用户名: 密码: 验证码:
铁酸铋高性能多铁陶瓷材料的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Preparation and Properties of BiFeO_3High-performance Multiferroic Ceramics
  • 作者:谷艳红
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2013
  • 导师:陈万平
  • 学科代码:070205
  • 学位授予单位:武汉大学
  • 论文提交日期:2013-05-01
摘要
多铁材料因同时具有铁电性、铁磁性甚至铁弹性而引起了人们广泛的关注它具有多方面的应用前景,是当前材料领域研究中的前沿热点之一BiFeO3(BFO)是一种单相多铁材料,它具备高的居里温度(Tc~1100K)和奈尔温度(TN~643K),是少数在室温下同时具有铁电性和铁磁性的多铁材料之一。理论计算表明BFO具有大的自发极化值。此外,BFO中的铁电序和铁磁序的相互作用将产生磁电耦合效应。对BFO材料的研究,不仅具有重要的物理意义,有助于认识多铁材料多铁性共存的物理机制,而且对研制新型信息存储器件、自旋电子器件、磁电耦合传感器件等方面具有潜在的应用前景。
     然而,目前对于BFO的研究还有待深入,对BFO多铁性共存的物理机制还有待进一步深入认识,在制备性能优良的单相BFO陶瓷和薄膜以满足器件应用的要求等方面,还存在不少亟待解决的关键问题,有许多研究工作要做。因此,本文主要从以下几方面开展了BFO陶瓷和薄膜的制备及其性能的研究工作并取得了一些创新性成果。
     1.针对铁酸铋存在的问题,为有效减小其漏电流,高价离子Ti的引入成为很多科研工作者研究的热点,使用快速液相烧结的方法成功制备了以钙钛矿相为主晶相的掺Ti陶瓷BiFe0.9Ti0.05O3、BiFe0.9Ti0.1O3和BiFeO3, Ti的掺入不仅提高了铁酸铋的烧结温度,同时也抑制了铁酸铋陶瓷表面颗粒的液化现象,使其晶粒减小提高了陶瓷样品的致密度和烧结收缩率,XRD分析结果表明,钛的掺入引起了BiFeO3的晶格产生变化。
     2.在计量掺杂的基础上,通过制备非计量掺钛的陶瓷样品BiFe0.9Ti0.05O3.研究在引入高价Ti离子的同时引入铁空位Vfem,深入探讨铁酸铋体系的导电机理,实验结果发现相比铁酸铋,计量掺钛样品的漏电流密度降低了4个数量级,而非计量掺钛却降低了9个数量级,电阻率高达1014Ω cm,在低频100Hz损耗仅有0.015,结果说明了电子在金属离子Fe2+和Fe3+之间的跃迁所引起的漏导可以通过Ti掺杂和Fe空位的引入而得到有效的抑制。在非计量掺钛的样品中观测到改善的铁电性,其Pr为0.23μC/cm2。铁磁数据的测量结果显示,铁空位Vmfe的引入并未明显改变其体系的螺旋磁结构。
     3.采用固相合成法制备了Dy掺杂与Dy和Ti共掺杂的BFO(BDFTO)陶瓷,XRD测试结果显示,样品的主品相为钙钛矿相,虽然有少量杂相存在,但并没有探测到Dy3Fe5012相和菱面体结构相。相比单掺Dy的样品,共掺样品BDFTO表现出高的电阻率(1013Ωcm),改善的铁电性¨(Pr~0.25μC/cm2)和铁磁性(Ms~1emu/g)。该研究结果表明,在BFO体系中Ti和Dy的协同效应是引起该体系性能提高的可能机制,值得进一步深入研究。
     4.为有效提高BFO体系的铁磁性和研究Ti与稀上元素共掺杂对该体系性能的影响和调制作用,使用固相烧结法制备了Ho掺杂以及Ho和Ti共掺杂的BFO(BHFTO)陶瓷。XRD测试结果显示,有少量杂相Bi12(Bi0.5Fe0.5)O19.5和Bi46Fe2O12,但样品主晶相为钙钛矿相。SEM测试结果显示,在单掺Ho的基础上引入Ti离子后,样品的颗粒小(1μm)而均匀且致密度明显提高,烧结线收缩率达到了13%。样品有极高的电阻率(1014Ωcm)和在100Hz下损耗仅为0.02,,共掺杂样品并未有明显的介电弥散现象。铁电性和铁磁性的改善表明A/B位共掺杂技术是同时改善提高BFO陶瓷的铁电性和铁磁性的有效方法
Multiferroic materials, simultaneously possessing the properties of ferroelectricity, ferromagnetism and even ferroelasticity, have aroused much attention in recent years. As a prospective candidate for potential applications in many aspects, multiferroic materials have been one of the most focused research fields at present.BiFeO3(BFO) is a single-phase multiferroic material with a high Curie temperature(Tc~1100K) and a high Neel temperature (TN~643K). It is one of the fewmultiferroic materials exhibiting both ferroelectric and ferromagnetic properties at room temperature. Theoretical calculations indicated that large polarization could be achieved in BFO. Moreover, interaction between the ferroelectric and ferromagnetic orders will lead to the effect of magnetoelectric (ME) coupling. The research on BFO material has not only the theoretical importance for understanding the physical mechanism of the coexistence of the ferroelectric and ferromagnetic properties, but also the importance for potential applications in novel devices of information storages,spintronics, ME sensor etc.
