用户名: 密码: 验证码:
催化湿式氧化—好氧颗粒污泥处理高浓度制药废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制药废水是一种高浓度、难降解的工业废水,具有毒性强、常规生物法难以处理等特点,直接排放将对水体环境造成严重危害。因此,本文在“十一五”国家水专项浑河流域水体污染控制研究课题支持下,开展了针对东北制药总厂磷霉素钠制药废水的催化湿式氧化预处理—磷酸铵镁沉淀法除磷—好氧颗粒污泥集成工艺试验研究。
     催化湿式氧化降解磷霉素钠过程中,磷霉素钠原水残留的WO3-和P043-(氧化磷霉素钠右盐生成),可与黄连素制药废水中Cu2+(脱铜反应生成)可形成均相杂多酸盐催化剂·-Cu2+[PxWmOy]q-。在250℃、1.4MPa初始氧分压条件下,磷霉素钠和黄连素混合制药废水中COD(121081mgL-1), TOC(5823mgL-1)去除率分别可达41.1%、43.0%,同时95%的有机磷被转化为P043-,70%的有机氮被转化为NH4+,出水可生化性明显提高。该过程中磷霉素钠右盐可被氧化成丙醇、丙酸,拆分剂苯乙胺被氧化成苯甲酸,达到了“以废治废”,解除原水有机磷毒性目的。整个催化氧化过程以Cu2+[PxWmOy]q-催化氧化、羟基自由基反应为主。出水中Cu2+[PxWmOy]q可大量过饱和析出、易分离,可缓解以往湿式氧化存在的重金属二次污染问题。对析出的Cu2+[PxWmOy]q进行TGA、 IR、XRD、XRF分析,结果表明该催化剂具有较高的热稳定性,结构近似P4Ws032,氧化还原性可调范围较大,且对污泥中微生物毒性较低。
     磷酸铵镁盐(MgNH4PO4,MAP,矿物学名:鸟粪石)沉淀法可同时去除湿式氧化出水中NH4-、PO43-,但杂质离子Cu2+可通过进入晶格或吸附作用,影响磷酸铵镁盐结晶。在Cu2+低浓度存在条件下,湿式氧化出水中P043-可被去除48%,被去除的部分可结晶成鸟粪石。
     将磷酸铵镁沉淀得到的不纯沉淀物—鸟粪石,作为生物载体培养好氧颗粒污泥强化最终二级生物处理单元。启动初期,鸟粪石可通过固体表面作用、Mg2+压缩污泥双电层、游离氨浓度刺激AOB富集等作用,刺激污泥多糖产量由28.4mgg-1MLVSS增加至42.2mgg-1MLVSS,有效的加速了颗粒化进程,30天即可培养出尺寸为700~1100μm的成熟颗粒污泥。通过扫描电镜、荧光原位杂交技术,证实了颗粒内部主要由AOB构成,NOB、PAO种群数量较小。对于具有生物毒性的制药废水,该好氧颗粒污泥单元在短水力停留时间条件下,可去除90%以上COD以及70%以上的NH4+-N。颗粒污泥亚硝化作用明显,NO2--N/(NO2--N+NO3--N)稳定期平均值为89%,表明鸟粪石载体培养是一种有效的业硝化好氧颗粒污泥培养方法。
Pharmaceutical wastewater often contains high concentration non-biodegradable organic compounds, the discharge of toxic substances not degraded in pharmaceutical wastewater cause serious detrimental effect to the natural environment. Therefore, supported by the "Eleventh Five-Year" National Water Pollution Control Projects (Hun river in Liaoning province, China), we were committed to investigate the integration process in treating fosfomycin pharmaceutical wastewater from Northeast General Pharmaceutical Factory, using catalytic wet air oxidation (CWAO) and aerobic granular sludge which used struvite granule formed by precipitative phosphate removal.
     In CWAO treatment of fosfomycin pharmaceutical wastewater, WO3-and PO43-(converted from fosfomycin calt oxidation) in fosfomycin wastewater and Cu2+(generated from decoppering) in berberine pharmaceutical wastewater could form Cu2+[PxWmOy]q-, namely polyoxometalates (POMs). At250℃and1.4MPa initial oxygen pressure,41%and43%of COD (chemical oxygen demand, the initial COD of mixed streams was121081mgL-1) and TOC (total organic carbon, the value of mixed streams was5823mgL-1) removal can be easily realized, meanwhile,95%organophosphorus and70%organic amine were converted to PO43-and NH4+,respectively. The biodegradability of wastewater was enhanced by the CWAO treatment. In addition, fosfomycin was incompletely oxidized to propionic acid or propanol, and the resolving agent phenethylamine was oxidized to benzoic acid. Noteworthy, reusing these active ions and detoxicating organophosphorus simultaneously, satisfies the demand of "treating wastes with other wastes". Both the hydroxyl radical reaction and catalytic oxidation play crucial roles in the CWAO process. Supersaturated precipitate Cu2+[PxWmOy]q-can be easily separated from the effluent, which can reduce secondary pollution caused by heavy metal ions used in CWAO. Characterizations(e.g., TGA, IR, XRD, XRF) and analysis of Cu2+[PxWmOy]q-showed that it was similar to P4W8O32in structure, and had high thermal stability, low microbial toxicity, and adjustable acid-base and redox properties.
     NH4+and PO43-in CWAO effluent can been removed simultaneously using precipitation method by forming magnesium ammonium phosphate (MgNH4PO4, MAP, struvite). Cu2+impurities can affect crystallization by entering into the crystal lattice or adsorbing on struvite surface. When Cu2+concentration was low,48%of PO43-was removed in the form of struvite.
     Struvite was reused as a carrier to cultivate aerobic granules and enhance the biological treatment. In start-up period, its addition stimulated polysaccharides generation (42.2mgg-1MLVSS versus28.4mgg-1MLVSS in sludge without it), which possibly caused accelerated granulation via the solid surface effect, compressed "double layer" effect by Mg2+and enriched ammonia-oxidizing bacteria (AOB) by free ammonia. The size of mature granules ranged from700to1100μm after30days cultivation. According to SEM and FISH analysis, AOB was found as the dominate strains over nitrite-oxidizing bacteria (NOB) and polyphosphate accumulating bacteria (PAO). Although the CWAO treated pharmaceutical wastewater contains toxic substance, the removal of90%COD and more than70%NH4+-N, was achieved the granule has significant nitrification effect, the average value of stable accumulation of nitrite was89%[NO2--N:(NO2--N+NO3--N)] in this biological treatment unit. This emphasizes that adding struvite as a new-type carrier can effectively promote the formation of partial nitrification granular sludge, and the new granular cultivation method is effective for cultivating nitrification granular sludge.
引文
[1]Kahan F M, Kahan J S, Cassidy P J, et al. The mechanism of action of fosfomycin (phosphonomycin) [J], Annals of the New York Academy of Sciences,1974,235:364-386.
    [2]Schweikert K, Burritt D J. The organophosphate insecticide Coumaphos induces oxidative stress and increases antioxidant and detoxification defences in the green macroalgae [J]. Aquatic Toxicology, 2012,43:129-134.
    [3]Suman Raj D S, Anjaneyulu Y. Evaluation of biokinetic parameters for pharmaceutical wastewaters using aerobic oxidation integrated with chemical treatment [J]. Process Biochemistry,2005,40: 165-175.
    [4]胡晓东,制药废水处理技术及工程实例[M],化学工业出版社,2008.
    [5]Chelliapan S, Wilby T, Sallis P J. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics [J]. Water Research,2006, 40:507-516.
    [6]陈业钢,祁佩时.水解酸化-厌氧工艺处理高浓度抗生素废水研究[J].上海环境科学,2002,21:463-468.
    [7]Amin M M, Zilles J L, Greiner J, et al. Influence of the Antibiotic Erythromycin on Anaerobic Treatment of a Pharmaceutical Wastewater [J]. Environmental Science & Technology,2006,40: 3971-3977.
    [8]刘红丽,谢文军,王新华.UASB/MBR组合工艺处理抗生素废水的研究,[J].中国给水排水,2009.25:52-54.
    [9]Karthikeyan K. G, Meyer M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA [J]. Science of the Total Environment.2006,361:196-207.
    [10]Lanzky P, Halting-Sorensen B. The toxic effect of the antibiotic metronidazole on aquatic organisms [J]. Chemosphere.1997,35:2553-2561.
    [11]Xing Z-P, Sun D-Z. Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process [J]. Journal of Hazardous Materials,2009,168: 1264-1268.
    [12]Ding R, Zhang P, Seredych M. et al. Removal of antibiotics from water using sewage sludge-and waste oil sludge-derived adsorbents [J]. Water Research,2012,46:4081-4090.
    [13]Zhang J, Giorno L. Drioli E. Study of a hybrid process combining PACs and membrane operations for antibiotic wastewater treatment [J]. Desalination.2006,194:101-107.
    [14]Li S-z, Li X-y, Wang D-z. Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics [J]. Separation and Purification Technology,2004,34:109-114.
    [15]Lange F, Comelissen S, Kubac D, et al. Degradation of macrolide antibiotics by ozone:A mechanistic case study with clarithromycin [J]. Chemosphere,2006.65:17-23.
    [16]Ben W, Qiang Z, Pan X, et al. Removal of veterinary antibiotics from sequencing batch reactor (SBR) pretreated swine wastewater by Fenton's reagent [J]. Water Research,2009,43:4392-4402.
    [17]Akmehmet Balcioglu I, Otker M. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes [J]. Chemosphere.2003,50:85-95.
    [18]Trovo A G. Pupo Nogueira R F. Aguera A. et al. Degradation of the antibiotic amoxicillin by photo-Fenton process - Chemical and toxicological assessment [J]. Water Research,2011,45: 1394-1402.
    [19]Paul T, Miller P L, Strathmann T J. Visible-Light-Mediated TiO2 Photocatalysis of Fluoroquinolone Antibacterial Agents [J]. Environmental Science & Technology,2007,41:4720-4727.
    [20]Mishra V S, Mahajani V V, Joshi J B. Wet Air Oxidation [J]. Industrial & Engineering Chemistry Research,1995,34:2-48.
    [21]Luck F. Wet air oxidation:past, present and future [J]. Catalysis Today,1999,53:81-91.
    [22]Gallezot P, Laurain N, Isnard P. Catalytic wet-air oxidation of carboxylic acids on carbon-supported platinum catalysts [J]. Applied Catalysis B-Environmental,1996,9:L11-L17.
    [23]Zhu W, Bin Y, Li Z, et al. Application of catalytic wet air oxidation for the treatment of H-acid manufacturing process wastewater [J]. Water Research,2002,36:1947-1954.
    [24]Joglekar H, Samant S, Joshi J. Kinetics of wet air oxidation of phenol and substituted phenols [J]. Water Research,1991,25:135-145.
    [25]Perathoner S, Centi G. Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial streams [J]. Topics in Catalysis,2005,33:207-224.
    [26]Larson R A, Ju H L, Snoeyink V L, et al. Some intermediates in the wet air oxidation of phenanthrene adsorbed on powdered activated carbon [J]. Water Research,1988,22:337-342.
    [27]Imamura S, Nakamura M, Kawabata N, et al. Wet oxidation of poly (ethylene glycol) catalyzed by manganese-cerium composite oxide [J]. Industrial & engineering chemistry product research and development,1986,25:34-37.
    [28]Chowdhury A K, Ross L, The Catalytic Wet Oxidation of Strong Waste Waters, in,1975, pp.25-36.
    [29]Hosseini A M, Tungler A. Schay Z, et al. Comparison of precious metal oxide/titanium monolith catalysts in wet oxidation of wastewaters [J]. Applied Catalysis B:Environmental,2012,127: 99-104.
    [30]Ovejero G, Rodriguez A, Vallet A, et al. Ni supported on Mg-Al oxides for continuous catalytic wet air oxidation of Crystal Violet [J]. Applied Catalysis B:Environmental,2012,125:166-171.
    [31]Wei H, Yan X, He S, et al. Catalytic wet air oxidation of pentachlorophenol over Ru/ZrO2 and Ru/ZrSiO2 catalysts [J]. Catalysis Today,2010,125:98-102.
    [32]Kozhevnikov 1 V, Kloetstra K R, Sinnema A, et al. Study of catalysts comprising heteropoly acid H3PW12O40 supported on MCM-41 molecular sieve and amorphous silica [J]. Journal of Molecular Catalysis A:Chemical,1996,114:287-298.
    [33]Chuvaev V. Popov K, Spitsyn V, High temperature hydrogen ion self-diffusion in solid heteropoly acids, in,1980,52:892-895.
    [34]Tanaka T, Okuhara T, Misono M. Intermediacy of organic nitro and nitrite surface species in selective reduction of nitrogen monoxide by propene in the presence of excess oxygen over silica-supported platinum [J]. Applied Catalysis B:Environmental,1994,4:1-9.
    [35]ORCAN, Web Site http://www.orcan.ch. in,2010.
    [36]Doyle J D, Parsons S A.Struvite formation, control and recovery [J]. Water Research,2002,36: 3925-3940.
    [37]Momberg G. Oellermann R. The removal of phosphate by hydroxyapatite and struvite crystallisation in South Africa [J]. Water Science & Technology,1992,26:987-996.
    [38]Le Corre K S, Valsami-Jones E, Hobbs P, et al. Impact of calcium on struvite crystal size, shape and purity [J]. Journal of Crystal Growth.2005,283:514-522.
    [39]Clapham L. McLean R J C, Nickel J C. et al. The influence of bacteria on struvite crystal habit and its importance in urinary stone formation [J]. Journal of Crystal Growth.1990.104:475-484.
    [40]Perez Rodriguez J L, Maqueda C, Lebrato J, et al. Influence of clay minerals, used as supports in anaerobic digesters, in the precipitation of struvite [J]. Water Research,1992,26:497-506.
    [41]Banks E, Chianelli R, Korenstein R. Crystal chemistry of struvite analogs of the type MgMPO4.6H2O (M+=potassium(1+), rubidium(1+), cesium (1+), thallium(1+), ammonium(1+) [J]. Inorganic Chemistry,1975,14:1634-1639.
    [42]Munch E V, Barr K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams [J]. Water Research,2001,35:151-159.
    [43]Schuiling R, Andrade A. Recovery of struvite from calf manure [J]. Environmental Technology, 1999,20:765-768.
    [44]Ueno Y, Fujii M. Three years experience of operating and selling recovered struvite from full-scale plant [J]. Environmental Technology,2001,22:1373-1381.
    [45]Jaffer Y, Clark T A, Pearce P, et al. Potential phosphorus recovery by struvite formation [J]. Water Research,2002,36:1834-1842.
    [46]Moerman W, Carballa M, Vandekerckhove A, et al. Phosphate removal in agro-industry:Pilot- and full-scale operational considerations of struvite crystallization [J]. Water Research,2009,43: 1887-1892.
    [47]Lee D-J, Chen Y-Y, Show K-Y, et al. Advances in aerobic granule formation and granule stability in the course of storage and reactor operation [J]. Biotechnology Advances,2010,28:919-934.
    [48]Tay J-H, Tay S T-L, Liu Y, et al., Biogranulation technologies for wastewater treatment. [J]. Biotechnology Advances,2006,16:314-320.
