用户名: 密码: 验证码:
重载操作机锻压随动过程动力学行为分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大锻件制造业是国家重大技术装备产业的重要基础,关系到国家安全和经济命脉,是国家极端制造能力的集中体现。大锻件产品在电力,冶金,石化、船舶、航天、军工等基础产业中有着广泛的应用。大型锻造液压机是大锻件的制造加工设备,目前我国万吨以上锻造液压机共七台,数量为世界第一,且具备自主设计制造能力。重载锻压操作机是锻造压机重要的协调作业辅助装备,可以大大提高锻件精度、生产效率及材料利用率,降低能耗。但是目前我国还不具备大型操作机的自主设计能力,对于重载锻造操作机的基础理论研究对于提高我国重大技术装备制造水平具有十分重要的意义。
     锻压作业过程中,液压机的锻打运动会在操作机的夹钳处产生极大的荷载(力与弯矩),导致操作机机械构件以及锻件自身的破坏。特别是在某些事故工况中,压机失控导致锻锤直接下落冲击锻件,巨大的冲击荷载可能导致夹钳瞬间过载断裂。本文主要研究锻打过程中“压机-锻件-操作机”整体系统的瞬态动力学特性以及力流传递规律,为操作机设计提供理论支持。主要包括以下几个方面的工作:
     (1)夹持长棒料操作机缓冲行为分析
     长棒料是塑性加工经常遇到的一种工件,在后期整形阶段,压机速度快,冲击振动明显,液压机作业在锻件的不同位置对系统动力学行为影响很大。根据合理假设,建立了操作机系统的单自由度动力学模型,通过与有限元软件LS-DYNA仿真结果比较,证明了模型的有效性。对于简单的线性回复力无阻尼的情况,可以将夹钳所受最大荷载(力与力矩)表达为锻压位置以及系统参数(操作机参数,压机参数,锻件参数)的显式函数,理论上揭示这些参数对操作机所受最大荷载的影响机理。通过对比研究平动式与倾动式操作机的缓冲特性,结果证明二者动力学行为在本质上是相同的。对比分析了两类双线性回复力下操作机的动力学行为,在对比分析的基础上,提出了优化的缓冲力设计方案,以减小操作机锻压随动过程中所受荷载。
     (2)操作机大范围缓冲行为分析与多目标优化
     锻件拔长初期,锻件短粗,虽然压机在此阶段运行速度相对较慢,但是锻件变形大,操作机缓冲运动的范围随之增大,从而引起缓冲缸自身的刚度非线性以及机构构型变化产生的几何非线性。首先建立操作机系统多体动力学模型,研究了上述两种非线性对操作机动力学行为的影响。推导了缓冲缸压力方程,通过与现场试验结果比对,证明该压力方程的有效性。
     在一个锻压周期的不同工作阶段,操作机的设计要求也有所不同。变形期要求操作机受力最小,保证结构安全性;压机回程后,要求夹钳快速回归初始工作位置,以保证操作机的工作效率,两个目标需要同时兼顾。建立了操作机大范围缓冲行为的多目标优化模型,采用NSGA-Ⅱ算法对水平与竖向缓冲缸的相关参数进行优化设计,获得两个目标的Pareto最优解集,为操作机设计提供了更广阔的空间。
     (3)落锤冲击工况下操作机动力学行为分析
     实际生产中,因为液压系统故障等因素,可能导致压机上砧失控,在重力的作用下,上砧自由落体直接冲撞锻件表面,产生的巨大的高频冲击荷载,其峰值可能到达锻件自重的几十倍,导致夹钳的瞬间过载断裂。在LS-DYNA中建立操作机系统三维有限元模型,模拟落锤冲击引起的系统振动;基于该模型,研究了操作机自身参数、锻件参数以及压机参数这三类系统参数对于最大冲击力的影响。当冲击位置靠近夹钳,冲击力的峰值最大,系统基频对动态响应起主要作用,建立了近端冲击的操作机单自由度系统,对近端冲击的系统动力学行为给予理论解释。
The large forging is the important basis of national heavy machinery industry, which is important for the national safety and economic lifeline, also, it demonstrates the comprehensive national power. Large forging productions are widely used and needed in basic industries, such as electrics, petrochemical, shipbuilding, aeronautics and astronautics, military, et al. Large forging hydraulic press is the manufacturing machine of large forging workpieces. Until now, there are seven hydraulic presses in China whose capacities are more than10000ton, with the largest number all over the world, moreover, and the large forging hydraulic presses could be designed and manufactured independently. Heavy forging manipulator is the important auxiliary tool for the hydraulic press, which greatly improves the workpiece precision, working efficiency, material utilization, and the power consuming for production could be reduced. Unfortunately, the large forging manipulator could not be designed independently in China, so the research in this area is very important for domestic heavy equipment manufacturing industry.
     The motion of hydraulic press during metal forging produces large interface load at the clamp of the forging manipulator, which may cause the damages in the mechanical components of the manipulator and the workpiece. Especially in some accident the forging die drops on the workpiece directly without any control, and the huge impact force could possibly damage the clamp because of over loading. This dissertation is focused on the transient response and force flow of the "press-workpiece-manipulator" system, which provides theoretical support for manipulator design. The following works are included:
     (1) Dynamic compliance behavior of forging manipulator which clamps a slender bar workpiece
     The slender bar workpiece is usually produced in forging industry. During the finishing phase of forging process, the hydraulic press moves fast, the impact vibration effect is significant, and the press position where the press works has a significant influence on the dynamic behavior of the manipulator.. The manipulator system is modeled as a vibration system with single degree of freedom (SDOF) according to some reasonable assumptions. Comparisons between the analytical results and the commercial FEM software LS-DYNA simulations are made to validate the proposed model. In the case of linear compliance without damping, the useful design formula could be derived which explicitly show the dependence of the dynamic load amplitudes on the press positition and system parameters, including the press paremeters, workpiece parameters and manipulator parameters. The compliance behaviors of the translational manipulator and rotational manipulator are compared, and the results show that the two kinds of manipulators are the same in dynamics essentially. The dynamic behaviors of manipulator with two kinds of bilinear compliance force are studied, then the compliance force is optimized to minimize the maximum force exerted to the clamp during the compliance motion.
     (2) Dynamic analysis and multi-objective optimization of forging manipulator under large amplitude compliance motion
     At the beginning phase of the forging process, the workpiece is podgy, the hydraulic press moves slowly, however, the deformation of the workpiece is large as well as the compliance motion of manipulator which causes the nonlinearities of resilient stiffness and mechanism geometry change. The multibody dynamic model is established, which is used to investigate the influence of the above two kinds of nonlinearities on the dynamic behavior of the manipulator. The actual pressure equation of resilient cylinder is derived, and is validated by the workshop experiment.
     The performance requirements of the manipulator are different for different working periods of one forging stroke. During the compression period, the vertical force imposed on the clamp should be minimized to guarantee the safety of the structure; during the rebound period, the clamp needs to rebound to the initial working position as soon as possible to improve the working efficiency. Both criterions need to be satisfied simultaneously in the manipulator design. The multi-objective optimization formulation of the forging manipulator under the large amplitude compliance motion is established, in which the parameters of horizontal and vertical compliance cylinders, including the initial heights of the accumulator and the orifice areas, are optimized by NSGA-II method to obtain Pareto-optimal solutions.
     (3) Dynamic behavior of forging manipulator under the impact of dropping die
     In practical production, the upper die could possibly lose control due to the malfunction of the hydraulic system. As a result, it drops freely and finally hit the workpiece. producing the huge high frequency impact force instantaneously and exerted to the clamp, with the magnitude tens of times over the self weight of the workpiece, and the clamp could possibly be fractured due to overloading. The3D finite element model of the manipulator system is established in LS-DYNA to simulate the impact due to the dropping die. in which the influence of the system parameters are studied, including the manipulator parameters, workpiece parameters and press parameters.. The impact force is the largest when the impact occurs near the clamp, and the dynamic response of the system is dominated by the fundamental frequency, in such case, the manipulator system could be regarded as a SDOF system, by which the dynamic behavior of the system could be explained theoretically.
引文
[1]高峰,郭为忠,宋清玉,等.重型制造装备国内外研究与发展[J].机械工程学报,2010,46(19):92-107.
    [2]Society of Manufacturing Engineers. Incremental Forging of Parts with Cross-Ribs, MF 91-194001[R]. Dearborn:U.S. SME,1973.
    [3]傅文灿.0_6吨液压_机械传动锻造操作机[J].CMET锻压装备与制造技术,1977(3):15-16.
    [4]涂敦修.一吨锻造操作机[J].CMET锻压装备与制造技术,1975(3):33.
    [5]钟嘉斌.8吨锻造操作机[J].重型机械,1976(3):54-56.
    [6]江苏海安七一机械厂,上海交通大学530教研组.DYH-0.2型锻造操作机[J].CMET锻压装备与制造技术,1977(4):24-28.
    [7]鞍山锻压机械厂.DYH-2有轨锻造操作机[J].CMET锻压装备与制造技术,1980(1):61-62.
    [8]李佶.DYB-20有轨锻造操作机[J].重型机械,1982(11):60-63.
    [9]李佶.操作机结构的发展状况[J].重型机械,1974(8):29-33.
    [10]李佶.操作机的基本参数[J].重型机械,1974(7):47-51.
    [11]李佶.锻造操作机的发展近况[J].CMET锻压装备与制造技术,1978(3):18-22.
    [12]李估.锻造操作机设计与计算中几个问题的讨论[J].CMET锻压装备与制造技术,1978(5):2-18.
    [13]万胜狄等.锻造机械化与自动化[M].北京:机械工业出版社,1983.
    [14]顾震隆.锤上操作机的动力分析探讨[J].哈尔滨工业大学学报,1979(3):1-10.
    [15]哈尔滨工业大学操作机小组.锻造操作机动力分析的初步探讨[J].CMET.锻压装备与制造技术,1979(3):19-22.
    [16]张学凤,李波.进口200tm操作机钳杆压力平衡装置电气线路的改进[J].一重技术,1994(4):76-79.
    [17]唐树宏,卢国海,董卫涛;.3000t快锻操作机后驱动系统的技术改造[J].一重技术,2001(4):82-83.
    [18]孙丽萍,孟庆刚.16-25/30MN快锻机液压维护及保养[J].一重技术,2002(Z1):139-140.
    [19]MASON M. Compliance and Force Control for Computer Controlled Manipulators [J]. IEEE Transactions on Systems, Man and Cybernetics,1981, SMC11(6):418-432.
    [20]RAIBERT M H, CRAIG J J. Compliance and Force Control for Computer Controlled Manipulators [J]. Journal of Dynamic Systems, Measurement, and Control,1981,359:605-609.
    [21]KHATIB 0. A Unified Approach for Motion and Force Control of Robot Manipulators; The Operational Space Formulation [J]. IEEE Journal of Robotics and Automation,1987, RA3 (1):43-53.
    [22]SCHUTTER J D, BRUSESEL H V. Compliant robot motion I. A formalism for specifying compliant motion tasks [J]. The International Journal of Robotics Research,1988,7(4):3-17.
    [23]DEGOULANGE E, DAUCHEZ P. External Force Control of an Industrial PUMA 560 Robot [J]. Journal of Robotic Systems,1994,11 (6):523-540.
    [24]HOGAN N. Impedance control-an approach to manipulation, part Ⅰ-theory, part IIimplementation, part Ⅲ-application [J]. Journal of Dynamics Systems, Measurement, and Control,1985,107(1):1-24.
    [25]NEVINS J L,WHITNEY D E. The force vector assembler concept [C]//American Society of Mechanical Engineers. Proceedings of the First CISM IFToMM Symposium on Theory and Practice of Robots and Manipulators (Vol II), September,1973, Udine, Italy. New York:ASME, c1973:273-288.
    [26]WHITNEY D E. Force feedback control of manipulator fine motions. [J]. Journal of Dynamic Systems, Measurement, and Control,1977,99:91-97.
    [27]SINGH S K, POPA D 0. An analysis of some fundamental problems in adaptive control of force and impedance behavior, theory and experiments [J]. IEEE Transactions on Robotics and Automation,1995,11:223-228.
    [28]COLBAUGH R, SERAJI H, GLASS R K. Direct adaptive impedance control of robot manipulators [J]. Journal of Robotic Systems,1993,10(2):217-248.
    [29]JUNG S, HSIA T C. Robust neural force control scheme under uncertainties in robot dynamics and unknown environment [J]. IEEE Transactions on Industrial Electronics,2000,47(2):403-412.
    [30]JUNG S, HSIA T C. Neural network impedance force control of robot manipulator [J]. IEEE Transactions on Industrial Electronics,1998,45(3):451-461.
    [31]JUNG S L, YIM S B, HSIA T C. Experimental studies of neural network impedance force control for robot manipulators [C]//IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), May 21-26,2001, Seoul, Korea. Piscataway NJ:IEEE Press, c2001:3453-3458.
    [32]COHEN M, FLASH T. Learning impedance parameters for robot control using an associative search network [J]. IEEE Transactions on Robotics and Automation,1991,7(3):382-390.
    [33]CRAIG J J, HSU P, SASTRY S. Adaptive Control of Mechanical Manipulators [C]//IEEE Council on Robotics and Automation. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), April 7-10,1986,San Francisco, Califonia. Washington:IEEE Press, c1986:190-195.
    [34]SPONG M W. Adaptive Control of Flexible Joint Robots [J]. Systems & Control Letters,1989,13(1):15-21.
    [35]MIDDLETON R H, GOODWIN G C. Adaptive Computed Torque Control for Rigid Link Manipulators [J]. Systems & Control Letters,1988,10:9-16.
    [36]SINGH S N. Adaptive Model Following Control of Nonlinear Robotic Systems [J]. IEEE Transactions on Automatic Control,1992,30(11):1099-1100.
    [37]CAI L, SONG G. Robust Position/Force Control of Robot Manipulators during Contact Tasks [C]//the American Automatic Control Council. Proceedings of the American Control Conference, June 29-July 1,1994, Baltimore, Maryland. Piscataway NJ:IEEE Press,c1994:216-220.
    [38]CHEN Y H, PANDEY S. Robust Position/Robuts Hybrid Control of Robot Manipulators [C]//the American Automatic Control Council. Proceedings of the American Control Conference, May 14-19,1989, Scottsdale, Arizona. Piscataway NJ:IEEE Press,c1989:236-241.
    [39]LU Z, GOLDENBERG A A. Robust Impedance Control and Force Regulation:Theory and Experiments[J]. International Journal of Robotics Research,1995,14(3):225-254.
    [40]DAWSON D M, LEWIS F L. Robust Force Control of a Robot Manipulator [J]. International Journal of Robotics Research,1992,11(4):312-319.
    [41]CRAIG J J. Adaptive Control of Manipulators through Repeated Trails [C]//the American Automatic Control Council. Proceedings of the American Control Conference, June 6-8,1984, San Diego, California. Piscataway NJ:IEEE Press, c1984:1566-1573.
    [42]ARIMOTO S, KAWAMORA S, MIYAZAKI F. Bettering Operations of Robots by Learning [J]. Journal of robotic systems,1984,1:123-140.
    [43]LU Z, GOLDENBERG A A. Robust Impedance Control and Force Regulation:Theory and Experiments [J]. International Journal of Robotics Research,1995,14(3):225-254.
    [44]DAWSON D M, LEWIS F L. Robust Force Control of a Robot Manipulator [J]. International Journal of Robotics Research,1992,11(4):312-319.
    [45]JEOND, TOMIZUKA M. Learning Hybrid Force and Position Control of Robot Manipulators [J]. IEEE Transactions on Robotics and Automation,1993,9(4):423-431.
    [46]PANDIAN S R, KAWAMURA S. Hybrid force/position control for robot manipulators based on a D-type learning law [J]. Robotica,1996,14:51-59.
    [47]D. E. Whitney and J. L. Nevins. What is the remote center compliance and what can it do [C]//Society of Manufacturing Engineers and Robot Institute of America. Proceedings of 9th International Symposium and Exposition on Industrial Robots (ISIR), March 13-15,1979, Washington. Chicago:IIT Research Institute,c1979:135-152.
    [48]LONCARIC J. Geometrical analysis of compliant mechanisms in Robotics [D]. Harvard University,1985.
    [49]EIMAARAGHY H A, JOHNS B. An Investigation into the Compliance of SCARA Robots. Part I:Analytical Model [J]. Journal of Dynamic Systems, Measurement, and Control,1988,110:18-22.
    [50]EIMAARAGHY H A, JOHNS B. An Investigation into the Compliance of SCARA Robots. Part Part II:Experimental and Numerical Validation [J]. Journal of Dynamic Systems, Measurement, and Control,1988,110:23-30.
    [51]BOURRIERES J P, JEANNNIER P, LHOTE F. Intrinsic Compliance of Position Controlled Robots -Applications in Assembly [C]//Association francaise de la robotique industrielle. Proceedings 5th International Conference on Assembly Automation, May 22-24,1984, Paris, France. Bedford England:IFS (Publications), c1984:133-142.
    [52]KIM W K, YI B J, CHO W E. RCC Characteristics of Planar/Spherical Three Degree-of-Freedom Parallel Mechanisms With Joint Compliances [J]. Journal of Mechanical Design,2000,122:10-16.
    [53]PATERSON T, LIPKIN H. A classification of robot compliance [C]//American Society of Mechanical Engineers. The mechanisms commitiee of the design engineering division. Proceeding of the 1990 ASME Design Technical Conferences, September 16-19,1990, Chicago, Illinois. New York:,c1990:307-314.
    [54]PATERSON T, LIPKIN H. Geometry properties of modeled robot elasticity part I decomposition [C]//American Society of Mechanical Engineers. The mechanisms commitiee of the design engineering division. Proceeding of the 1992 ASME Design Technical Conferences, September 13-16,1992, Scotisdale, Arizona. New York:,c1992:179-185.
    [55]PATERSON T, LIPKIN H. Geometry properties of modeled robot elastici ty part Ⅱ:centre of elasticity [C]//American Society of Mechanical Engineers. The mechanisms commitiee of the design engineering division. Proceeding of the 1992 ASME Design Technical Conferences, September 13-16,1992, Scotisdale, Arizona. New York:,c1992:187-193.
    [56]PATERSON T, LIPKIN H. Structure of robot compliance [J].Journal of Mechanical Design,1993,115(3):576-580.
    [57]PIGOSKI T, GRIFFIS M, DUFFY J. Geometry properties of modeled robot elasticity part I:decomposition [C]//American Society of Mechanical Engineers. The mechanisms commitiee of the design engineering division. Proceeding of the 1992 ASME Design Technical Conferences, September 13-16,1992, Scotisdale, Arizona. New York:,c1992:445-452.
    [58]GRIFFIS M, DUFFY J. "Global stiffness modeling of a class of simple compliant couplings [J]. Mechanism and Machine Theory,1993,28(2)-.207-224.
    [59]CIBLAK N, LIPKIN H. Asymmetric Cartesian stiffness for the modeling of compliant robotic systems [C]//American Society of Mechanical Engineers. The mechanisms commitiee of the design engineering division. Proceeding of the 1994 ASME Design Technical Conferences, September 11-14,1994, Mineapolis, Minnesota. New York:,c1994:197-204.
    [60]ANG JR M H, ANDEEN G B. Specifying and Achieving Passive Compliance Based on Manipulator Structure [J]. IEEE Transactions on Robotics and Automation,1995,11 (4):504-515.
    [61]HUDGENS J, COX D, TESAR D. Classification Structure and Compliance Modeling for Serial Manipulators [C]//IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), April 24-28,2000,San Francisco, Califonia. Piscataway NJ:IEEE Press, c2000:3320-3327.
    [62]ROBERTS R G. A note on the normal form of a spatial stiffness matrix [J]. IEEE Transactions on Robotics and Automation,2001,17(6):968-972.
    [63]NGUYEN V D. Constructing Stable Grasps [J]. International Journal of Robotics Reseach,1989,8(1):26-37.
    [64]HUANG S G, SCHIMMELS J M. The bounds and realization of spatial stiffnesses achieved with simple springs connected in parallel [J]. IEEE Transactions on Robotics and Automation,1998,14(3):466-475.
    [65]CIBLAK N, LIPKIN H. Synthesis of Cartesian stiffness for robotic applications [C]/ IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), May 10-15,1999, Detroit, Michigan. Piscataway NJ:IEEE Press,c1999:2147-2152.
    [66]ASADA H, KAKUMOTO Y. The Dynamic Analysis and Design of a High-Speed Insertion Hand Using the Generalized Centroid and Virtual Mass [J]. Journal of Dynamic Systems, Measurement, and Control,1990,112(4):546-653.
    [67]SHAHINPOOR M, ZOHOOR H. Analysis of Dynamic Insertion Type Assembly for Manufacturing Automation [C]//IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), April 9-11,1991, Sacramento, Califonia. Piscataway NJ:IEEE Press, c1991:2458-2464.
    [68]TRONG D N, BETEMPS M, JUTARD A. Analysis of Dynamic Assembly Using Passive Compliance [C]//IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), May 21-25,1995, Nagoya, Japan. Piscataway NJ:IEEE Press,c1995:1997-2002.
    [69]DU K L, ZHANG B B, HUANG X H, et al. Dynamic analysis of assembly process with passive compliance for robot manipulators [C]//IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), July 16-20,2003, Kobe, Japan. Piscataway NJ:IEEE Press, c2003:1168-1173.
    [70]BAKSYS B, BASKUTIE J. Numerical simulation of parts alignment under kinematical excitation [J]. MECHANIKA,2007, Nr4(66):36-43.
    [71]BAKSYS B, KIIKEVICIUS S, CHADAROVICIUS A. Experimental investigation of vibratory assembly with passive compliance [J]. MECHANIKA,2011,11(6):608-614.
    [72]XIA Y C, YIN Y H, CHEN Z N. Dynamic analysis for peg-in-hole assembly with contact deformation [J]. International Journal of Advanced Manufacturing Technology,2006,30:118-128.
    [73]CHONG N Y, YOKOI K, OH S R, et al. Position control of collision-tolerant passive mobile manipulator with base suspension characteristics [C]//IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), April 20-25,1997, Albuquerque, New Maxico. Piscataway NJ:IEEE Press,c1997:594-599.
    [74]LIM H 0, TANIE K. Human Safety Mechanisms of Human-Friendly Robots:Passive Viscoelastic Trunk and Passively Movable Base [J]. International Journal of Robotics Research,2000,19(4):307-335.
    [75JOKADA M, NAKAMURA Y, BAW S. Design of Programmable Passive Compliance Shoulder Mechanism [C]//IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), May 21-26,2001, Seoul, Korea. Piscataway NJ:IEEE Press, c2001:348-353.
