用户名: 密码: 验证码:
天津市水环境承载力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境污染造成的水资源紧缺已成为我国社会经济发展的重大瓶颈,是影响水环境承载力的关键要素,水环境保护已经成为当前环境保护的头等工作。如何准确评价水环境承载力,成为当前水质管理的研究热点。对重点区域进行全面的水环境承载力研究,并有针对性地制定污染治理和保护计划,对区域的健康发展是非常必要的。本研究以天津市水环境为研究对象,对其水环境现状进行了评价,并对2008年和2020年入河污染物进行了污染物负荷分析;从狭义水环境承载力角度,量化了天津市水域81个水功能区2010年和2020年的COD和氨氮纳污能力,确定了各水功能区COD和氨氮的限制排污量和削减量;从广义水环境承载力角度,评价了社会经济发展情景下的天津市水环境承载力。在水体纳污能力和水环境承载力综合评价研究成果的基础上,提出了改善天津市水环境的管理对策。研究结果主要包括:
     1、采用单因子评价法和综合标识指数法分别对2008年天津市水质现状进行了评价。用单因子法进行评价,满足2010年目标水质目标的断面占14.2%,不满足水质目标的断面占85.8%,水环境污染严重,主要超标指标为化学需氧量(CODCr)、高锰酸盐指数(CODMn)和氨氮;2001-2008年期间,天津市水环境总体水质呈逐年下降趋势,汛期水质要好于非汛期水质。综合标识指数法既考虑了水体的综合状况,又避免了单因子评价的缺陷,评价结果为V类和劣V类断面的比例分别为31.7%和48.3%。采用多元统计分析方法对天津市水环境进行了分析,用层次聚类法将天津市81个水功能区分为5类,并用判别分析验证了分类结果可靠性。
     2、对天津市2008年和2020年的入河污水和入河污染物量进行了污染负荷分析。2008年天津市水环境共接纳入河污水8.08×108t,CODCr入河量为17.11×104t,氨氮入河量为1.34×104t;有74.6%的入河排污口超标,超标排污口主要集中在海河水系和大清河水系。用等标污染负荷法分析了2008年的入河排污口,得到了四个主要纳污水功能区及其主要排污口。根据预测,2020年天津市入河污水量为15.80x108t,COD入河量为8.56××104t,氨氮入河量为1.31×104t,用等标污染负荷法得到了9个主要的纳污水功能区。
     3、采用水库型河道模型进行天津市水环境COD和氨氮纳污能力的量化计算。结果表明,75%水文保证率下,2010年天津市水体COD和氨氮的纳污能力分别为48009t/a和4335t/a。主要水系COD和氨氮纳污能力大小依次为:海河干流水系>北三河水系>大清河水系>永定河水系>子牙河水系>彰卫南运河水系。西青的COD和氨氮纳污能力最高。75%水文保证率下,天津市COD和氨氮的限制排污量分别为46913t/a和4275t/a,削减量分别为138431t/a和9810t/a。
     4、75%水文保证率下,2020年天津市COD和氨氮的纳污能力分别78088t/a和10681t/a;海河干流的COD和氨氮纳污能力最大,各行政区中市区的COD和氨氮的纳污能力最大。75%水文保证率下,天津市COD和氨氮的限制排污量分别为77468t/a和10641t/a;COD和氨氮的削减量分别为22860t/a和6173t/a。2020年纳污能力的增加主要是由于2020年天津市排水系统的改善,大沽排污河和北塘排污河这两个排污控制区的纳污能力明显增加。
     5、构建了社会经济发展情景下天津市水环境承载力的评价模型。根据天津市社会经济发展规划要求及水环境污染现状,从经济、社会、资源、环境、技术管理等角度,设计了水环境承载力评价指标体系,构建了三级层次结构模型,对天津市水环境承载力进行了现状综合评价和中远期情景预测分析。结果表明,2000-2007年,天津市水环境承载力呈总体上升趋势,水环境纳污能力对天津市水环境承载力的影响程度最大。2000-2007年评价期间,水资源支撑能力的支持强度逐渐下降,水环境纳污能力和社会优化配置能力的支持强度逐渐增强。通过节水、增加环保投资、降低万元GDP的COD排放强度、综合措施可以不同程度地提高天津市的水环境承载力。
     6、通过对水环境纳污能力和水环境承载力的研究,提出了基于纳污能力和限排总量的水质管理对策和提升水环境承载力的综合管理对策。
In China, water resources shortage because of water pollution has become the vital problem to economical development and it was the key influential factor of the water environmental carrying capacity. Water environmental protection has become the current first-class job of environmental protection. How to evaluate water environmental carrying capacity exactly has become a hot topic in watershed water-quality management. It is necessary for healthy development of important regions to study their water environmental carrying capacity as fully as possible and to establish the pointed plans for water pollution control and for water environmental protection. Taking the water environment in Tianjin as an example, this dissertation assessed the current status of its water environment and analyzed the pollutants into rivers in 2008 and in 2020, separately. From the narrowed meaning of carrying capacity of water environment, the watercourse module analogous to reservoirs was developed to calculate the capacities to assimilative chemical oxygen demand (CODCr) and ammonia nitrogen (NH4+-N) of the 81 water functional zones in 2010 and 2020. According to the results of the assimilative capacity, the limiting emissions and the pollutant reductions of every water functional zone were identified. From the broad meaning of carrying capacity of water environment, the water environmental carrying capacity of Tianjin was evaluated based on index system under different social-economic development scenarios. The management strategy was put forward to improve the water environment of Tianjin basing on the researching results of the assimilative capacity and the assessment of carrying capacity. The main results were summarized as follows.
     1. Simple factor assessment and comprehensive identification index were used to assess the current status of water environment in Tianjin.14.2 percent sections were satisfied with the demand of the water functional zones for 2010 by the method of simple factor assessment. The water pollution in Tianjin was very serious and the indexes that exceeded the water criterion were CODCr, potassium permanganate index (CODMn) and NH4+-N. The condition of water environment in Tianjin became worse and worse year by year during the period of 2001-2008. The water quality in flood season was better than that in dry season. The comprehensive identification index not only considered the general condition of water quality, but also avoided the limitation of the simple factor assessment method. The ratios of the sections belonging to class V and worse than class V were 31.7% and 48.3%, respectively. Multivariate statistical techniques were used to analyze the condition of water environment in Tianjin. Hierarchical cluster analysis was used to group 81 water functional zones into 5 clusters and discriminant analysis provided the reliability for the result of hierarchical cluster analysis.
     2. The pollutant loads of the wastewater and the pollutants into river in 2008 and in 2020 were analyzed. There was 8.08×108 ton wastewater into river in 2008. The quantities of CODCr and NH4+-N into river were 17.11×104 ton and 1.34×104 ton, respectively.74.6% inlets into river exceeded the limitation demanded. These inlets centered on the Haihe mainstream water system and the Daqing River water system. Four water functional zones mainly accepting the pollutant and their primary inlets were chosen by the method of equal standard pollution load. According to the results of forecast, there will be 15.80×108 ton wastewater,8.56××104 ton CODCr and 1.31×104 ton ammonia nitrogen into rivers in 2020. Nine water functional zones were chosen as the main zones accepting the pollutant.
     3. The watercourse module analogous to reservoirs was developed to calculate the assimilative capacities of CODCr and ammonia nitrogen in Tianjin. The results indicated that the total CODCr and ammonia nitrogen assimilative capacity calculated based on 75% confidence instream flow condition were 48009t.a-1 and 4335t.a-1, respectively. The total CODCr and ammonia nitrogen assimilative capacity of water system in Tianjin decreases in the following order:Haihe mainstream water system> Beisan River water system>Daqing River water system>Yongding River water system>Ziya River water system>Zhangwei South Chanel. Xiqing has the most amount of assimilative capacity of CODCr and ammonia nitrogen among the 13 districts. The limiting emissions of CODCr and ammonia nitrogen based on 75% confidence instream flow condition were 46913t.a-1 and 4275t.a-1, respectively. The reduced loads of CODCr and ammonia nitrogen were 138431 t.a-1 and 9810t.a-1, respectively.
     4. In 2020, the total CODCr and ammonia nitrogen assimilative capacity calculated based on 75% confidence instream flow condition were 78088t.a-1 and 10681 t.a-1, respectively. The Haihe mainstream water system had the most amount of assimilative capacity of CODcr and ammonia nitrogen. The centre of Tianjin had the most assimilative capacity among the 13 districts. The limiting emissions of CODCr and ammonia nitrogen basing on 75% confidence instream flow condiction were 77468t.a-1 and 10641t.a-1, respectively. The reduced loads of CODCr and ammonia nitrogen were 22860t.a-1 and 6173t.a-1. It was the improvement of the drainage system that led to the increasement of assimilative capacity of Tianjin in 2020.
     5. The evaluation method of water environmental carrying capacity under different social-economic development scenarios was constructed. According to the socioeconomic development planning demand and water pollution state in Tianjin, The index system to evaluate the carrying capacity of water environment was designed from the aspects of economy, society, resources, environment and technology, and a three-layer hierarchy-structured water environmental carrying capacity evaluation model was proposed. The current situation of water environmental carrying capacity was evaluated and different scenarios of medium or long period were analyzed using the evaluation model of the water environmental carrying capacity. The result of current situation evaluation showed that the carrying capacity of water environment increased in Tianjin from 2000 to 2007. The assimilative capacity of water environment had the most influence on the water environmental carrying capacity. The supporting ability of water resource decreased and the water environmental carrying capacity and the ability of the social optimized configuration increased during the assessed period from 2000 to 2007. The scenarios analysis indicated that all of the following measurement, such as saving water, increasing investment on environmental protection to reduce the amount of COD per unit discharge, comprehensive measurement, could improve the water environmental carrying capacity of Tianjin.
     6. Basing on the research of the assimilative capacity and the carrying capacity of water environment in Tianjin, the managing measurement of water quality basing on the assimilative capacity and the limiting emission and the comprehensive managing measurement on how to improve water environment carrying capacity were put forward.
引文
[1]陈志恺.中国水资源的可持续利用问题.水文,2003,23(1):1-5
    [2]钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告.北京:中国水 利水电出版社,2001
    [3]庞鹏沙,董仁杰.浅议中国水资源现状与对策.水利科技与经济,2004,10(5):267- 268
    [4]陈西庆,陈进.长江流域的水资源配置与水资源综合管理.长江流域资源与环境,2005, 14(2):163-167
    [5]张利平,夏军,胡丽芳.中国水资源状况与水资源安全问题分析.长江流域资源与环境, 2009,18(2):1 16-1 20
    [6]Daily HE.Carrying eapacity as a tool of develoPment Policy:the Eeuadorian Amazon and Paraguayan Cllaeo.Ecologieal Eeo]lomies,1990,20(2):187-195
    [7]JonathallM,Harris,Seott K.Carrying capacity in agrieulture global al记regio,lal issues. Ecological Eeollomics,1999,29(3):443-461
    [8]阮本清,梁瑞驹,王浩等.流域水资源管理.北京:科学出版社,2001
    [9]Odum E P. Fundamentals ofEeology .PhiladelPhia:W.B.Saunders,1953.
    [10]Price D.Carrying eaPacity reconsidered.PoPulation and Environment:A Journal of InterdiseiPlinary Studies,1999,21(1):5-26
    [11]王俭,孙铁晰,李培军等.环境承载力研究进展.应用生态学报,2005,16(4):768- 772
    [12]许联芳,杨勋林,王克林等.生态承载力研究进展.生态环境,2006,15(5):1111-1116
    [13]洪阳,叶文虎.可持续环境承载力的度量及其应用.中国人口、资源与环境,1998,8 (3):54~58
    [14]Borsuk ME,Stow CA,Reclthow K H .Predicting the Frequency of Water Quality Standard Violations:A Probabilistie APProach for TMDL DeveloPment.Environmental Science& Teehnology,2002,36(10):2109~21 15
    [15]Horn.AL,Rueda FJ,HormannG,et al.ImPlementing river waterqualitymodellingissues in mesoscale watershed models for water Poliey demands-an overview on eurrellt concePts,deficits,and futur已tasks·Physics And Chemistry Ofthe Earth,2004,29(11-12): 725-737
    [16]刘占良.青岛市重点流域水环境承载力与污染防治对策研究:[博士学位论文].青岛: 中国海洋大学,2009
    [17] Saveriades A. Establishing the social tourism carrying capacity for the tourist resorts of the east coast of the Republic of Cyprus. Tourism Man, 2000, 21(2): 147-155
    [18] Furuya K. Environmental carrying capacity in an aquaculture ground of seaweed and shellfish in northern Japan. In: Determining Environmental Carrying Capacity of Coastal and Marine Areas: Progress, Constraints and Future Options. PEMSEA Workshop Proceedings, 2003, 11: 52-59
    [19]方晓波.钱塘江流域水环境承载能力研究:[博士学位论文].杭州:浙江大学,2009
    [20]汪恕诚.水环境承载能力分析与调控.水利发展研究,2002,2(1):2-6
    [21]左其亭,马军霞,高传吕.城市水环境承载能力研究.水科学进展,2005,16(1):103- 108
    [22]高占喜.可持续发展理论探索.北京:中国环境科学出版社,2001.8-23
    [23]朱一中,夏军,谈戈.关于水资源承载力理论与方法的研究.地理科学进展,2002,21 (2):180-189
    [24]刑有凯,余红,肖扬等.基于向量模法的北京市水环境承载力评价.水资源保护,2008, 24(4):1-4
    [25]唐剑武,郭怀成,叶文虎.环境承载力及其在环境规划中的初步应用.中国环境科学, 1997,17(1):6-9
    [26]贺瑞敏.区域书境承载能力理论与评价方法研究:[士位论文].南京:河海大学, 2007
    [27]张永良.水环境容量基本概念的发展.环境科学研究,1992,5(3):59-61
    [28]廖文根,石秋池.水生态与水环境学科的主要前沿研究及发展趋势.中国水利,2004, (22):34-36
    [29]廖文根,李锦秀.我国水资源保护规划中若干定量化问题的探讨.水力发电,2002,(5): 8-10
    [30]左其亭.城市水资源承载能力.理论·方法·应用.北京:化学工业出版社,2005
    [31]余红,安玉坤,沈珍瑶.济南小清河水环境承载力研究.水资源保护,2008,24(2): 34-37
    [32]张逄甲.水污染容许排放量计算方法.北京:中国科学技术出版社,1991.
    [33]孙卫红,姚国金,逢勇.基丁不均匀系数的水环境容量计算方法探讨.水资源保护, 2001,(2):5-27
    [34]龚若愚,周源岗.柳江柳州段水环境容量研究.水资源保护,2001,(1):31-33
    [35]王卫平.九龙江流域水环境容量变化模拟及污染物总量控制措施研究:[博士学位论文]. 厦门:厦门大学,2007
    [36]王亮.天津市重点水污染物容量总量控制的研究:[博士学位论文].天津:天津大学, 2005
    [37]万飚,吴贻名.河流水环境容量的推求及分配方法探讨.武汉水利水电大学人学学报,2000, 33(1):74-76
    [38]超.污水处置理论与技术.南京:河海大学出版社,1998
    [39]孝宁,褚君达,朱维斌.河网=惭急态水环境容量研究.水科学进展,1997,8(1): 25-31
    [40]田-梅.北方城市地标水体水质安全研究:[博士学位论文].天津:天津大学,2009
    [41]刘兰芬,张祥伟,夏军.河流水环境容量预测方法研究.水利学报,1998,(7):16-20
    [42]张俊,佘宗莲,王成见等.大沽河干流青岛段水环境容量研究.青岛海洋大学学报(自然科学版),2003,33(5):665-670
    [43]尹华.长春市主要河流环境容量及其总量控制研究:[硕士学位论文].吉林:吉林大学,2004
    [44]徐进.大沽河干流青岛段水污染物总量控制研究:[硕士学位论文].青岛:中国海洋大学,2004
    [45]张丽静.小清河水环境质量评价及容量研究:[硕士学位论文].济南:山东大学,2007
    [46]SusilowatiY,Mengko TR,Rais J.Water Quality Modeling for Environmental Information System.Proceedings of the 2004 IEEE Asia Pacifie Conference on Cireuit and system, Taiwan:Institute ofEleetrical&Eleetronies Enginee.2004,929-932
    [47]YoungP,Beek B.Modeling and Control ofwater-QualityRiversystem.Automatica-,1974, 10(5):455-468
    [48]罗定贵,王学军,孙莉宁.水质模型研究进展与流域管理模型wARMF评述.水科学进 展,2005,6(2):289-294
    [46] Susnowati Y, Mengko T R, Rais J. Water Quality Modeling for Environmental Information System. Proceedings of the 2004 IEEE Asia Pacific Conference on Circuit and system, Taiwan: Institute of Electrical & Electronics Enginee. 2004, 929?32
    [47] Young P, Beck B. Modeling and Control of Water-Quality River System. Automatica, 1974, 10(5): 455-468
    [48]罗定贵,王学军,孙莉宁.水质模型研究进展与流域管理模型WARMF评述.水科学进展,2005,6(2):289-294
    [49] Robert V T. The future "golden age" of predictive models for surface water quality and ecosystem management. Journal of Environmental Engineering. 1998, 124(2); 94?03
    [50] Park S S, Lee Y S. A water quality modeling study of the Nakdong Rive, Korea. Ecological Modelling, 2002, 152(1): 65-75
    [51] Jun K S, Kang J W, Lee K S. Simultaneous estimation of model parameters and diffuse pollution sources for river water quality modeling. Water Science and Technology, 2007,56(1): 155-162
    [52] Ning S K, Chang N B. Watershed-based point sources permitting strategy and dynamic Permit-trading analysis. Journal of Environmental Management, 2007, 84(4): 427?46
    [53] Zheng L Y, Chen C S, Zhang F Y. Development of water quality model in the Satilla River Estuary, Georgia. Ecological Modelling, 2004. 178(3-4): 457?82
    [54] Magalhaes J, Flindt M R, Marques J C, et al. Modelling nutrient mass balance in a temperate meso-tidal estuary: Implications for management. Estuarine Coastal and Shelf Science, 2008, 76(2):175- 185
    [55] Neary V S, Wright S A, Bcreciartua P. Case study: Sediment transport in proposed geomorphic channel for Napa River. Journal of Hydraulic Engineering-ASCE, 2001,127(11): 901-910
    [56] Debele B, Srinivasan R, Parlange J Y. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models(SWAT and CE-QUAL-w2) for better water resources management in complex river basins. Environmental Modeling & Assessment, 2008, 13(2): 135?53
    [57] Wagner RC,Dillaha TA,Yagow G.An assessment ofthe referenee watershed aPProaeh for TMDLs with biologieal imPairments.Water,Air and 5011 pollution,2007,1 81(1-4):341-354
    [58]李家科.博斯腾湖水环境容量及污染物排放总量控制研究:[硕士学位论文].西安:西 安理工大学,2004
    [59]沈淞涛.安昌河流域绵阳市涪城区段水污染物总量控制研究:[硕士学位论文].西安: 西南交通大学,2005
    [60]周密,王华东,张义生.环境容量.长春:东北师范大学出版社,1987.85-89
    [61] Duarte EA,NetoL,AlegriasM,et al."APProPriate teehnology"for Pollution control in corrugated board industry-the Portugaese ease.w自ter Science and Technoloy,1995,3(2): 12-14
    [62]王素娜.曹娥江支流水质评价与河流水系环境容量分析:[硕士学位论文].杭州:浙江 大学,2005
    [63] Ecker J G, A programming model for optimal allocation of stream dissolved oxygen,Management Science, 1975,21(6): 658-668
    [64] Liebman J C, Lynn W R. The optimal allocation of stream dissolved oxygen: water resource research. Journal of Environmental Engineering, 1966, 2(3): 581-591
    [65] Loucks D P, Revelle C S, Lynn W R. Linear Programming Models for Water Quality Control.Management Science, 1967, 14(4): 166-181
    [66] Fujiwara O, Gnanendran S K, Ohgaki S. Water Quality Management under Stochastic Stream Flow. Journal of Environmental Engineering, 1986, 112(2): 185-198
    [67] Donald H B, Barbara J L. Comparison of Optimization Formulations for Waste Load Allocations. Journal of Environmental Engineering, 1992, 118(4): 597-612
    [68] Ellis J H. Stochastic water quality optimization using imbedded chance constraints. Water Resources Research, 1987,23(12): 2227-2238
    [69] Donald H B, Edward A. Optimization modeling of water quality in an uncertain environment.Water Resources Research, 1985, 21(7): 934?40
    [70] Lee C S, Wen C G. Application of multiobjective programming to water quality management in a river basin. Journal of Environmental Management, 1996, 47(1): 11-26
    [71]刘天厚,施为光.沱江水环境容量及水质管理规划探讨.环境科学,1987,8(1):12-15
    [72]高兴斋.重金属水环境容量及其应用.环境科学,1987,8(1):28-31
    [73]刘芬,刘文华,娄涛.湘江霞湾段汞环境容量模型研究.环境工程,2002,20(6): 58-62
    [74]周孝德,郭瑾珑,程文等.水环境容量计算方法研究.西安理大学报,1999,15(3):1-6
    [75]于雷,吴舜泽,范丽丽等.水环境容量-维计算中不均匀系数研究.环境科学与技术, 2008,31(1):1 16-19
    [76]徐祖信,卢士强.潮汐河网水环境容量的计算分析.上海环境科学,2003,22(4):254- 257
    [77]陈顺天.跨流域引水工程对晋江水环境容量的贡献.上海环境科学,2001,20(9): 436-438
    [78]李如忠,洪天求,熊鸿斌等.基于未确知数的湖库水环境容量定量研究.水动力学研究 与进展,2008,23(2):1 66-174
    [79]曾光明.灰色系统理论在水环境污染控制系统规划中的应用:[硕士学位论文].武汉: 武汉水利电力学院,1988
    [80] North American Lake Management Society.httP://W ww.nalms·org/glossary/Ikword·htm
    [81] Committee to review the Florida Keys Carrying Capacity Study, National Research Council Interim Review of the Florida Keys Carrying Capacity Study. Washington DC: National Academy Press, 2001
    [82] Harris J M, Kennedy S.. Carrying capacity in Agriculture: Globe and regional issue. Ecological Economics, 1999, 129(3): 443-461
    [83] Rijisberman M A, van de Ven FHM. Different approaches to assessment of design and management of sustainable urban water system. Environment Impact Assessment Review, 2000, 129(3): 333-345
    [84] Falkenmark M, Lundqvist J. Towards water security: political determination and human adaptation crucial. Natural Resources Forum, 1998, 21(1): 37-51
    [85] KuylenstiernaJ L, Bjorklund G, Najlis P. Sustainable water future with global implications:everyone's responsibility. Natural Resources Forum, 1997, 22(3): 181- 190
    [86] Hrlich Anne H. Looking for the ceiling: Estimates of the Earth's carrying capacity. American Scientist, Research Triangle Park, 1996, 84(5): 494-499
    [87]新疆水资源软科学课题组.新疆水资源及其承载加勺开发战略对策.水利水电技术, 1989,(6):2-9
    [88]施雅风,曲耀光.乌鲁木齐河流域水资源承载力及其合理利用.1992,北京:科学出版 社,132-1 76
    [89]许有鹏.干旱区水资源承载力综合评价研究.自然资源学报,1993,8(3):229-237
    [90]夏军.水资源安全的度量:水资源承载力的研究与挑战.自然资源学报,2002,17(3): 262-269
    [9l]蒋晓辉,黄强,惠映河等.陕西关中地区水环境承载力研究.环境科学学报,2001,21(3): 3 12-317
    [92]翁文斌,王忠静,赵建世.现代水资源规划、理论、方法与技术.北京:清华大学出版 社,2004,353-357
    [93]张建云,王国庆.气候变化对水文水资源影响研究.北京:科学出版社,2007
    [94]赵卫,刘景双,苏伟等.辽宁省辽河流域水环境承载力的多目标规划研究.中国环境 科学,2008,28(l):73-77
    [95]郭怀成,唐剑武.城市水环境与社会经济可持续发展对策研究.环境科学学报,1995, 5(3):363-369
    [96]张文国,杨志峰,基于指标体系的地下水环境承载力评价.环境科学学报,2002,22(4): 541-544
    [97]李如忠,钱家忠,孙世群.模糊随机优选模型在区域水环境承载力评价中的应用.中国农村水利水电,2005,(]):3]-34
    [98]李如忠,汪家权,钱家忠.模糊物元模型在区域水环境承载力评价中的应用.环境科学与技术,2004,27(5):54-56
    [99]马文敏,李淑霞,康金虎.西比干旱区域城市水环境承载力分析方法研究进明.宁夏农 学院学报,2002,23(4):68-70[l00]赵青松,周孝德,龙平沉.关于水环境承载力模糊评价的探讨田.水利科技与经济, 2006,12(]):46-47
    [101]海洋,苗群,和慧等.模糊综合评价在水环境质量评价中的应用.青岛理工大学学报,2007,28(6):65-72
    [102][102] Simeonov V, Stratis JA, Samara C, et al. Assessment of the surface water quality in Northern Greece. Water Research, 2003, 37(17): 4119?124
    [103]卢文岱.SpSS forwil:dows统计分析.北京:电子工业出版社,2002.
    [104] SinghK只MalikA,MohanD,et al.Mult全variate statistical teelllliques fol·tlle evaluatio-:of sPatial and temPoral variations in water quality of Gomti River(India):a case study.Wate!· Research,2004,38(18):3980-3992
    [105]李俊,卢文喜,曹明哲等.主成分分析法在长春市石头口门水库水环境质量评价中的 应用.节水灌溉,2009,(l):15-18
    [106]张丽,董仁杰,赵众等.主分量分析法在水资源承载能力综合评价中的应用.安徽农 业科学,2007,35(35):1 1 568-1 1569
    [107]刘新宪,朱道立.选择与判断-AHP(层次分析法)决策.上海:上海科学普及出版社. 1990,11-39
    [108]温淑瑶,马.片青,周之豪等.层次分析法在区域湖泊水资源可持续发展评价中的应用 明.长江流域资源与环境,2000,(5):1 96-20-
    [109]樊庆锌,于森,徐东川.大庆地区水环境承载力计算分析与评价.哈尔滨工业大学学 报,2009,41(2):66-70
    [110]李如忠.基于指标体系的区域水环境动态承载力评价研究.中国农村水利水电,2006, (9):42-46
    [111]唐剑武,叶文虎.环境承载力的本质及其定量化初步研究.中国环境科学,1998,18 (3):227-230
    [112] Lucien Duckstein. Multiobjective Optimization in River Basin Development. WaterResources Research, 1980, 16(1): 14-20 [113] Steuer R E. Multiple Criteria Optimization: Theory, Computation and Application, NewYork: Wiley Press, 1986, 456-477 361-367
    [115]朱-中,夏军,王纲胜.西北地区水资源承载力宏观多目标情景分析与评价.中山大 学学报(自然科学版),2004,43(3):1 03~1 06
    [116]苏志勇,徐中民,张志强.黑河流域水资源承载力的生态经济研究.冰川冻土,2002, 24(4):400-406
    [117]LekS,DelaeosteM,BaranP,et al.APPlieation ofneural networkstomodellingnonlinear relationshipS in ecolo舒.Ecologieal Modelling,1996,90(1):36-52
    [118]Zhao Y, Cui F Y, GuoL,et al.CODM。foreeast based on BP neural network at Yuqiao reservoir in Tianjin.Journal of Nanjing University of Scienee and Teehnology(Natural Seience),2008 32(3):376-380
    [119]王俭,孙铁晰,李培军等.基于人工神经网络的区域水环境承载力评价模型及其应用. 生态学杂志,2007,26(l):1 39~1 44[120」柴磊.人工神经网络在汉江上游水环境承载力中的应用研究:!硕士学位论文].西安: 西安理工大学,2007
    [121] Duraiappah A K. Sectoral dynamics and natural resource management. Journal ofEconomics Dynamics & Control, 2002, 26(9-10): 1481 ~1498
    [122] Moffatt I, Nanley N. Modelling sustainable development: system dynamic and input-outputapproaches. Environmental Modelling & Software, 2001, 16(6): 545-557
    [123] Klaus B. A system dynamics perspective on the development of recycling strategy forend-of-life vehicles. Technovation, 2001, 21(4): 489-499
    [124]赵卫,刘景双,孔凡娥.辽河流域水环境承载力的仿真模拟.中国科学院研究生院学 报,2008,25(6):738-747
    [125]莫淑红,孙新新,沈冰等.基于系统动力学的区域水环境动态承载力研究.西安理工 大学学报,2007,23(3):251-256
    [126]冯萃敏,张雅君,许萍等.主成分分析法在屋顶绿化耗水量分析及预测中的应用明.给 水排水,2007,33(5):1 83-1 87
    [127]刘艳玲.区域水环境承载力的可持续发展研究-以长春市为例子:[硕士学位论文〕.长 春:东北师范大学,2002
    [128]赵俊三,赵耀龙.Gls发展的最新趋势及其应用前景.测绘工程,2000,9(2):21-25
    [129]田萌,李万庆.天津水资源问题战略研究.环境保护,2008,(6):67-69
    [130]李亮.天津市水资源可持续开发利用与管理研究:[硕士论文1.天津:天津大学,2002
    [131]王效琴.城市水资源可持续开发利用研究:〔博士学位论文].天津:南开大学,2007
    [132]潘雄锋,刘凤朝,郭蓉蓉.我国用水结构的分析与预测.干旱区资源与环境,2008, 22(10):11-14[133〕LumbA,Ha]liwellD,Shanna T APPlieation of CCME water quality index to,nonitor water quality:A ease study of the Mackenzie River basin,Canada.Environmental monitoring and assessment,2006,1 13(1-3):421-429
    [134] Nives Stambuk-giljanovic. Water quality evaluation by index in Dalmatia. Water research, 1999, 33(16): 3423-3340
    [135]邹志红,孙靖南,任广平.模糊评价因子的嫡权法赋权及其在水质评价中的应用.环 境科学学报,2005,25(4):552-556
    [136] Yi Y, Zou ZH H. An improved synthetic evaluation method on water quality evaluation in city sections of the Three Gorges reservoir area. Proceedings of the 2007 IEEE International Conference on Grey Systems and Intelligent Services, Nanjing, 2007, 289-293
    [137] Girija T R, Mahanta C, Chandramoul V. Water quality assessment of an untreated effluent impacted urban stream: The Bharalu tributary of the Brahmaputra River, India. Environmental Monitoring and Assessment, 2007, 130(l-3):221 -236ment,2007,130(l-3):221-236
    [138]陈守煌,李亚伟.基于模糊人工神经网络识别的水质评价模型.水科学进展,2005, 16(1):88-91
    [139]张旋,王启山,于森等.基于聚类分析和水质标识指数的水质评价方法.环境工程学 报,2010,4(2):476-480[l40]徐相信.我国河流综合水质标识指数评价方法研究.同济人学学报(自然科学版), 2005,33(4):482-487
    [141]徐祖信.我国河流单因子水质标识指数评价方法研究.同济大学学报(自然科学版), 2005,33(3):322-326
    [142] Simeonov V, Stratis J A, Samara C, et al. Assessment of the surface water quality inNorthern Greece. Water Research, 2003, 37(17): 4119-4124 [143] Kowalkowski T, Zbytniewski R, Szpejna J, et al. Application of chemometrics in river waterclassification. Water Research, 2006, 40(4): 744-752
    [144] Wunderlin D A, Diaz M P, Ame M V, et al. Pattern recognition techniques for the evaluation of spatial and temporal variations on water quality. A case study: Suquira river basin (Cordoba-Argentina). Water Research, 2001, 35(12): 2881-2894 [145] Singh K P, Malik A, Mohan D, et al. Multivariate statistical techniques for the evaluation ofspatial and temporal variations in water quality of Gomti River (India): a case study. WaterResearch, 2004, 38(18): 3980-3992 [146] Singh K P, Malik A, Sinha S. Water quality assessment and appointment of pollutionsources of Gomti River (India) using multivariate statistical techniques: a case study.Analytica Chimica Acta, 2005, 538(1-2): 355-374Analytiea ChimieaActa,2005,538(l-2):355-374
    [147]白文涛,金-绝,郝东影.保定市水功能区纳污能力及限制排污总量计算.水资源与水 工程学报,2008,19(5):98-00
    [148]周颖.海河水环境及水污染控制规划研究:「硕十学位沦文〕.大津:大津人学,2003
    [149]孙新新.城市水环境承载力U}究-以宝鸡市为例:[硕十学位论文}.西安:西安交通人 学,2007,10-13
    [150]张帆.可持续发展指标(体系)的分类及构建探讨.上海环境科学,200。,19(11):501- 504
    [151]Saaty T L .1 988.许树柏译.层次分析法(中译本).北京:煤炭工业出版社
    [152]刘庆云.天津市工业布局的现状和调整方向研究:[硕士学位论文].天津:天津大学, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700