    [49]Morgenroth E, Sherden T, Van Loosdrecht M C M, et al. Aerobic granular sludge in a sequencing batch reactor [J]. Water Research,1997,31:3191-3194.
    [50]Wang X, Zhang H, Yang F, et al. Improved stability and performance of aerobic granules under stepwise increased selection pressure [J]. Enzyme and Microbial Technology,2007,41:205-211.
    [51]Wang Q, Du G C, Chen J. Aerobic granular sludge cultivated under the selective pressure as a driving force [J]. Process Biochemistry,2004,39:557-563.
    [52]Tay S T-L, Moy B Y-P, Jiang H-L, et al. Rapid cultivation of stable aerobic phenol-degrading granules using acetate-fed granules as microbial seed [J]. Journal of Biotechnology,2005,115: 387-395.
    [53]Pijuan M, Werner U, Yuan Z. Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules [J]. Water Research,2011,45:5075-5083.
    [54]Adav S, Lee D-J, Lai J-Y. Potential cause of aerobic granular sludge breakdown at high organic loading rates [J]. Applied Microbiology and Biotechnology,2010.85:1601-1610.
    [55]Tay J H, Liu Q S, Liu Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor [J]. Journal of Applied Microbiology.2001,91:168-175.
    [56]Ren T T, Liu L, Sheng G P, et al. Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity [J]. Water Research,2008.42:3343-3352.
    [57]Manas A, Biscans B, Sperandio M. Biologically induced phosphorus precipitation in aerobic granular sludge process [J]. Water Research.2011,45:3776-3786.
    [58]Xavier J B. De Kreuk M K. Picioreanu C. et al. Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge [J]. Environmental Science & Technology. 2007,41:6410-6417.
    [59]Jin R-C, Zheng P. Mahmood Q. et al. Hydrodynamic characteristics of airlift nitrifying reactor using carrier-induced granular sludge [J]. Journal of Hazardous Materials,2008,157:367-373.
    [60]Ivanov V, Tay J, Liu Q. et al. Microstructural optimization of wastewater treatment by aerobic granular sludge [J]. Aerobic Granular Sludge. Water and environmental management series,2005, 43-52.
    [61]van Dongen U, Jetten M, Van Loosdrecht M. The SHARON-Anammox process for treatment of ammonium rich wastewater [J]. Water Science and Technology,2001,44:153.
    [62]Chuang H P, Ohashi A, Imachi H, et al. Effective partial nitrification to nitrite by down-flow hanging sponge reactor under limited oxygen condition [J]. Water Research,2007,41:295-302.
    [63]Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration [J]. Water Research,2003,37:1371-1377.
    [64]Xu G, Xu X, Yang F, et al. Selective inhibition of nitrite oxidation by chlorate dosing in aerobic granules [J]. Journal of Hazardous Materials,2010,185:249-254.
    [65]Hellinga C, Schellen A, Mulder J, et al. The SHARON process:an innovative method for nitrogen removal from ammonium-rich waste water [J]. Water Science and Technology,1998,37:135-142.
    [66]Liu Y, Lin Y-M, Tay J-H. The elemental compositions of P-accumulating microbial granules developed in sequencing batch reactors [J]. Process Biochemistry,2005,40:3258-3262.
    [67]Cassidy D P, Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge [J]. Water Research,2005,39:4817-4823.
    [68]Su K-Z, Yu H-Q. Formation and Characterization of Aerobic Granules in a Sequencing Batch Reactor Treating Soybean-Processing Wastewater [J]. Environmental Science & Technology,2005, 39:2818-2827.
    [69]Arrojo B, Mosquera-Corral A, Garrido J M, et al. Aerobic granulation with industrial wastewater in sequencing batch reactors [J]. Water Research,2004,38:3389-3399.
    [70]Schwarzenbeck N, Borges J M, Wilderer P A. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor [J]. Applied Microbiology and Biotechnology,2005,66:711-718.
    [71]Wang S G. Liu X W, Gong W X, et al. Aerobic granulation with brewery wastewater in a sequencing batch reactor [J]. Bioresource Technology,2007,98:2142-2147.
    [72]Amann R I, Krumholz L, Stahl D A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology [J]. Journal of Bacteriology, 1990,172:762-770.
    [73]Mobarry B K, Wagner M, Urbain V, et al. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria [J]. Applied and Environmental Microbiology,1996,62: 2156-2162.
    [74]Burrell P C, Keller J, Blackall L L. Microbiology of a Nitrite-Oxidizing Bioreactor [J]. Appl. Environ. Microbiol.,1998,64:1878-1883.
    [75]Wagner M, Rath G, Koops H P, et al. In situ analysis of nitrifying bacteria in sewage treatment plants [J]. Water Science and Technology,1996,34:237-244.
    [76]Neef A, Zaglauer A, Meier H, et al. Population analysis in a denitrifying sand filter:conventional and in situ identification of Paracoccus spp. in methanol-fed biofilms [J]. Applied and Environmental Microbiology.1996,62:4329-4339.
    [77]Crocetti G R, Hugenholtz P, Bond P L, et al. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation [J]. Applied and Environmental Microbiology,2000,66:1175-1182.
    [78]Li X. Yang S. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge [J]. Water Research,2007.41: 1022-1030.
    [79]Gaudy A. Colorimetric determination of protein and carbohydrate [J]. Ind. Water Wastes,1962,7: 17-22.
    [80]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent [J]. Journal of Biological Chemistry,1951,193:265-275.
    [81]Sonnen D M, Reiner R S, Atalla R H, et al. Degradation of Pulp-Mill Effluent by Oxygen and Na5[PV2Mo10O40], a Multipurpose Delignification and Wet Air Oxidation Catalyst [J]. Industrial & Engineering Chemistry Research,1997,36:4134-4142.
    [82]lshii Y, Yamawaki K, Ura T, et al. Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride. Epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1,2-diols and olefins [J]. The Journal of Organic Chemistry,1988,53:3587-3593.
    [83]Zhao S, Wang X, Huo M. Catalytic wet air oxidation of phenol with air and micellar molybdovanadophosphoric polyoxometalates under room condition [J]. Applied Catalysis B: Environmental,2010,97:127-134.
    [84]Zhang Y, Li D L, Chen Y, et al. Catalytic wet air oxidation of dye pollutants by polyoxomolybdate nanotubes under room condition [J]. Applied Catalysis B-Environmental,2009,86:182-189.
    [85]Kozhevnikov I V, Matveev K I. Homogeneous catalysts based on heteropoly acids (review) [J]. Applied Catalysis,1983,5:135-150.
    [86]Kozhevnikov I V, Matveev K I. Oxidative Coupling of Aromatic Systems under the Influence of Transition Metal Compounds [J]. Russian Chemical Reviews,1978,47:649.
    [87]邱光磊,宋水会,曾萍等.湿式氧化-磷酸盐固定化组合工艺处理磷霉制药废水及其资源化[J].环境科学学报,2011,31431-1439
    [88]Hill C L, Prosser-McCartha C M. Homogeneous catalysis by transition metal oxygen anion clusters [J]. Coordination Chemistry Reviews,1995,143:407-455.
    [89]Kozhevnikov I V. Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions [J]. Chemical Reviews,1998,98:171-198.
    [90]Odyakov V F, Zhizhina E G, Matveev K I. Redox potentials of molybdovanadophosphoric heteropoly acids in aqueous solutions [J]. Journal of Molecular Catalysis A:Chemical,2000,158: 453-456.
    [91]Zhizhina E, Odyakov V, Simonova M. Catalytic oxidation of organic compounds with oxygen in the presence of Mo-V-phosphoric heteropoly acid solutions [J]. Kinetics and Catalysis,2008.49: 773-781.
    [92]Galli C, Gentili P, Pontes A S N. et al. Oxidation of phenols employing polyoxometalates as biomimetic models of the activity of phenoloxidase enzymes [J]. New Journal of Chemistry.2007. 31:1461-1467.
    [93]Starsinic M, Otake Y, Walker Jr P L, et al. Application of FT-i.r. spectroscopy to the determination of COOH groups in coal [J]. Fuel,1984,63:1002-1007.
    [94]Domaille P J. Hervea G, Teazea A, Vanadium(V) Substituted Dodecatungstophosphates, in: Inorganic Syntheses, John Wiley & Sons. Inc.,2007, pp.96-104.
    [95]Flemming C, Trevors J. Copper toxicity and chemistry in the environment:a review [J]. Water, Air, & Soil Pollution,1989,44:143-158.
    [96]Barbier Jr J, Oliviero L, Renard B, et al. Catalytic wet air oxidation of ammonia over M/CeO2 catalysts in the treatment of nitrogen-containing pollutants [J]. Catalysis Today,2002,75:29-34.
    [97]Mavinic D S, Adnan A, Koch F A. Pilot-scale study of phosphorus recovery through struvite crystallization examining the process feasibility [J]. Journal of Environmental Engineering and Science,2003,2:315-324.
    [98]Shimamura K, Tanaka T, Miura Y, et al. Development of a high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system [J]. Water Science and Technology,2003,163-170.
    [99]Chand P, Agarwal O P. Electron paramagnetic resonance study of doped synthetic crystals of struvite and its zinc analogue [J]. Spectrochimica Acta Part A:Molecular Spectroscopy,1991,47: 775-783.
    [100]Ronteltap M, Maurer M, Gujer W. The behaviour of Pharmaceuticals and heavy metals during struvite precipitation in urine [J]. Water Research,2007,41:1859-1868.
    [101]Doyle J D, Oldring K, Churchley J, et al. Struvite formation and the fouling propensity of different materials [J]. Water Research,2002,36:3971-3978.
    [102]Le Correa K S, Valsami-Jones E, Hobbs P, et al. Struvite crystallisation and recovery using a stainless steel structure as a seed material [J]. Water Research,2007,41:2449-2456.
    [103]Bengtsson G. Bacterial exopolymer and PHB production in fluctuating ground-water habitats [J]. Ferns Microbiology Letters,1991,86:15-24.
    [104]Vandevivere P, Kirchman D L. Attachment stimulates exopolysaccharide synthesis by a bacterium [J]. Applied and Environmental Microbiology,1993,59:3280-3286.
    [105]Tsuneda S, Aikawa H, Hayashi H, et al. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface [J]. Fems Microbiology Letters,2003,223:287-292.
    [106]Toh S, Tay J, Moy B, et al. Size-effect on the physical characteristics of the aerobic granule in a SBR [J]. Applied Microbiology and Biotechnology,2003,60:687-695.
    [107]Ford D L, Churchwell R L, Kachtick J W. Comprehensive analysis of nitrification of chemical processing wastewaters [J]. Water Pollution Control Federation,1980,212726-2746.
    [108]Sesay M L, Ozcengiz G, Dilek Sanin F. Enzymatic extraction of activated sludge extracellular polymers and implications on bioflocculation [J]. Water Research,2006,40:1359-1366.
    [109]Qin L, Tay J-H, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors [J]. Process Biochemistry,2004,39:579-584.
    [110]Souw P, Demain A L. Nutritional studies on xanthan production by Xanthomonas campestris NRRL B1459 [J]. Applied and Environmental Microbiology,1979,37:1186-1192.
    [111]Wrangstadh M, Conway P L, Kjelleberg S. The role of an extracellular polysaccharide produced by the marine Pseudomonas sp. S9 in cellular detachment during starvation [J]. Canadian Journal of Microbiology,1989,35:309-312.
    [112]Williams A G, Wimpenny J W T. Extracellular Polysaccharide Biosynthesis by Pseudomonas NCIB 11264. Studies on Precursor-form ing Enzymes and Factors Affecting Exopolysaccharide Production by Washed Suspensions [J]. Journal of General Microbiology,1980,116:133-141.
    [113]Li X-M, Liu Q-Q, Yang Q, et al. Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation [J]. Bioresource Technology,2009,100:64-67.
    [114]Grotenhuis J, Lier J B, Plugge C, et al. Effect of ethylene glycol-bis (β-aminoethyl ether)-N, N-tetraacetic acid (EGTA) on stability and activity of methanogenic granular sludge [J]. Applied Microbiology and Biotechnology,1991,36:109-114.
    [115]Vu B, Chen M, Crawford R J. et al. Bacterial extracellular polysaccharides involved in biofilm formation [J]. Molecules,2009,14:2535-2554.
    [116]Wang Z-W. Liu Y, Tay J-H. Distribution of EPS and cell surface hydrophobicity in aerobic granules [J]. Applied Microbiology and Biotechnology,2005,69:469-473.
    [117]Jiang H L, Tay J H, Tay S T L. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading [J]. Applied Microbiology and Biotechnology,2004, 63:602-608.
    [118]Tay J H T, Liu Q S L, Liu Y L. The effects of shear force on the formation, structure and metabolism of aerobic granules [J]. Applied Microbiology and Biotechnology,2001,57:227-233.
    [119]Tay J, Liu Q, Liu Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors [J]. Environmental Technology,2002,23:931-936.
    [120]Winkler M, Bassin J, Kleerebezem R, et al. Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO-GAO competition at high temperatures [J]. Water Research,2011,
    [121]Ren T-t, Yu H-q, Li X-y. The quorum-sensing effect of aerobic granules on bacterial adhesion, biofilm formation, and sludge granulation [J]. Appl Microbiol Biotechnol,2010,789-797.
    [122]Liu Y, Liu Q-S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors [J]. Biotechnology Advances,2006,24:115-127.
    [123]Anthonisen A, Loehr R, Prakasam T, et al. Inhibition of nitrification by ammonia and nitrous acid [J]. Water Pollution Control Federation,1976,21835-852.
    [124]Brock T D, Madigan M T, Martinko J M. et al.. Biology of microorganisms. Prentice Hall London, UK,1991.
    [125]Ivanov V, Wang X H, Tay S T L, et al. Bioaugmentation and enhanced formation of microbial granules used in aerobic wastewater treatment [J]. Applied Microbiology and Biotechnology,2006, 70:374-381.
    [126]Moy B Y P, Tay J H. Toh S K, et al. High organic loading influences the physical characteristics of aerobic sludge granules [J]. Letters in Applied Microbiology,2002,34:407-412.
    [127]Bin Z, Zhe C, Zhigang Q, et al. Dynamic and distribution of ammonia-oxidizing bacteria communities during sludge granulation in an anaerobic-aerobic sequencing batch reactor [J]. Water Research.2011,45:6207-6216.
    [128]Holt J G, Krieg N R, Sneath P H A, et al., Bergey's Manual of Determinative Bacteriology,9th ed., williams & wilikins,1994.
    [129]Shi X-Y, Yu H-Q, Sun Y-J, et al. Characteristics of aerobic granules rich in autotrophic ammonium-oxidizing bacteria in a sequencing batch reactor [J]. Chemical Engineering Journal, 2009,147:102-109.
    [130]Horan N J, Gohar H. Hill B. Application of a granular activated carbon-biological fluidised bed for the treatment of landfill leachates containing high concentrations of ammonia [J]. Water Science and Technology,1997,36:369-375.
    [131]Panswad T. Doungchai A. Anotai J. Temperature effect on microbial community of enhanced biological phosphorus removal system [J]. Water Research,2003.37:409-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700