    [76]YOON S S, KANG S C, YUN S K, et al. Safe Arm Design with MR-based Passive Compliant Joints and Visco-elastic Covering for Service Robot Applications[J]. Journal of Mechanical Science and Technology,2005,19(10):1835-1845.
    [77]PARK J J, KIM B S, SONG J B, et al. Safe link mechanism based on nonlinear stiffness for collision safety [J]. Mechanism and Machine Theory,2008,43:1332-1348.
    [78]CHOI J, PARK s, LEE W, rt al. Design of a Robot Joint with Variable Stiffness [C]// IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), May 19-23,2008, Pasadena, Caliifonia. Piscataway NJ:IEEE Press, c2008:1760-1765.
    [79]THOMPSON C M, RAIBERT M H. Passive Dynamic Runniug [C]//HAYWARD V, KHATIB O. Lecture Notes in Computer Science:Experimental Robotics I, June 19-21,1989, Montreal, Canada. Berlin Heidelberg:Springer-Verlag, c1990:74-83.
    [80]AHMADI M, BUEHLER M. Stable Control of a Simulated One-Legged Running Robot with Hip and Leg Compliance [J]. IEEE Transactions on Robotics and Automation,1997,13(1):96-104.
    [81]CHAM J G, KARPICK M R. Stride Period Adaptation of a Biomimetic Running Hexapod [J]. International Journal of Robotics Research,2004,23(2):141-153.
    [82]GEYER H, SEYFARTH A, BLICKHAN R. Compliant leg behaviour explains basic dynamics of walking and running [J] Proceedings of the Royal Society-Part B:Biological Science,2006,273:2861-2867.
    [83]VITSCHEFF V. A programmable manipulator for closed die forging [C]//Proceedings 9th International Drop Forging Convention, July 16-20,2003, Kyoto, Japan. c1977.
    [84]WESTERMEYER W. Compiler:US,5454262 [P/OL].1995-10-03[1992-08-31]. http://www. google. com. hk/patents?hl=zh-CN&1r=&vid=USPAT5454262&id=zUEpAAAAEBAJ &oi=fnd&dq=us+5,454,262&printsec=abstract#v=onepage&q=us%205%2C454%2C262&f=fal se.
    [85]NYED T J, ELBADAN A M, BONE G M. Real-time process characterization of open die forging for adaptive control [J]. Journal of Engineering Materials and Technology,2001,123(4):511-516.
    [86]AKSAKALA B, OSMANB F H, BRAMLEYB A N. Upper-bound analysis for the automation of open-die forging [J]. Journal of Materials Processing Technology,1997,71(2):215-223.
    [87]AIVAZI R, YAMAGIMOTO J. Automated sequence design for slab stretching with arbitrary height distribution using one-step FEM analysis [J]. Journal of Materials Processing Technology,2004,151 (1-3):146-154.
    [88]WANG X J, YUKAWAB N, YOSHITA Y, et al. Research on some basic deformations in free forging with robot and servo-press [J] Journal of Materials Processing Technology,2009,209(6):3030-3038.
    [89]YAN C, GAO F. Simulation of programmed incremental open-die forging processes based on spread coefficient and geometric transformation [J]. Proceedings of the Institution of Mechanical Engineers-Part E:Journal of Process Mechanical Engineering,2010,224:129-135.
    [90]KIM P H, CHUN M S, et al. Pass schedule algorithms for hot open die forging [J]. Journal of Materials Processing Technology,2002,130-131:516-523.
    [91]AKSAKAL B,OSMAN B, BRAMLEY A N. Determination of experimental axial and sideways metal flow in open die forging [J]. Materials and Design,2008,29:576-583.
    [92]姜琳.过程控制优化中的智能方法研究[D].吉林:吉林大学计算机科学与技术学院,2010.
    [93]LILLY K W, MELLIGERI A S. Dynamic simulation and neural network compliance control of an intelligent forging center [J]. Journal of Intelligent and Robotic Systems,1996,17:81-99.
    [94]LILLY K W, JABLOKOW A G. Intelligent Open Die Forging. International Journal of Industrial Engineering [J]. International Journal of Industrial Engineering,1995,2 (3):216-222.
    [95]LILLY K W, MELLIGERI A S. Efficient dynamic simulation of an integrated robot/forge near net-shape processing center [M]//JUDD R P, KHEIR N A. Intelligent Manufacturing Systems. New York:Pergamon,1992:347-351.
    [96]MELLIGERI A S, LILLY K W. Application of neural networks in compliance control of an integrated robot/forge processing center [M]//SODHI R. Manufacturing Systems: Design, Modeling and Analysis. New York:Elsevier,1993:445-450.
    [97]WANG J, GAO F, ZHANG Y. Adpative compliance control of a hydraulic manipulator in free forging [J]. Proceedings of the Institution of Mechanical Engineers-Part B: Journal of Engineering Manufacture,2011,359:605-609.
    [98]WANG J, GAO F, ZHANG Y. Intelligent Control of a Novel Hydraulic ForgingManipulator [J]. Journal of Robotics,2011,2011:1-7.
    [99]KOST E,FOLTA W. Compiler:US,4420287 [P/OL].1983-10-13[1981-05-05]. http://www.google.com.hk/patents?hl=zh-CN&lr=&vid=USPAT4420287&id=AVMuAAAAEBAJ &oi=fnd&dq=GRIPPER+FEED+AND+GRIPPER+RESILIENCE+CYLINDERS+ON+FORGING+MANIPULATO RS&printsec=abstract#v=onepage&q=GRIPPER%20FEED%20AND%20GRIPPER%20RESILIENCE%2 OCYLINDERS%20ON%20FORGING%20MANIPULATORS&f=false.
    [100]KUTZ H.Compiler:US,4031736 [P/OL].1977-06-28[1976-07-14]. http://www.google.com.hk/patents?hl=zh-CN&lr=&vid=USPAT4031736&id=dclzAAAAEBA J&oi=fnd&dq=Workpiece+manipulator+for+use+in+a+forging+press&printsec=abstrac t#v=onepage&q=Workpiece%20manipulator%20for%20use%20in%20a%20forging%20press& f=false
    [101]SCHUBERT P. Compiler:US,4815311 [P/OL].1989-05-28[1987-07-31]. http://www.google.com.hk/patents?hl=zh-CN&lr=&vid=USPAT4815311&id=hkErAAAAEBA J&oi=fnd&dq=FORGING+MANIPULATOR+4,815,311&printsec=abstract#v=onepage&q=FORGI NG%20MANIPULATOR%204%2C815%2C311&f=false.
    [102]SCHUSSLER L. Compiler:US,3715908 [P/OL].1973-02-13[1970-05-21]. http://www.google.com.hk/patents?hl=zh-CN&lr=&vid=USPAT3715908&id=sxk4AAAAEBA J&oi=fnd&dq=forging+manipulators+3,715,908&printsec=abstract#v=onepage&q=forg ing%20manipulators%203%2C715%2C908&f=false.
    [103]THOMAS J M. Compiler:US,3427853 [P/OL].1969-02-18[1965-10-06]. http://www.google.com.hk/patents?hl=zh-CN&lr=&vid=USPAT3427853&id=uOtdAAAAEBA J&oi=fnd&dq=APPARATUS+TO+AVOID+BENDING+DURING+FORGING&printsec=abstract#v=one page&q=APPARATUS%20T0%20AVOID%20BENDING%20DURING%20FORGING&f=false.
    [104]TODO Y.SAKAMOTO M, USHIJIMA N, et al.Compiler:US,5498121 [P/OL]. 1996-05-12[1994-05-16]. http://www.google.com.hk/patents?hl=zh-CN&lr=&vid=USPAT5498121&id=7JMlAAAAEBA J&oi=fnd&dq=ROBOT+WHICH+IS+CAPABLE+OF+RECEIVING+IMPACT+LOAD&printsec=abstract #v=onepage&q=ROBOT%20WHICH%20IS%20CAPABLE%200F%20RECEIVING%20IMPACT%20L0AD&f= false.
    [107]权修华.操作机承载状态分析与计算[J].CMET锻压装备与制造技术,1988(5):41-44.
    [108]权修华.锻造操作机动载荷分析与计算[J].重型机械,1987(10):26-29.
    [109]杨文玉,孟富明.锻造操作机顺应性能评价与优化方法[J].机械工程学报,2010,46(23):121-127.
    [110]YAN C Y, GAO F, GE Q J. Compound stiffness modeling of an integrated open-die forging centre with serial-parallel heavy-duty manipulators [J] Proceedings of the Institution of Mechanical Engineers-Part B:Journal of Engineering Manufacture,2010,224:1-13.
    [111]林晓文,王皓,赵勇.考虑构件弹性变形的锻造操作机静刚度分析[J].机械设计与研究,2011,27(2):94-98.
    [112]赵勇,林忠钦,王皓.重型锻造操作机的操作性能分析[J].机械工程学报,2010,46(11):69-75.
    [113]CHEN W, ZHANG X Y, CUI Z S. Numerical simulations of open-die forging process for manipulator design [C]//XIONG C X, LIU H, et al. Lecture Notes in Computer Science:Intelligent Robotics and Applications, October 15-17,2008, Wuhan. Berlin Heidelberg:Springer-Verlag,2008:650-658.
    [114]梁音,王馨舶,李洪胜,等.锻造操作机钳杆操纵过程的动力学特性分析[J].重型机械,2010(5):38-42.
    [115]同新星.基于虚拟样机技术的锻造操作机缓冲装置研究[J].锻压装备与制造技术,2010(4):46-49.
    [116]高慧敏.锻造操作机缓冲装置的配置[J].重型机械,2010(S2):249-251.
    [117]陈高洁.锻造操作机钳臂结构疲劳分析[D].大连:大连理工大学,2009.
    [118]王武荣,陈关龙,林忠钦.大型锻件操作装备机锻耦合仿真分析[J].上海交通大学学报,2009(1),43(1):33-37.
    [119]Wang W R, Zhao K, Lin Z Q, Wang H. Evaluating interactions between the heavy forging process and the assisting manipulator combining FEM simulation and kinematics analysis [J] International Journal of Advanced Manufacturing Technology,2010,48(5-8):481-491.
    [120]HE X M. Effects of manipulator compliant movements on the quality of free forgings based on FEM simulation [J] International Journal of Advanced Manufacturing Technology,2011,56:905-913.
    [121]王皓,赵凯,陈关龙,等.自由锻造操作机顺应过程分析[J].机械工程学报,2010,46(4):27-34.
    [122]赵凯.锻造操作机缓冲过程仿真与顺应性评价[D].上海:上海交通大学,2009.
    [123]WANG H, LIN Z Q, ZHAO K, CHEN G L. Buffering Indices for Robot Manipulators Based on the Energy Distribution [C]//LIU H, DING H, et al. Lecture Notes in Computer Science:Intelligent Robotics and Applications, November 10-12,2010, Shanghai. Berlin Heidelberg:Springer-Verlag,2010:252-263
    [124]WANG H, ZHAO K, CHEN G L, LIN Z Q. Energy Distribution Index for robot manipulators and its application to buffering capability evaluation [J]. SCIENCE CHINA Technological Sciences,2011,54(2):457-470.
    [125]张普,杜正春.锻造操作机变工况分析与工况模拟装置设计[J].上海交通大学学报,2009,43(4):674-678.
    [126]ZHANG P, YAO Z Q, DU Z C. Analysis of Forging Compliance Process and Design of the Forging Simulator [C]//LIU H, DING H, et al. Lecture Notes in Computer Science:Intelligent Robotics and Applications, November 10-12,2010, Shanghai. Berlin Heidelberg:Springer-Verlag,2010:276-284.
    [127]ZHANG P, YAO Z Q, DU Z C, et al. Design and Compliance Experiment Study of the Forging Simulator [C]//JESCHKE S, LIU H H, SCHILBERG D. Lecture Notes in Computer Science:Intelligent Robotics and Applications, December 6-8,,2011, Aachen. Berlin Heidelberg:Springer-Verlag,2011:281-290.
    [128]AVITZUR B. Handbook of Metal Forming Processes [M]. New York:Wiley,1983.
    [129]DUTTA S C, ROY R. A critical review on idealization and modelling for interaction among soil-foundation-structure system [J].Computers and Structures,2002,80:1579-1594.
    [130]王守新.材料力学(第三版)[M].大连:大连理工大学出版社,2005.
    [131]THOMSON W T, DALLEH M D. Theory of Vibration and Applications [M].5th ed. New Jersey: Prentice,1997.
    [132]LI G, JINNA J T, WU W T, et al. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment [J]. Journal of Materials Processing Technology,2009,113 (1-3):40-45.
    [133]WALTERS J. Application of finite element method in forging:An industry perspective [J]. Journal of Materials Processing Technology,1991,27(1-3):43-51.
    [134]KOBAYASHI S, OH S I. Metal forming and the finite-element method [M]. New Jersey: Oxford university press,1989.
    [135]HALLQUIST J 0. LS-DYNA Keyword User's Manual (Version 970)[M]. California: Livermore Software Technology Corporation,2003.
    [136]中国锻压工程学会锻压分会.锻压手册(第一卷锻造)[M].第二版.北京:机械工业出版社,2002.
    [137]HARRIS C M, PEARSOL A G. SHOCK ANDVIBRATIONHANDBOOK [M].5 th ed. New York: McGRAW-HILL,2002.
    [138]TOMLINSON A, STRINGER J D. Spread and elongation in flat tool forging [J]. Journal of Iron Steel Institute,1959,193:157-162.
    [139]胡寿松.自动控制原理(第五版)[M].北京:科学出版社,2007.
    [140]SRINIVAS N, DEB K. Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation,1994,2(3):221-248.
    [141]DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II [J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700