     However, much work has to be done to understand the physical mechanisms of the coexistence of the multiferroic properties of the BFO, and to solve the key problems emerged in the preparation of pure BFO ceramic and thin film with satisfied high quality for various novel device applications. Therefore, this dissertation focuses on the study of the preparations and properties of BFO based ceramics and thin films in the following aspects and some original novel results had been obtained as follows:
     1. Ti substitution for Fe has been proven effective to reduce the leakage current in BFO. Undoped BFO, Ti doped BiFe0.9Ti0.05O3and BiFe0.9Ti0.1O3ceramics were prepared by a rapid liquid phase sintering technique. The introduction of Ti not only raises the sintering temperature but also suppresses the appearance of liquid phases. The ceramic sintering shrinkage and density of the samples are also improved. XRD analysis results show that Ti-doping induces some subtle changes in BFO lattice.
     2. The nominal nonstoichiometric Ti doped ceramics BiFe0.9Ti0.05O3were prepared in order to introduce some Fe vacancy and probe the conduction mechanism of BFO. The leakage current of BiFeo.9Tio.05O3is decreased by nine orders of magnitude from that of BiFeO3. With an ultrahigh electrical resistivity, over1014Ωcm, BiFe0.9Ti0.05O3ceramic displays an especially low dielectric loss,0.015at100Hz, a remanent polarization Pr of0.23μC/cm2and a remanent magnetization Mr of0.13emu/g at room temperature. It is proposed that the Fe-deficiency in BiFeo.9Ti0.05O3decreases the amount of Fe2+and leads to the ultrahigh electrical resistivity. However the result of ferromagnctism presents that the introduction of Fe vacancy can not effectively cause the change of spatially modulated spin structure.
     3. Bi0.9Dy0.1Fe0.95O3and Bi0.9Dy0.1Fe0.9Ti0.05O3ceramics of high rhombohedral perovskite phase content were prepared and compared, which shows that Ti-doping leads to not only a great increase in electrical resistivity but also a further dramatic magnetization enhancement in addition to that induced by Dy-doping. With a high electrical resistivity around1×10Ωcm and a remanent polarization Pr of0.25μC/cm2, Bio.9Dyo.1Fco.9Tio.05O3ceramics sintered at960°C display a saturation magnetization Ms of lemu/g, which is three times as much as that of Bi0.9Dy0.1Fe0.95O3sintered at900°C. It is proposed that there exist some synergistic action between Ti and Dy in Bi0.9Dy0.1Fe0.9Ti0.05O3which gives rise to additional magnetization enhancement in BiFeO3.
     4. In order to improve the fcrromagnetism of BFO and study the effect of eodoping of Ti and rare earth elements on the properties of BFO, Bio.9Hoo.1Fco.95O3and Bi0.9Ho0.1Fe0.9Ti0.05O3ceramics were prepared through conventional solid-state-reaction. X-ray diffraction indicated that both ceramics were of a high rhombohedral perovskite phase content and contained minor impurities phases such as Bi12(Bi0.5Fe0.5)O19.5and Bi46Fe2O12. Microstructural analyses showed that the grains of Bi0.9Ho0.1Fe0.9Ti0.05O3ceramics were much smaller than those of Bi0.9Ho0.1Fe0.95O3. Bi0.9Ho0.1Fe0.9Ti0.05O3ceramics showed a electrical resistivity over1×1014Qcm at room temperature, a very low. dielectric loss of0.02at100Hz, magnetic hysteresis loop with a remnant magnetization2Mrof~0.485emu/g, both much higher than those of Bi0.9Ho0.1Fe0.95O3. It was proposed that the defect subsystem of BiFeO3is responsible for the improvements and attention should be paid to tailor the defect subsystem through adopting nonstoichiometric compositions and codoping of multiple elements.
引文
[1]J.F.Scott, Applications of magnetoelectrics, J Mater Chem,2012,22,4567.
    [2]L.W.Martin and R.Ramesh, Multiferroic and magnetolelectric heterostructures, Acta Mater,2012,60,2449.
    [3]R.Ramesh and D.G.Schlom, Whither Oxide Electronics, MRS Bulletin,2008,33,1006.
    |4] R.Thomas, J.F.Scott, D.N.Bose, and R.S.Katiyar, Multiferroic thin-film integration onto semiconductor devices, J Phys:Condens Mat,2010,22,423201.
    [5]N.A.Hill, Why Are There so Few Magnetic Ferroelectrics?, J Phys Chem B,2000, 104,6694.
    [6]N.A.Spaldin and M.Fiebig, The Renaissance of Magnetoelectric Multiferroics, Science, 2005.309,391.
    [7]陆俊,宽频电动力学测量技术在铁酸铋晶体中的应用.2009,北京科技大学:北京.
    [8]Ramesh. R., Spaldin, Nicola. A, Multiferroics:progress and prospects in thin films, Nat Mater,2007,6,21.
    [9]G. A. Smolenskii, I. H. Chupis, Ferroelcctromagnets, Sov Phys Usp,1982,25,475.
    [10]H.Schmid, Multi-ferroic magnctoelectrics, Ferroelectrics,1994,162,317.
    [11]W.Eerenstein, N.D.Mathur, J.F.Scott, Multiferroic and magnetoelectric materials, Naturc,2006,442,759.
    [12]Nicola A.Hill, Why arc there so few magneticferr oelcctrics, J Phys Chem B.2000, 104,6694.
    [13]M Fiebig, Revival of the magnetoelectric effect, J Phys D:Appl Phys,2005,38,123.
    [14]Nicola A. Spaldin and Manfred Ficbig, The Renaissance of Magnetoelectric Multiferroics, Science,2005,309,391.
    [15]P Fischer, M Poiomska, I Sosnowska.M Szymanski, Temperature dependence of the crystal and magnetic structure of BiFeO3, J Physic C:Solid St Phys,1980,13,1931.
    [16]Helene Bea, Manuel Bibes, Stephane Fusil, Karim Bouzchouane, Eric Jacquet, Karsten Rode, Peter Bencok and Agnes Barthelemy, Investigation on the origin of the magnetic moment of BiFeO3 thin films by advanced x-ray characterizations. Phys Rev B,2006,74,020101.
    [17]P. G. Radaelli and L. C. Chapon, Symmetry constraints on the electrical polarization in multiferroic materials, Phys Rev B,2007,76,054428.
    [18]Fiebig, M. Lottermoser, Th. Fr6hlich,D. Goltsev,A. V. Pisarev, R. V, Observation of coupled magnetic and electric domains, Nature,2002,419,818.
    [19]Garcia N, Munoz M and Zhao Y-W, Magnetoresistance in excess of 200% in Ballistic Ni Nanocontacts at Room Temperature and 100 Oe, Phys Rev Lett.,1999, 82,2923.
    [20]W.Prellier, M.P.Singh, and P.Murugavel, The single-phase multiferroic oxides:from bulk to thin film, J Phys:Condens Matter,2005,17, R803-R832.
    [21]Y.Tokura,Multiferroics-toward strong coupling between magnetization and polarization in a solid, J Magn Magn Mater,2007,310,1145.
    [22]H.Schmid, Some symmetry aspects of ferroics and single phase multiferroics, J Phys:Condens Mat,2008,20,434201.
    [23]B.B.Van Aken, J.-P.Rivera, H.Schmid and M.Fiebig, Observation of ferrotoroidic domains, Nature,2007,449,702.
    [24]S.Dong, J.Cheng, J.F.Li and D.Viehland,Enhanced magnetoelectric effects in laminate composites under resonant drive, Appl Phys Lett,2003.83,4812.
    [25]C.W.Nan, M. I. Bichurin, S.Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites:Historical perspective, status, and future directions, J Appl Phys,2008,103,031101.
    [26]S.Dong, J.-F.Li, D.Viehland, Ultrahigh magnetic field sensitivity in laminates of TERFENOL-D and Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals, Appl Phys Lett,2003, 83,2265.
    [27]S.Dong, J.F.Li, D.Viehland, J.Cheng and L.E.Cross, A strong magnetoelectric voltage gain effect in magnetostrictive-piezoelectric composite, Appl Phys Lett,2004, 85,3534.
    [28]S.Dong, J.Zhai, Z.Xing, J.-F.Li and D.Viehland, Extremely low frequency response of magnetoelectric multilayer composites, Appl Phys Lett,2005,86,102901.
    [29]S.Dong, J.Zhai, J.Li and D.Viehland, Small dc magnetic field response of magnetoelectric laminate composites, Appl Phys Lett,2006,88,082907.
    [30]S.Dong,J.Zhai,Z.Xing,J.Li,and D.Viehland,Giant magnetoelectric effect(under a dc magnetic bias of 20e)in laminate composites of FeBSiC alloy ribbons and Pb(Zn,/3,Nb2/3)O3-7%PbTiO3 fibers, Appl Phys Lett,2007,91,022915.
    [31]J.Zhai, S.Dong, Z.Xing, J.Li and D.Viehland, Geomagnetic sensor based on
    [32]S.Dong, J.Zhai, J.F.Li, D.Viehland and S.Priya, Multimodal system for harvesting magnetic and mechanical energy, Appl Phys Lett,2008,93,103511.
    [33]J.Zhai, Z.Xing, S.Dong, J.Li and D.viehland, Magnetoelectric Laminate Composites:An Overview, J Am Ceram Soc,2008,91,351.
    [34]G.A.Smolenskii and I.E.Chupis, Ferroelectromagnets, Sov Phys Usp,1982,25,19.
    [35]R.Seshadri and N.A.Hill, Visualizing the Role of Bi 6s Lone Pairs in the Off-Ccntcr Distortion in Ferromagnetic BiMnO3, Chem Mate,2001,13,2892.
    [36]N.Ikeda,H.Ohsumi,K.Ohwada,K.Ishii,T.lanami,K.Kakurai,Y.Murakami,K.Yoshii,S.M ori,Y.Horibe,and H.Kito,Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4, Nature,2005.436,1136.
    [37]M.A.Subramanian, T.He, J. Chen, N.S.Rogado,T.G.Calvarese,and A.W.Sleight,Gianl Room-Temperature Magnetodielectric Response in the Electronic Ferroelectric LuFe2O4, Adv Mater,2006,18,1737.
    [38]J.Hemberger, P.Lunkenheimer, R.Fichtl, H.A.Krug von Nidda, V.Tsurkan and A.Loidl,Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4, Nature,2005,434,364.
    [39]S.Dong, J.-M.Liu, Recent Progress of Multiferroic Perovskite Manganites Modern, Phys Rev B,2012,26,1230004.
    [40]I.A.Sergienko, C.Scn and H.Dagotto, Ferroelectricirty in the Magnetic E-Phase of Orthorhombic Perovskites, Phys Rev Lett,2006,97,227204.
    [41]K.F.Wang, J.M.Liu and Z.F.Ren, Multiferroicily:the coupling between magnetic and poalrization orders, Adv Phys,2009,58,321.
    [42]王克锋,刘俊明,王雨,单相多铁性材料-极化和磁性序参量的耦合与调控科学通报,2008,53,1098.
    [43]G.Catalan and J.F.Scott, Physics and Applications of Bismuth Ferrite, Adv Mater, 2009,21,2463.
    [44]R.W.C, Ueber durch Bewegung eines im homogenen electrischen Feldebefindliche Dielectricums hervorgerufene electrodynamische Kraft, Ann Phys Chem,1888,35,264.
    [45]L.D.Landau and H.M.Lifshitz, Electrodynamics of Continuous Media.1960, Oxford: Pergamon Press.
    [46]H.Schmid, Multi-ferroic magnetoelectrics, Ferroeleetrics,1994,162:xix-xxv.
    [47]Wang,J.B.Neaton,H.Zhcng.V.Nagarajan,S.B.Ogalc,B.Liu,D.Viehland,V.Vaithyanathan D.G.Schlom, U.V.Waghmare, N.A.Spaldin, K.M.Rabe, M.Wuttig and R.Ramesh, Epitaxial BiFeO3 Multiferroic Thin Film Heterostruchures, Science,2003,299,1719.
    [48]Zheng,J.Wang,S.R.Shinde,S.B.Ogale,F.Bai,D.Viehland,Y,Jia,D.G.Schlom,M.Wuttig,A .Roytburd,and R.Ramesh,Multiferroic BaTiO3-CoFe2O4 Nanostructures, Science, 2004,303,661.
    [49]W.Eerenstein,Comment on Epitaxial BiFeO3 Multiferroic Thin Film Heterostruchures, Science,2005.307,1203a.
    [50]Nicola A. Spaldin and Manfred Fiebig, The Renaissance of Magnetoelectric Multiferroics, Science,2005,309,391.
    [51]H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L.Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3-CoFe2O4 Nanostructures, Science,2004,303,661.
    [52]H. Schmid, On Ferrotoroidics and Elastotoroidic Magnetotoroidic and Piezotoroidic Effects, Ferroelectrics,2001.252,41.
    [53]Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong, S. W, Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3, Science,2009.324,63.
    [54]Choi, T.; Horibe, Y; Yi, H. T.; Choi, Y. J.; Wu, Weida; Cheong, S.-W. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3, Nature Mater.2010,9,253.
    [55]董帅,刘俊明.多铁性材料:过去、现在、未来[J]《今日物理》攫英,20103,9(10),38.
    [56]C. Michel, J.-M. Moreau, G. D. Achenbach, R. Gerson and W. J James, The atomic structure of BiFeO3, Solid State Commun,1969,7,701.
    [57]F. Kubel and H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3, Acta Cryst.1990, B46,698.
    [58]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M.Wuttig, and R. Ramesh, Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures, Science, 2003,299,1719.
    [59]Benjamin Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A.K. Zvezdin, and D. Viehland. Magnetic-field-indueed phase transition in BiFeO3 observed by Cycloidal to homogeneous spin order high-field electron spin resonance: Cycloidal to homogeneous spin order, Phys Rev B,2004,69,064114.
    [60]C. Ederer, N. A. Spaldin, Weak Ferromagnetism and Magnetoelectric Coupling in Bismuth Ferrite, Phys Rev B,2005,71,060401.
    [61]訾玉宝BiFeO3薄膜及器件的制备与性能研究2009 中国科技大学 合肥
    [62]J. Valasek. PiezoElectric Activity of Rochelle Salt under Various Con-dition, Phys Rev,1922.19,478.
    [63]J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin and K. M. Rabe.First-principles study of spontaneous polarization in multiferroic BiFeO3, Phys Rev B,2005,71,014113.
    [64]R. Seshadri and N. A. Hill, Visualizing the Role of Bi 6s "Lone Pairs" in the Off-Center Distortion in Ferromagnetic BiMnO3, Chem Mater,2001,13,2892.
    [65]J. R. Teague, R. Gerson and W. J. James, Dielectric I lysteresis in BiFeO3 Single Crystal, Solid State Commum,1970.8,1073.
    [66]D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, S. Fusil, Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals, Phys Rev B,2007,76,024116.
    [67]J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, Phys Rev B, 2005,71,014113
    [68]R. E. Cohen and H. Krakaucr, Ferroelectrics R.E. Cohen, Nature (London) 1992, 358,136.
    [69]M. Posternak, R. Resta, and A. Baldereschi, Phys Rev B,1994,50,8911.
    [70]J. M. Moreau, C. Michel, R. Gerson, W. J. James, Ferroelectric BiFeO3 X-ray and Neutron Diffraction Study, J Phys Chem Solids,1971,32,1315.
    [71]S.V.Kisclcv,R.P.Ozerov,adn G.S.Zhdanov,Detection If Magnetic Order in Ferroelectric BiFeO3; by Netitron Diffraction, Soviet Physics Doklady,1967,7,742
    [72]I. Sosnowsda, T.P.Neumaicr, and E.Steichele, Spiral magnetic ordering in bismuth ferrite. Solid State Physics,1982,15,4835.
    [73]I. Sosnowska, T. Peterlin-Neumaier, E. Steichele. Spiral Magnetic Ordering in Bismuth Ferrite, J Phys C:Solid State Phys,1982,15,4835.
    [74]G. Smolenskii, V. Yudin, E. Sher, Y. E. Stolypin, Antiferromagnetic Properties of Some Perovskites, Soviet Physics-JETP,1963,16,622.
    [75]Y. E Roginskaya, Y. Ya. Tomashpol'skii, Y. N. Venevtsev, V. M. Petrov, G. S. Zhdanov, The Nature of the Dielectric and Magnetic Properties of BiFeO3, Sovie Physics-JETP,1966,23,47.
    [76]W.Eerenstein,Comment on Epitaxial BiFeO3 Multiferroic Thin Film Heterostruchures, Science,20053,07,1203.
    [77]C.Ederer and N.Spaldin, Weak ferromagnetism and magnetoelcctric coupling in bismuth ferrite, Phys Rev B,2005,71,060401.
    [78]H.Bea, M.Bibes, S.Fusil, K.Borzehouanc, E.Jacquet, K.Rode, P.Bencok and A.Barthelemy, Investigation on the origin of the magnetic moment of BiFeO3 thin films by advanced x-ray characterizations, Phys Rev B,2006,74,020101.
    [79]Bea,M.Bibes,A.Barthelemy,K.Bouzehouane,E.Jacquet,A.Khodan,J.P.Contour,S.Fusil, F.Wycpisk,A.Forget,D.Lebeugle,D.Colson,and M.Viret,Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films, Appl Phys Lett,2005.87,072508.
    [80]Y.P.Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J.-M.Liu, and Z. G. Liu Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering, Appl Phys Lett,20048,4,1731.
    [81]S. T. Zhang, Y. Zhang, M. H. Lu, C. L. Du, Y. F. Chen, Z. G. Liu, Y. Y. Zhu,N. B. Ming, and X. Q. Pan, Substitution-Induced Phase Transition and Enhanced Multiferroic Properties of B1-xLaxFeO3 Ceramics, Appl Phys Lett,2006,88,162901.
    [82]Yuan-Hua Lin, Qinghui Jiang, Yao Wang, and Ce-Wen Nan, Enhancement of ferromagnetic properties in BiFeO3 polycrystalline ceramic by La doping, Appl Phys Lett,2007,90,172507.
    [83]Z. X. Cheng,A. H. Li, X. L. Wang, S. X. Dou,K. Ozawa, H. Kimura, S. J. Zhang, and T. R. Shrout, Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite, Appl Phys Lett,2008,103,07E507.
    [84]Yi Du, Zhen Xiang Cheng, Mahboobeh Shahbazi, