai Y, et al. Simultaneous voltammetric determination for DA, AA and NC2-based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform [J]. Biosensors and Bioelectronics,2011,26(9):3977-3980.
    [334]Cai Y, Li H, Du B, et al. Ultrasensitive electrochemical immunoassay for BRCAI using BMIM BF4-coated SBA-15 as labels and functionalized graphene as enhancer [J]. Biomaterials,2011,32(8): 2117-2123.
    [335]Du D, Zou Z, Shin Y, et al. Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres [J]. Analytical Chemistry,2010,82(7):2989-2995.
    [336]Wei Q, Xin X, Du B, et al. Electrochemical immunosensor for norethisterone based on signal amplification strategy of graphene sheets and multienzyme functionalized mesoporous silica nanoparticles [J]. Biosensors and Bioelectronics,2010,26(2):723-729.
    [337]Qu F L, Lu H M, Yang M H, et al. Electrochemical immunosensor based on electron transfer mediated by graphene oxide initiated silver enhancement [J]. Biosensors and Bioelectronics,2011,26(12): 4810-4814.
    [338]Lin D J, Wu J, Wang M, et al. Triple signal amplification of graphene film, polybead carried gold nanoparticles as tracing tag and silver deposition for ultrasensitive electrochemical immunosensing [J]. Analytical Chemistry,2012,84 (8):3662-3668.
    [339]Tang J, Tang D, Niessner R, et al. Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags [J]. Analytical Chemistry,2011,83(13):5407-5414.
    [340]Wan Y, Wang Y, Wu J, et al. Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors [J]. Analytical Chemistry,2011,83(3):648-653.
    [341]Du D, Wang L, Shao Y, et al. Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392) [J]. Analytical Chemistry,2011,83(3):746-752.
    [342]Tang D P, Tang J, Li,Q F, et al. Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I [J]. Analytical Chemistry,2011, 83 (19):7255-7259.
    [343]Guo S J, Du Y, Yang X, et al. Solid-state label-free integrated aptasensor based on graphene-mesoporous silica-gold nanoparticle hybrids and silver microspheres [J]. Analytical Chemistry, 2011,83 (20):8035-8040.
    [344]Bai L J, Yuan R, Chai Y Q, et al. Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets [J]. Biomaterials,2012,33(4):1090-1096.
    [345]Du Y, Guo S J, Dong S J, et al. An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and graphene-mesoporous silica-gold nanoparticle hybrids [J]. Biomaterials,2011,32(33):8584-8592.
    [346]Choi B G, Park H, Park T J, et al. Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors [J]. ACS Nano,2010,4(5):2910-2918.
    [347]Wang L, Zhang X H, Xiong H Y, et al. A novel nitromethane biosensor based on biocompatible conductive redox graphene-chitosan/hemoglobin/graphene/room temperature ionic liquid matrix [J]. Biosensors and Bioelectronics,2010,26(3):991-995.
    [348]Li J, Guo S J, Zhai Y M, et al. High-sensitivity determination of lead and cadmium based on the nafion-graphene composite film [J]. Analytica Chimica Acta,2009,649(2):196-201.
    [349]Li J, Guo S J, Zhai Y M, et al. Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium [J]. Electrochemistry Communications,2009,11(5): 1085-1088.
    [350]Guo C X, Lu Z S, Lei Y, et al. Ionic liquid-graphene composite for ultratrace explosive trinitrotoluene detection [J]. Electrochemistry Communications,2010,12(9):1237-1240.
    [351]Fan F R F, Park S, Zhu Y W, et al. Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles [J]. Journal of the American Chemical Society,2009,131(3):937-939.
    [352]Wang Y, Lu J, Tang L H, et al. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds [J]. Analytical Chemistry,2009,81(23):9710-9715.
    [353]Xu S J, Liu Y, Wang T H, et al. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection [J]. Analytical Chemistry,2011,83(10):3817-3823.
    [354]Li L L, Liu K P, Yang G H, et al. Fabrication of graphene-quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing [J]. Advanced Functional Materials,2011,21(5): 869-878.
    [355]Wu L, Wang J, Feng L Y, et al. Label-free ultrasensitive detection of human telomerase activity using porphyrin-functionalized graphene and electrochemiluminescence technique [J]. Advanced Materials, 2012, DOI:10.1002/adma.201200412.
    [356]Bonanni A, Pumera M. Graphene platform for hairpin-DNA-based impedimetric genosensing [J]. ACS Nano,2011,5(3):2356-2361.
    [357]Hu Y W, Li F H, Bai X X, et al. Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets [J]. Chemical Communications,2011,47(6):1743-1745.
    [358]Feng L Y, Wu L, Wang J S, et al. Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors [J]. Advanced Functional Materials,2012,24(1):125-131.
    [359]Feng L Y, Chen Y, Ren J S, et al. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells [J]. Biomaterials,2011,32(11):2930-2937.
    [360]Wan Y, Lin Z F, Zhang D, et al. Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria [J]. Biosensors and Bioelectronics,2011,26(5):1959-1964.
    [361]Zhang X R, Li S G, Jin X, et al. A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers [J]. Chemical Communications,2011, 47(17):4929-4931.
    [362]Zhao X M, Zhou S W, Jiang L P, et al. Graphene-CdS nanocomposites:facile one-step synthesis and enhanced photoelectrochemical cytosensing [J]. Chemistry-A European Journal,2012,18(16):4974-4981.
    [363]Liu Y X, Dong X C, Chen P. Biological and chemical sensors based on graphene materials [J]. Chemical Society Reviews,2012,41(6):2283-2307.
    [364]Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene [J]. Nature Materials,2007,6(9):652-655.
    [365]Dua V, Surwade S P, Ammu S, et al. All-organic vapor sensor using inkjet-printed reduced graphene oxide [J]. Angewandte Chemie International Edition,2010,49(12):2154-2157.
    [366]Dan Y P, Lu Y, Kybert N J, et al. Intrinsic response of graphene vapor sensors [J]. Nano Letters, 2009,9(4):1472-1475.
    [367]Fowler J D, Allen M J, Tung V C, et al. Practical chemical sensors from chemically derived graphene [J]. ACS Nano,2009,3(2):301-306.
    [368]Johnson J L, Behnam A, Pearton S J, et al. Hydrogen sensing using Pd-functionalized multi-layer graphene nanoribbon networks [J]. Advanced Materials,2010,22(43):4877-4880.
    [369]Ang P K, Chen W, Wee A T S, et al. Solution-gated epitaxial graphene as pH sensor [J]. Journal of the American Chemical Society,2008,130(44):14392-14393.
    [370]Zhang T, Cheng Z G, Wang Y B, et al. Self-assembled 1-octadecanethiol monolayers on graphene for mercury detection [J]. Nano Letters,2010,10(11):4738-4741.
    [371]Chen K, Lu, G H, Chang J B, et al. Hg(Ⅱ) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles. Analytical Chemistry,2012,84(9):4057-4062.
    [372]Sudibya H G, He Q Y, Zhang H, et al. Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films [J]. ACS Nano,2011,5(3):1990-1994.
    [373]Ohno Y, Maehashi K, Yamashiro Y, et al. Electrolyte-gated graphene field-effect transistors for detecting pH and protein Adsorption [J]. Nano Letters,2009,9(9):3318-3322.
    [374]Ohno Y, Maehashi K, Matsumoto K. Label-free biosensors based on aptamer-modified graphene field-effect transistors [J]. Journal of the American Chemical Society,2010,132(51):18012-18013.
    [375]Mao S, Lu G H, Yu K H, et al. Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates [J]. Advanced Materials,2010,22(32): 3521-3526.
    [376]Myung S, Solanki A, Kim C, et al. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers [J]. Advanced Materials,2011,23(19):2221-2225.
    [377]Dong X C, Shi Y M, Huang W, et al. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets [J]. Advanced Materials,2010,22(14): 1649-1653.
    [378]Stine R, Robinson J T, Sheehan P E, et al. Real-time DNA detection using reduced graphene oxide field effect transistors [J]. Advanced Materials,2010,22(46):5297-5300.
    [379]Cohen-Karni T, Qing Q, Li Q, et al. Graphene and nanowire transistors for cellular interfaces and electrical recording [J]. Nano Letters,2010,10(3):1098-1102.
    [380]He Q Y, Sudibya H G, Yin Z Y, et al. Centimeter-long and large-scale micropatterns of reduced graphene oxide films:fabrication and sensing applications [J]. ACS Nano,2010,4(6):3201-3208.
    [381]Guo C X, Zheng X T, Lu Z S, et al. Biointerface by cell growth on layered graphene-artificial peroxidase-protein nanostructure for in situ guantitative molecular detection [J]. Advanced Materials,2010, 22(54):5164-5167.
    [382]Cheng Z G, Li Q, Li Z J, et al. Suspended graphene sensors with improved signal and reduced noise [J]. Nano Letters,2010,10(5):1864-1868.
    [383]Zhang B, Li Q, Cui T H. Ultra-sensitive suspended graphene nanocomposite cancer sensors with strong suppression of electrical noise [J]. Biosensors and Bioelectronics,2012,31(1):105-109.
    [384]Min S K, Kim W Y, Cho Y, et al. Fast DNA sequencing with a graphene-based nanochannel device [J]. Nature Nanotechnology,2011,6(3):162-165.
    [385]Loh K P, Bao Q L, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications [J]. Nature Chemistry,2010,2(12):1015-1024.
    [386]Luo Z T, Vora P M, Mele E J, et al. Photoluminescence and band gap modulation in graphene oxide [J]. Applied Physics Letters,2009,94(11):111909.
    [387]Kim J, Kim F, Huang J X. Seeing graphene-based sheets [J]. Materials Today,2010,13(3):28-38.
    [388]Swathi R S, Sebastian K L. Long range resonance energy transfer from a dye molecule to graphene has (distance)(?)4 dependence [J]. Journal of Chemical Physics,2009,130(8):086101.
    [389]Sun X M, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery [J]. Nano Research,2008,1(3):203-212.
    [390]Jung J H, Cheon D S, Liu F, et al. A graphene oxide based immuno-biosensor for pathogen detection [J]. Angewandte Chemie International Edition,2010,49(33):5708-5711.
    [391]Liu F, Choi J Y, Seo T S. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer [J]. Biosensors and Bioelectronics,2010,25(10):2361-2365.
    [392]Chen J L, Yan X P. Ionic strength and pH reversible response of visible and near-infrared fluorescence of graphene oxide nanosheets for monitoring the extracellular pH [J]. Chemical Communications,2011,47(11):3135-3137.
    [393]Chen J L, Yan X P, Meng K, et al. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine [J]. Analytical Chemistry,2011,83(22):8787-8793.
    [394]Li J L, Bao H C, Hou X L, et al. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy [J]. Angewandte Chemie International Edition,2012, 51(8):1830-1834.
    [395]Gokus T, Nair R R, Bonetti A, et al. Making graphene luminescent by oxygen plasma treatment [J]. ACS Nano,2009,3(12):3963-3968.
    [396]Eda G, Lin Y Y, Mattevi C, et al. Blue photoluminescence from chemically derived graphene oxide [J]. Advanced Materials,2009,22(4):505-509.
    [397]Wang D, Wang L, Dong X Y, et al. Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection[J]. Carbon,2012,50(6):2147-2154.
    [398]Gan Z X, Xiong S J, Wu X L, et al. Mn2+-bonded reduced graphene oxide with strong radiative recombination in broad visible range caused by resonant energy transfer [J]. Nano Letters,2011,11(9): 3951-3956.
    [399]Mei Q S, Zhang K, Guan G J, et al. Highly efficient photoluminescent graphene oxide with tunable surface properties [J]. Chemical Communications,2010,46(39):7319-7321.
    [400]Varghese N, Mogera U, Govindaraj A, et al. Binding of DNA nucleobases and nucleosides with graphene [J]. ChemPhysChem,2009,10(1):206-210.
    [401]Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules [J]. Angewandte Chemie International Edition,2009,48(26):4785-4787.
    [4021 Jang H, Kim Y K, Kwon H M, et al. A graphene-based platform for the assay of duplex-DNA unwinding by helicase [J]. Angewandte Chemie International Edition,2010,49(33):5703-5707.
    [403]Tang Z W, Wu H, Cort J R, et al. Constraint of DNA on functionalized graphene improves its biostability and specificity [J]. Small,2010,6(11):1205-1209.
    [404]Feng D, Zhang Y Y, Feng T T, et al. A graphene oxide-peptide fluorescence sensor tailor-made for simple and sensitive detection of matrix metalloproteinase-2 [J]. Chemical Communications,2011,47(38): 10680-10682.
    [405]Lee J, Kim Y K, Min D H. A new assay for endonuclease/methyltransferase activities based on graphene oxide [J]. Analytical Chemistry,2011,83(23):8906-8912.
    [406]Wu W H, Hu H Y, Li F, et al. A graphene oxide-based nano-beacon for DNA phosphorylation analysis [J]. Chemical Communications,2011,47(4):1201-1203.
    [407]Lin L, Liu Y, Zhao X, et al. Sensitive and rapid screening of T4 polynucleotide kinase activity and inhibition based on coupled exonuclease reaction and graphene oxide platform [J]. Analytical Chemistry, 2011,83(22):8396-8402.
    [408]Wen Y Q, Xing F F, He S J, et al. A graphene-based fluorescent nanoprobe for silver(Ⅰ) ions detection by using graphene oxide and a silver-specific oligonucleotide [J]. Chemical Communication, 2010,46(15):2596-2598.
    [409]He S J, Song B, Li D, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis [J]. Advanced Functional Materials,2010,20(3):453-459.
    [410]Wen Y Q, Peng C, Li D, et al. Metal ion-modulated graphene-DNAzyme interactions:design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range [J]. Chemical Communication,2011,47(22):6278-6280.
    [411]Zhao X H, Kong R M, Zhang X B, et al. Graphene DNAzyme based biosensor for amplified fluorescence "turn-on" detection of Pb2+ with a high selectivity [J]. Analytical Chemistry,2011,83(13): 5062-5066.
    [412]Lu C H, Li J A, Lin M H, et al. Amplified aptamer-based assay through catalytic recycling of the analyte [J]. Angewandte Chemie International Edition,2010,49(45):8454-8457.
    [413]Lin Y H, Tao Y, Pu F, et al. Combination of graphene oxide and thiol-activated DNA metallization for sensitive fluorescence turn-on detection of cysteine and their use for logic gate operations [J]. Advanced Functional Materials,2011,21(23):4565-4572.
    [414]Zhang Min, Ye B C. A reversible fluorescent DNA logic gate based on graphene oxide and its application for iodide sensing [J]. Chemical Communications,2012,48(30):3647-3649.
    [415]Li F, Feng Y, Zhao C, et al. A sensitive graphene oxide-DNA based sensing platform for fluorescence "turn-on" detection of bleomycin [J]. Chemical Communications,2012,48(1):127-129.
    [416]Chang H X, Tang L H, Wang Y, et al. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection [J]. Analytical Chemistry,2010,82(6):2341-2346.
    [417]Zhang M, Yin B C, Tan W, et al. A versatile graphene-based fluorescence "on/off switch for multiplex detection of various targets [J]. Biosensors and Bioelectronics,2011,26(7):3260-3265.
    [418]Wang X H, Wang C Y, Qu K G, et al. Ultrasensitive and selective detection of a prognostic indicator in early-stage cancer using graphene oxide and carbon nanotubes [J]. Advanced Functional Materials,2010, 20(22):3967-3971.
    [419]Pu Y, Zhu Z, Han D, et al. Insulin-binding aptamer-conjugated graphene oxide for insulin detection [J]. Analyst,2011,136(20):4138-4140.
    [420]Sheng L F, Ren J T, Miao Y Q, et al. PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer [J]. Biosensors and Bioelectronics,2011,26(8): 3494-3499.
    [421]Lu C H, Li J, Zhang X L, et al. General approach for monitoring peptide protein interactions based on graphene-peptide complex [J]. Analytical Chemistry,2011,83(19):7276-7282.
    [422]Cui L, Lin X Y, Lin N H, et al. Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method [J]. Chemical Communication,2012,48(2):194-196.
    [423]Wei W L, Qu K G, Ren J S, et al. Chiral detection using reusable fluorescent amylose-functionalized graphene [J]. Chemical Science,2011,2(10):2050-2056.
    [424]Wang Y, Li Z H, Hu D H, et al. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells [J]. Journal of the American Chemical Society,2010,132(27):9274-9276.
    [425]Wang H B, Zhang Q, Chu X, et al. Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells [J]. Angewandte Chemie International Edition,2011, 50(31):7065-7069.
    [426]Dong H F, Ding L, Yan F, et al. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA [J]. Biomaterials,2011,32(15):3875-3882.
    [427]Hu P, Zhu C Z, Jin L H, et al. An ultrasensitive fluorescent aptasensor for adenosine detection based on exonuclease III assisted signal amplification [J]. Biosensors and Bioelectronics,2012,34(1):83-87.
    [428]Liu X Q, Aizen R, Freeman R, et al. Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide:application for logic gate operations [J]. ACS Nano,2012,6(4):3553-3563.
    [429]Li F, Huang Y, Yang Q, et al. A graphene-enhanced molecular beacon for homogeneous DNA detection [J]. Nanoscale,2010,2(6):1021-1026.
    [430]Lu C H, Li J, Liu J J, et al. Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene oxide as the "nanoquencher" [J]. Chemistry-A European Journal,2010, 16(16):4889-4894.
    [431]Huang P J J, Liu J W. Molecular beacon lighting up on graphene oxide. Analytical Chemistry,2012, 84 (9):4192-4198.
    [432]Dong H F, Gao W C, Yan F, et al. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules [J]. Analytical Chemistry,2010,82(13):5511-5517.
    [433]Chen L, Zhang X W, Zhou G H, et al. Simultaneous determination of human enterovirus 71 and coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay [J]. Analytical Chemistry, 2012,84(7):3200-3207.
    [434]Zhang C L, Yuan Y X, Zhang S M, et al. Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide [J]. Angewandte Chemie International Edition,2011,50(30):6851-6854.
    [435]Liu C H, Wang Z, Jia H X, et al. Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide:a highly sensitive biosensing platform [J]. Chemical Communications,2011,47(16):4661-4663.
    [436]Wei W L, Xu C, Ren J S, et al. Sensing metal ions with ion selectivity of crown ether and fluorescence resonance energy transfer between carbon dots and graphene [J]. Chemical Communications, 2012,48(9):1284-1286.
    [437]Wang L H, Pu K Y, Li J, et al. A graphene-conjugated oligomer hybrid probe for light-up sensing of lectin and escherichia coli [J]. Advanced Materials,2011,23(38):4386-4391.
    [438]Balapanuru J, Yang J X, Xiao S, et al. A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties [J]. Angewandte Chemie International Edition,2010,49(37): 6549-6553.
    [439]Cai L P, Zhan R Y, Pu K Y, et al. Butterfly-shaped conjugated oligoelectrolyte/graphene oxide integrated assay for light-up visual detection of heparin [J]. Analytical Chemistry,2011,83(20): 7849-7855.
    [440]Xu X J, Huang J, Li J J, et al. A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin [J]. Chemical Communications,2011,47(45),12385-12387.
    [441]Xu Y Q, Malkovskiy A, Pang Y. A graphene binding-promoted fluorescence enhancement for bovine serum albumin recognition [J]. Chemical Communications,2011,47(23):6662-6664.
    [442]Chen Q S, Wei W L, Lin J M, et al. Homogeneous detection of concanavalin a using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer [J]. Biosensors and Bioelectronics,2011,26(11):4497-4502.
    [443]Huang W T, Shi Y, Xie W Y, et al. A reversible fluorescence nanoswitch based on bifunctional reduced graphene oxide:use for detection of Hg2+ and molecular logic gate operation [J]. Chemical Communications,2011,47(27):7800-7802.
    [444]Shi Y, Huang W T, Luo H Q, et al. A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin [J]. Chemical Communications,2011,47(16): 4676-4678.
    [445]Song Y J, Qu K G, Zhao C, et al. Graphene oxide:intrinsic peroxidase catalytic activity and its application to glucose detection [J]. Advanced Materials,2010,22(19):2206-2210.
    [446]Guo Y J, Deng L, Li J, et al. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism [J]. ACS Nano,2011,5(2): 1282-1290.
    [447]Xie L M, Ling X, Fang Y, et al. Graphene as a substrate to suppress fluorescence in resonance raman spectroscopy [J]. Journal of the American Chemical Society,2009,131(29):9890-9891.
    [448]Ling X, Xie L M, Fang Y, et al. Can graphene be used as a substrate for Raman enhancement? [J]. Nano Letters,2010,10(2):553-561.
    [449]Jung N, Crowther A C, Kim N, et al. Raman enhancement on graphene:adsorbed and intercalated molecular species [J]. ACS Nano,2010,4(11):7005-7013.
    [450]Huh S, Park J, Kim Y S, et al. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced raman scattering [J]. ACS Nano,2011,5(12):9799-9806.
    [451]Yu X X, Cai H B, Zhang W H, et al. Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets [J]. ACS Nano,2011,5(2):952-958.
    [452]Thrall E S, Crowther A C, Yu Z H, et al. R6G on graphene:high Raman detection sensitivity, yet decreased Raman cross-section [J]. Nano Letters,2012,12(3):1571-1577.
    [453]He S J, Liu K K, Su S, et al. Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection [J]. Analytical Chemistry,2012, doi.org/10.1021/ac300577d.
    [454]Lu G, Li H, Liusman C, et al. Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules [J]. Chemical Science, 2011,2(9):1817-1821.
    [455]Ren W, Fang Y X, Wang E K. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids [J]. ACS Nano,2011, 5(8):6425-6433.
    [456]Merchant C A, Healy K, Wanunu M, et al. DNA translocation through graphene nanopores [J]. Nano Letters.2010,10(8):2915-2921.
    [457]Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane [J]. Nature,2010,467(7321):190-193.
    [458]Venkatesan B M, Estrada D, Banerjee S, et al. Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes [J]. ACS Nano,2012,6(1):441-450
    [459]Postma H W C. Rapid sequencing of individual DNA molecules in graphene nanogaps [J]. Nano Letters,2010,10(2):420-425.
    [460]Hamid M, Rehman K. Potential applications of peroxidases [J]. Food Chemistry,2009,115(4): 1177-1186.
    [461]Liu J Q, Wulff G. Molecularly imprinted polymers with strong carboxypeptidase A-like activity: combination of an amidinium function with a zinc-ion binding site in transition-state imprinted cavities [J]. Angewandte Chemie International Edition,2004,43(10):1287-1290.
    [462]Dong Z, Liu J, Mao S, et al. Aryl thiol substrate 3-carboxy-4-nitrobenzenethiol strongly stimulating thiol peroxidase activity of glutathione peroxidase mimic 2,2'-ditelIurobis(2-deoxy-β-cyclodextrin) [J]. Journal of the American Chemical Society,2004,126(50):16395-16404.
    [463]Hessenauer-llicheva N, Franke A, Meyer D, et al. Low-temperature rapid-scan detection of reactive intermediates in epoxidation reactions catalyzed by a new enzyme mimic of cytochrome p450 [J]. Journal of the American Chemical Society,2007,129(41):12473-12479.
    [464]French R R, Holzer P, Leuenberger M G, et al. A supramolecular enzyme mimic that catalyze the 15,15'double bond scission of β,β-carotene [J]. Angewandte Chemie International Edition,2000,39(7): 1267-1269.
    [465]Molenveld P, Engbersen J F J, Reinhoudt D N. Dinuclear bisimidazolyl-Cu(Ⅱ) calix[4]arenas as metalloenzyme models. Synthesis and bifunctional catalysis in phosphate diester transesterification [J]. The Journal of Organic Chemisty,1999,64(17),6337-6341.
    [466]Li X, Qi Z, Liang K, et al. An artificial supramolecular nanozyme based on β-cyclodextrin-modified gold nanoparticles [J]. Catalysis Letters.2008,124(3),413-417.
    [467]Gao L Z, Zhuang J, Nie J B, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles [J]. Nature Nanotechnology,2007,2(9):577-583.
    [468]Andre R, Natalio F, Humanes M, et al. V2O5 nanowires with an intrinsic peroxidase-like activity [J]. Advanced Functional Materials,2011,21(3):501-509.
    [469]Dai Z, Liu S, Bao J, et al. Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing [J]. Chemistry-A European Journal,2009,15(17):4321-4326.
    [470]Song Y J, Wang X H, Ren J S, et al. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity [J]. Chemistry-A European Journal,2010,16(12):3617-3621.
    [471]Wang X H, Qu K G, Xu B L, et al. Multicolor luminescent carbon nanoparticles:synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-Like catalytic activity and applications [J]. Nano Research,2011,4(9):908-920.
    [472]Shi W B, Wang Q L, Long Y J, et al. Carbon nanodots as peroxidase mimetics and their applications to glucose detection [J]. Chemical Communications,2011,47(23):6695-6697.
    [473]Roy P, Lin, Z H, Liang C T, et al. Synthesis of enzyme mimics of iron telluride nanorods for the detection of glucose [J]. Chemical Communications,2012,48(34):4079-4081.
    [474]Shi W B, Zhang X D, He S H, et al. CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose [J]. Chemical Communications,2011,47(38): 10785-10787.
    [475]Jv Y, Li B, Cao R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection [J]. Chemical Communications,2010,46(42):8017-8019.
    [476]Heckert E G, Karakoti A S, Seal S, et al. The role of cerium redox state in the SOD mimetic activity of nanoceria [J]. Biomaterials 2009,29(18):2705-2709.
    [477]Asati A, Santra S, Kaittanis C, et al. Oxidase-like activity of polymer-coated cerium oxide nanoparticles [J]. Angewandte Chemie International Edition,2009,48(13):2308-2312.
    [478]He W W, Liu Y, Yuan J S, et al. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays [J]. Biomaterials 2011,32(4):1139-1147.
    [479]Luo W J, Zhu C F, Su S, et al. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles [J]. ACS Nano,2010,4(12):7451-7458.
    [480]Asati A, Kaittanis C, Santra S, et al. pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH [J]. Analytical Chemistry, 2011,83(7):2547-2553.
    [481]Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection [J]. Analytical Chemistry,2008,80(6):2250-2254.
    [482]Ding N, Yan N, Ren C, et al. Colorimetric determination of melamine in dairy products by Fe3O4 magnetic nanoparticles-H2O2-ABTS detection system [J]. Analytical Chemistry,2010,82(13):5897-5899.
    [483]Ma Y, Zhang Z, Ren C, et al. A novel colorimetric determination of reduced glutathione in A549 cells based on Fe3O4 magnetic nanoparticles as peroxidase mimetics [J]. Analyst,2012,137(2):485-489.
    [484]Song Y, Qu K, Xu C, et al. Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes [J]. Chemical Communications,2010,46(35): 6572-6574.
    [485]Long Y, Li Y, Liu Y, et al. Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles [J]. Chemical Communications,2011,47(43):11939-11941.
    [486]Park K, Kim, M, Cho, D, et al. Label-free colorimetric detection of nucleic acids based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles [J]. Small, 2011,7(11):1521-1525.
    [487]Zhang Z, Wang Z, Wang X, et al. Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sensors and Actuators B,2010,147(2):428-433.
    [488]Song Y, Chen Y, Feng L, et al. Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity [J]. Chemical Communications, 2011,47(15):4436-4438.
    [489]Donega C D, Hickey S G, Wuister S F, et al. Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals [J]. Journal of Physical Chemistry B,2003,107(2): 489-496.
    [490]Zhang H, Wang L, Xiong H, et al. Hydrothermal synthesis for high-quality CdTe nanocrystals [J]. Advanced Materials,2003,15(20):1712-1715.
    [491]He Y, Lu H, Shai L, et al. Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence [J]. Journal of Physical Chemistry B,2006, 110(27):13370-13374.
    [492]Wang Y, Tang Z Y, Correa-Duarte M A, et al. Multicolor luminescence patterning by photoactivation of semiconductor nanoparticle films [J]. Journal of the American Chemical Society,2003, 125(10):2830-2831.
    [493]Cordero S R, Carson P J, Estabrook R A, et al. Photo-activated luminescence of CdSe quantum dot monolayers [J]. Journal of Physical Chemistry B,2000,104(51):12137-12142.
    [494]Gaponik N, Talapin D V, Rogach A L, et al. Thiol-capping of CdTe nanocrystals:an alternative to organometallic synthetic routes [J]. Journal of Physical Chemistry B,2002,106(29):7177-7185.
    [495]Zhang H, Zhou Z, Yang B, et al. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles [J]. Journal of Physical Chemistry B,2003,107(1): 8-13.
    [496]Ma J, Chen J Y, Zhang Y, et al. Photochemical instability of thiol-capped CdTe quantum dots in aqueous solution and living cells:process and mechanism [J]. Journal of Physical Chemistry B,2007, 111(41):12012-12016.
    [497]Zhang H, Wang D Y, Yang B, et al. Manipulation of aqueous growth of CdTe nanocrystals To fabricate colloidally stable one-dimensional nanostructures [J]. Journal of the American Chemical Society, 2006,128(31):10171-10180.
    [498]He Y, Lu H, Sai, L, et al. Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution [J]. Chemistry of Materials,2007,19(3):359-365.
    [499]Talapin D V, Rogach A L, Shevchenko E V, et al. Dynamic distribution of growth rates within the ensembles of colloidal Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductor nanocrystals as a factor governing their photoluminescence efficiency [J]. Journal of the American Chemical Society,2002,124(20):5782-5790
    [500]Borchert H, Talapin D V, Gaponik N, et al. Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS [J]. Journal of Physical Chemistry B,2003,107(36):9662-9668.
    [501]Jones M, Nedeljkovic J, Ellingson R J, et al. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions [J]. Journal of Physical Chemistry B,2003,107(41):11346-11352.
    [502]Taki M, Wolford J L, O'Halloran T V. Emission ratiometric imaging of intracellular zinc:Design of a benzoxazole fluorescent sensor and its application in two-photon microscopy [J]. Journal of the American Chemical Society,2006,126(3):712-713.
    [503]Peng X J, Du J J, Fan J R, et al. A selective fluorescent sensor for imaging Cd2+ in living cells [J]. Journal of the American Chemical Society,2006,129(6):1500-1501.
    [504]Yoon S, Miller E W, He Q, et al. A bright and specific fluorescent sensor for mercury in water, cells, and tissue [J]. Angewandte Chemie International Edition,2007,46(35):6658-6661.
    [505]Wark S E, Hsia C H, Dong H S. Effects of ion solvation and volume change of reaction on the equilibrium and morphology in cation-exchange reaction of nanocrystals [J]. Journal of the American Chemical Society,2008,130(29):9550-9555.
    [506]Son D H, Hughes S M, Yin Y, et al. Cation exchange reactions-in ionic nanocrystals [J]. Science, 2004,306(5698):1009-1012.
    [507]Royzen M, Dai Z H, Canary J W. Ratiometric displacement approach to Cu(Ⅱ) sensing by fluorescence [J]. Journal of the American Chemical Society,2005,127(6):1612-1613.
    [508]Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society,1958,80(6):1339.
    [509]Zhou Y, Bao Q, Tang L L, et al. Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties [J]. Chemistry Materials,2009,21(13):2950-2956.
    [510]Si Y, Samulski E T. Synthesis of water soluble graphene [J]. Nano Letters,2008,8(6):1679-1682.
    [511]Li X L, Zhang G Y, Bai X D, et al. Highly conducting graphene sheets and Langmuir-Blodgett films [J]. Nature Nanotechnology,2008,3(9),538-542.
    [512]James D R, Liu Y S, de Mayo P, et al. Distributions of fluorescence lifetimes-consequences for the photophysics of molecules adsorbed on surfaces [J]. Chemical Physics Letters,1985,120(4),460-465.
    [513]Schneider G, Decher G, Nerambourg N, et al. Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes [J]. Nano Letters,2006,6(3), 530-536.
    [514]McCarthy J J, Hilfiker R. The use of single-nucleotide polymorphism maps in pharmacogenomics [J]. Nature Biotechnology,2000,18(5):505-508.
    [515]Liu G D, Lin Y H. Electrochemical quantification of single-nucleotide polymorphisms using nanoparticle probes [J]. Journal of the American Chemical Society,2007,129(34):10394-10401.
    [516]Gaylord B S, Massie M R, Feinstein S C, et al. SNP detection using peptide nucleic acid probes and conjugated polymers:applications in neurodegenerative disease identification [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(1),34-39.
    [517]Duan X, Yue W, Liu L, et al. Single-nucleotide polymorphism (SNP) genotyping using cationic conjugated polymers in homogeneous solution [J]. Nature Protocols,2009,4(6):984-990.
    [518]Xue X J, Xu W,Wang F, et al. Multiplex single-nucleotide polymorphism typing by nanoparticle-coupled DNA-templated reactions [J]. Journal of the American Chemical Society,2009, 131(13),11668-11669.
    [519]Xu Y, Karalkar N B, Kool E T. Nonenzymatic autoligation in direct three-color detection of RNA and DNA point mutations [J]. Nature Biotechnology,2001,19(2):148-152.
    [520]Xiao Y, Plakos K J I, Lou X H, et al. Fluorescence detection of single-nucleotide polymorphisms with a single, self-complementary, triple-stem DNA probe [J]. Angewandte Chemie International Edition, 2009,48(24):4354-4358.
    [521]Wang H, Li J S, Wang Y X, et al. Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides:A simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms [J]. Analytical Chemistry,2010,82(18):7684-7690.
    [522]Zheleznaya L A, Kopein D S, Rogulin E A, et al. Significant enhancement of fluorescence on hybridization of a molecular beacon to a target DNA in the presence of a site-specific DNA nickase [J]. Analytical Biochemistry,2006,348(1):123-126.
    [523]Saini S, Srinivas G, Bagchi B. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles [J]. Journal of Physical Chemistry B,2009,113(7): 1817-1832.
    [524]Xue X J, Xu W, Wang F, et al. Multiplex single-nucleotide polymorphism typing by nanoparticle-coupled DNA-templated reactions [J]. Journal of the American Chemical Society,2009, 131(33):11668-11669.
    [525]Liu G D, Lee T M H, Wang J S. Nanocrystal-based bioelectronic coding of single nucleotide polymorphisms [J]. Journal of the American Chemical Society,2005,127(1):38-39.
    [526]Ding C F, Wang Z F, Zhong H, et al. Ultrasensitive chemiluminescence quantification of single-nucleotide polymorphisms by using monobase-modified Au and CuS nanoparticles [J]. Biosensors and Bioelectronics,2010,25(5):1082-1087.
    [527]Lowe A J, Huh Y S, Strickland AD, et al. Multiplex single nucleotide polymorphism genotyping utilizing ligase detection reaction coupled surface enhanced Raman spectroscopy [J]. Analytical Chemistry, 2010,82(13):5810-5814.
    [528]Liu C W, Lin Y W, Huang C C, et al. Fluorescence detection of single-nucleotide polymorphisms using a thymidine-based molecular beacon [J]. Biosensors and Bioelectronics,2009,24(8):2541-2546.
    [529]Duan X, Liu L B, Wang S, Homogeneous and one-step fluorescent allele-specific PCR for SNP genotyping assays using conjugated polyelectrolytes [J]. Biosensors and Bioelectronics,2009,24(7): 2095-2099.
    [530]Li K, Liu B. Conjugated polyelectrolyte amplified thiazole orange emission for label free sequence specific DNA detection with single nucleotide polymorphism selectivity [J]. Analytical Chemistry,2009, 81(10):4099-4105.
    [531]Yang R H, Yin J Y, Chen Y, et al. Carbon nanotube-quenched fluorescent oligonucleotides:Probes that fluoresce upon hybridization [J]. Journal of the American Chemical Society,2008,130(26): 8351-8358.
    [532]Kim C K, Kalluru R R, Singh J P, et al. Gold-nanoparticle-based miniaturized laser-induced fluorescence probe for specific DNA hybridization detection:studies on size-dependent optical properties [J]. Nanotechnology,2006,17(13):3085-3093.
    [533]Beckmann K B, Ames B N. Oxidative decay of DNA [J]. Journal of Biological Chemistry,1997, 272(32):19633-19636.
    [534]Evans M D, Dizdaroglu M, Cooke M S. Oxidative DNA damage and disease:induction, repair and significance [J]. Mutation Research-Reviews in Mutation Research,2004,567(1):1-61.
    [535]Morgan A R, Cone R L, Elgert T M. Mechanism of DNA strand breakage by vitamin-C and superoxide and protective roles of catalyse and superoxide-dismutase [J]. Nucleic Acids Research,1976, 3(5):1139-1149.
    [536]Yamashita N, Murata M, Inoue S, et al. alpha-tocopherol induces oxidative damage to DNA in the presence of Copper(Ⅱ) ions [J]. Chemical Research in Toxicology,1998,11(8):855-862.
    [537]Taqui Khan M M, Martell A E. Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation [J]. Journal of the American Chemical Society,1967,89(16):4176-4185.
    [538]Tang Y L, Feng F D, He F, et al. Direct visualization of enzymatic cleavage and oxidative damage by hydroxyl radicals of single-stranded DNA with a cationic polythiophenc derivative [J]. Journal of the American Chemical Society,2006,128(46):14972-14976.
    [539]Zeng L, Miller E M, Pralle A, et al. A selective turn-on fluorescent sensor for imaging copper in living cells [J]. Journal of the American Chemical Society,2006,128(1):10-11.
    [540]Chen B L, Wang L B, Xiao Y Q, et al. A luminescent metal-organic framework with lewis basic pyridyl sites for the sensing of metal ions [J]. Angewandte Chemie International Edition,2009,48(3): 500-503.
    [541]Breaker R R, Joyce G F. A DNA enzyme that cleaves RNA [J]. Chemistry and Biology,1994,1(4): 223-229.
    [542]Carmi N, Shultz L A, Breaker R R. In vitro selection of self-cleaving DNAs [J]. Chemistry and Biology,1996,3(12):1039-1046.
    [543]Mei S H J, Liu Z, Brennan J D, et al. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling [J]. Journal of the American Chemical Society,2003,125(2): 412-420.
    [544]Liu J W, Lu Y, A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity [J]. Journal of the American Chemical Society,2007,129(32): 9838-9839.
    [545]Liu J W, Lu Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing [J]. Journal of the American Chemical Society,2005,127(36):12677-12683.
    [546]Liu J W, Lu Y. Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity [J]. Angewandte Chemie International Edition,2007, 46(40):7587-7759.
    [547]Lee J H, Wang Z D, Liu J W, et al. Highly sensitive and selective colorimetric sensors for uranyl (UO2+):development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems [J]. Journal of the American Chemical Society,2008,130(43):14217-14226.
    [548]Qin H X, Ren J T, Wang J H, et al. G-quadruplex-modulated fluorescence detection of potassium in the presence of a 3500-fold excess of sodium ions [J]. Analytical Chemistry,2010,82(19):8356-8360.
    [549 Kong D M, Ma Y E, Guo J H, et al. Fluorescent sensor for monitoring structural changes of G-quadruplexes and detection of potassium ion [J]. Analytical Chemistry,2009,81(7):2678-2684.
    [550]Xiang Y, Yong A J, Lu Y. Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range [J]. Journal of the American Chemical Society,2009,131(42):15352-15357.
    [551]Xiang Y, Wang Z D, Xing H, et al. Label-free fluorescent functional DNA sensors using unmodified DNA:A vacant site approach [J]. Analytical Chemistry,2010,82(10):4122-4129.
    [552]Yang R H, Tang Z W, Yan J L, et al. Noncovalent assembly of carbon nanotubes and single-stranded DNA:An effective sensing platform for probing biomolecular interactions [J]. Analytical Chemistry,2008, 80(19):7408-7413.
    [553]Yin B C, Ye B C, Tan W H, et al. An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper(Ⅱ) [J]. Journal of the American Chemical Society,2009,131(41):14624-14625.
    [554]Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands [J]. Nature,1990,346(6287),818-822.
    [555]Liu J, Cao Z, Lu Y. Functional nucleic acid sensors [J]. Chemical Reviews,2009,109(5):1948-1998.
    [556]Wang L, Zhu C, Han L, et al. Label-free, regenerative and sensitive surface plasmon resonance and electrochemical aptasensors based on graphene [J]. Chemical Communications,2011,47(27):7794-7796.
    [557]Jasuja K, Berry V. Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement [J]. ACS Nano,2009,3(8):2358-2366.
    [558]Johari P, Shenoy V B. Modulating optical properties of graphene oxide:role of prominent functional groups [J]. ACS Nano 2011,5(9):7640-7647.
    [559]Luque G L, Rojasa M I, Rivas G A, et al. The origin of the catalysis of hydrogen peroxide reduction by functionalized graphene surfaces:A density functional theory study. Electrochimica Acta,2010,56(1): 523-530.
    [560]Ran Q, Gao M, Guan X, et al. First-principles investigation on bonding formation and electronic structure of metal-graphene contacts [J]. Applied Physics Letters,2009,94(10):103511.
    [561]Zhou M, Zhang A, Dai Z, et al. Greatly enhanced adsorption and catalytic activity of Au and Pt clusters on defective graphene [J]. Journal of Chemical Physics,2010,132(19):194704.
    [562]Zhang Z, Berg A, Levanon H, et al. On the interactions of free radicals with gold nanoparticles [J]. Journal of the American Chemical Society,2003,125(26):7959-7963.
    [563]Giovannetti G, Khomyakov P A, Brocks G, et al. Doping graphene with metal contacts [J]. Physical Review Letters,2008,101(2):026803.
    1564] Das A, Pisana S, Chakraborty B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology,2008,3(4):210-215.
    [565]Lee J, Novoselov K S, Shin H S. Interaction between metal and graphene:dependence on the layer number of graphene [J]. ACS Nano 2011,5(1):608-612.
    1566] Sundaram R S, Steiner M, Chiu H Y, et al. The graphene-gold interface and its implications for nanoelectronics [J]. Nano Letters,2011,11(9):3833-3837.
    [567]Lu Y H, Zhou M, Zhang C, et al. Metal-embedded graphene:A possible catalyst with high activity [J]. The Journal of Physical Chemistry B,2009,113(47):20156-20160.
    [568]Li H, Rothberg L J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction [J]. Journal of the American Chemical Society,2004,126(35): 10958-10961.
    [569]Gaylord B S, Heeger A J, Bazan G C. DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single-stranded DNA [J]. Journal of the American Chemical Society, 2003,125(4):896-900.
    [570]Liang M M, Liu S L, Wei M Y, et al. Photoelectrochemical oxidation of DNA by ruthenium tris(bipyridine) on a tin oxide nanoparticle electrode [J]. Analytical Chemistry,2006,78(2):621-623.
    [571]Dennany L, Forster R J, White B, et al. Direct electrochemiluminescence detection of oxidized DNA in ultrathin films containing [Os(bpy)(2)(PVP)(10)](2+) [J]. Journal of the American Chemical Society, 2004,126(28):8835-8841.
    [572]Akiyama Y, Ma Q, Edgar E, et al. Identification of strong DNA binding motifs for bleomycin [J]. Journal of the American Chemical Society,2008,130(30):9650-9651.
    [573]Zhou L P, Yang J, Estavillo C, et al. Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA-enzyme films [J]. Journal of the American Chemical Society,2003,125(5):1431-1436.
    [574]Zhao W A, Ali M M, Aguirre S D, et al. Paper-based bioassays using gold nanoparticle colorimetric probes [J], Analytical Chemistry,2008,80(22):8431-8437.
    [575]Medintz I L, Mattoussi H. Quantum dot-based resonance energy transfer and its growing application in biology [J]. Physical Chemistry Chemical Physics,2009,11(1):17-45.
    [576]Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems:synthesis, properties, and applications [J]. Angewandte Chemie International Edition,2004,43(45),6042-6108.
    [577]Duan X, Liu L, Feng F, et al. Cationic conjugated polymers for optical detection of DNA methylation, lesions, and single nucleotide polymorphisms [J]. Accounts of Chemical Research,2010,43(2),260-270.
    [578]Feng X L, Duan X R, Liu L B, et al. Fluorescence logic-signal-based multiplex detection of nucleases with the assembly of a cationic conjugated polymer and branched DNA [J]. Angewandte Chemie International Edition,2009,48(29):5316-5321.
    [579]Rosi N L, Mirkin C A. Nanostructures in biodiagnostics [J]. Chemical Reviews,2005,105(4): 1547-1562.
    [580]Lee J S, Lytton-Jean A K R, Hurst S J, et al. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties [J]. Nano Letters,2007,7(7):2112-2115.
    [581]Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets [J]. Nature, 2007,446(7131):60-63.
    [582]Cote J L, Kim F, Huang J X. Langmuir-Blodgett Assembly of Graphite Oxide Single Layers [J]. Journal of the American Chemical Society,2009,131(3):1043-1049.
    [583]Evans M D, Dizdaroglu M, Cooke M S. Oxidative DNA damage and disease:induction, repair and significance [J]. Mutation Research-Reviews in Mutation Research,2004,567(1):1-61.
    [584]Cooke M S, Evans M D, Dizdaroglu M, et al. Oxidative DNA damage:mechanisms, mutation, and disease [J]. FASEB Journal,2003,17(10):1195-1214.
    [585]Liang M M, Guo L H. Photoelectrochemical DNA sensor for the rapid detection of DNA damage induced by styrene oxide and the Fenton reaction [J]. Environmental Science and Technology,2007,41(2): 658-664.
    [586]Biggins J B, Prudent J R, Marshall D J, et al. A continuous assay for DNA cleavage:The application of "break lights" to enediynes, iron-dependent agents, and nucleases [J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(25):13537-13542.
    [587]Shen Q P, Nie Z, Guo M L, et al. Simple and rapid colorimetric sensing of enzymatic cleavage and oxidative damage of single-stranded DNA with unmodified gold nanoparticles as indicator [J]. Chemical Communications,2009,8:929-931.
    [588]Kazakov S A, Astashkina T G, Mamaev S V, et al. Site-specific cleavage of single-stranded DNAs at unique sites by a copper-dependent redox reaction [J]. Nature,1988,335(6186):186-188.
    [589]Horning D. Disreibution of ascorbic-acid, metabolites and analogs in man and animals [J]. Annals of the New York Academy of Sciences,1975,258(SEP30):103-118.
    [590]Yamashita N, Tanemura H, Kawanishi S. Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II) [J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis,1999,425(1):107-115.
    [591]Kull T P J, Backlund P H, Karlsson K M, et al. Oxidation of the cyanobacterial hepatotoxin microcystin-LR by chlorine dioxide:reaction kinetics, characterization, and toxicity of reaction products [J]. Environmental Science & Technology,2004,38(22):6025-6031.
    [592]Gupta N, Pant S C, Vijayaraghavan R, et al. Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice [J]. Toxicology,2003,188(2-3):285-296.
    [593]Sangolkar L N, Maske S S, Chakrabarti T. Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria [J]. Water Research,2006,40(19):3485-3496.
    [594]Rapala J, Erkomaa K, Kukkonen J, et al. Detection of microcystins with protein phosphatase inhibition assay, high-performance liquid chromatography-UV detection and enzyme-linked immunosorbent assay:comparison of methods [J]. Analytica Chimica Acta,2002,466(2):213-231.
    [595]Campas M, Szydlowska D, Trojanowicz M, et al. Towards the protein phosphatase-based biosensor for microcystin detection [J]. Biosensors and Bioelectronics,2005,20(8):1520-1530.
    [596]Long F, He M, Zhu A N, et al. Portable optical immunosensor for highly sensitive detection of microcystin-LR in water samples [J]. Biosensors and Bioelectronics,2009,24(8):2346-2351.
    [597]Long F, Shi H C, He M, et al. Sensitive and rapid chemiluminescence enzyme immunoassay for microcystin-LR in water samples [J]. Analytica Chimica Acta,2009,649(1):123-127.
    [598]Lindner P, Molz R, Yacoub-George E, et al. Development of a highly sensitive inhibition immunoassay for microcystin-LR [J]. Analytica Chimica Acta,2004,521(1):37-44.
    [599]Zhang F, Yang, S H, Kang T Y, et al. A rapid competitive binding nonseparation electrochemical enzyme immunoassay (NEEIA) test strip for microcystin-LR (MCLR) determination [J]. Biosensors and Bioelectronics,2007,22(7):1419-1425.
    [600]Campas M, Marty J L. Highly sensitive amperometric immunosensors for microcystin detection in algae [J]. Biosensors and Bioelectronics,2007,22(6):1034-1040.
    [601]Lotierzo M, Abuknesha R, Davis F, et al. A membrane-based ELISA assay and electrochemical immunosensor for microcystin-LR in water samples [J]. Environmental Science & Technology,2012, 46(10):5504-5510.
    [602]Wei Q, Zhao Y F, Du B, et al. Nanoporous PtRu alloy enhanced nonenzymatic immunosensor for ultrasensitive detection of microcystin-LR [J]. Advanced Functional Materials,2011,21(21):4193-4198.
    [603]Wang L, Chen W, Xu D, et al. Simple, rapid, sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA [J]. Nano Letters,2009,9(12):4147-4152.
    [604]Zhang J, Lei J P, Xu C L, et al. Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR [J]. Analytical Chemistry,2010,82(3):1117-1122.
    [605]Wang L B, Zhu Y Y, Xu L G, et al. Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing [J]. Angewandte Chemie International Edition,2010,49(32):5472-5475.
    [606]Zhu Y Y, Xu L G, Ma W, et al. G-quadruplex DNAzyme-based Microcystin-LR (toxin) determination by a novel immunosensor [J]. Biosensors and Bioelectronics,2011,26(11):4393-4398.
    [607]Loyprasert S, Thavarungkul P, Asawatreratanakul P, et al. Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode [J]. Biosensors and Bioelectronics,2008,24(1):78-86.
    [608]Ma W, Chen W, Qiao R, et al. Rapid and sensitive detection of microcystin by immunosensor based on nuclear magnetic resonance [J]. Biosensors and Bioelectronics,2009,25(1):240-243.
    [609]Yu H W, Jang A, Kim L H, et al. Bead-based competitive fluorescence immunoassay for sensitive and rapid diagnosis of cyanotoxin risk in drinking water [J]. Environmental Science & Technology,2011, 45(18):7804-7811.
    [610]Long F, He M, Zhu A, et al. Compact quantitative optic fiber-based immunoarray biosensor for rapid detection of small analytes [J]. Biosensors and Bioelectronics,2010,26(1):16-22.
    [611]Kim Y M, Oh S W, Jeong S Y, et al. Development of an ultrarapid one-step fluorescence immunochromatographic assay system for the quantification of microcystins. Environmental Science & Technology,2003,37(9):1899-1904.
    [612]Graslund S, Bengtsson B E. Chemicals and biological products used in south-east Asian shrimp farming, and their potential impact on the environment-A review [J]. Science of the Total Environment, 2001,280(1-3),93-131.
    [613]Li J P, Jiang F Y, Wei X P. Molecularly imprinted sensor based on an enzyme amplifier for ultratrace oxytetracycline determination [J]. Analytical Chemistry,2010,82(14),6074-6078.
    [614]Li J P, Li Y P, Zhang Y, et al. Highly sensitive molecularly imprinted electrochemical sensor based on the double amplification by an inorganic prussian blue catalytic polymer and the enzymatic effect of glucose oxidase [J]. Analytical Chemistry,2012,84 (4),1888-1893.
    [615]Hamula C L A, Guthrie J W, Zhang H, et al. Selection and analytical applications of aptamers [J]. Trac-Trends Analytical Chemistry 2006,25(7),681-691.
    [616]Sefah K, Phillips J A, Xiong X L, et al. Nucleic acid aptamers for biosensors and bio-analytical applications [J]. Analyst,2009,134(9),1765-1775.
    [617]Niazi J H, Lee S J, Kim Y S, et al. ssDNA aptamers that selectively bind oxytetracycline [J]. Bioorganic & Medicinal Chemistry,2008,16(3),1254-1261.
    [618]Niazi J H, Lee S J, Gu M B. Single-stranded DNA aptamers specific for antibiotics tetracyclines [J]. Bioorganic & Medicinal Chemistry,2008,16(15),7245-7253.
    [619]Kim Y S, Niazi J H, Gu M B. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip [J]. Analytica Chimica Acta 2009,634(2),250-254.
    [620]Kim Y J, Kim Y S, Niazi J H. Electrochemical aptasensor for tetracycline detection [J]. Bioorganic & Medicinal Chemistry,2010,33(1),31-37.
    [621]Kim Y S, Kim J H, Kim I A, et al. A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline [J]. Biosensors and Bioelectronics,2010,26(4), 1644-1649.
    [622]Kim Y S, Kim J H, Kim I A, et al. The affinity ratio-Its pivotal role in gold nanoparticle-based competitive colorimetric aptasensor [J]. Biosensors and Bioelectronics,2010,26(10),4058-4063.
    [623]Fire A, Xu S Q. Rolling replication of short DNA circles [J]. Proceedings of the National Academy of Sciences of the United States of America,1995,92(10),4641-4645.
    [624]Zhao W, Ali M M, Brook M A, et al. Rolling circle amplification:applications in nanotechnology and biodetection with functional nucleic acids [J]. Angewandte Chemie International Edition,2008,47(34), 6330-6337.
    [625]Cho E J, Yang L, Levy M, et al. Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP [J]. Journal of the American Chemical Society,2005,127(7), 2022-2023.
    [626]Ali M M, Li Y F. Colorimetric sensing by using allosteric-DNAzyme-coupled rolling circle amplification and a peptide nucleic acid-organic dye probe [J]. Angewandte Chemie International Edition, 2009,48(19),3512-3515.
    [627]Wu M, Kempaiah R, Huang P, et al. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides [J]. Langmuir,2011,27(6),2731-2738.
    [628]Zucker M. Mfold web server for nucleic acid folding and hybridization prediction [J]. Nucleic Acids Research,2003,31(13),3406-3415.
    [629]Wu Z, Zhang S, Zhou H, et al. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification [J]. Analytical Chemistry,2010,82(6), 2221-2227.
    [630]Yang L, Fung C W, Cho E J, et al. Real-time rolling circle amplification for protein detection [J]. Analytical Chemistry,2007,79(9),3320-3329.
    [631]Wu Z, Zhou H, Zhang S, et al. Electrochemical aptameric recognition system for a sensitive protein assaybased on specific target binding-induced rolling circle amplification [J]. Analytical Chemistry,2010, 82(6),2282-2289.
    [632]Di Giusto D A, Wlassoff W A, Justin Gooding J, et al. Proximity extension of circular DNA aptamers with real-time protein detection [J]. Nucleic Acids Research,2005,33(6), e64.
    [633]Li J, Schachermeyer S, Wang Y, et al. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals [J]. Analytical Chemistry,2009,81(23),9723-9729.
    [634]Cheng W, Yan F, Ding L, et al. Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging [J]. Analytical Chemistry,2010,82(8), 3337-3342.
    [635]Bi S, Li L, Zhang S S. Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification [J]. Analytical Chemistry,2010, 82(22),9447-9454.
    [636]Yan J, Song S, Li B, et al. An on-nanoparticle rolling-circle amplification platform for ultrasensitive protein detection in biological fluids [J]. Small,2010,6(22),2520-2525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700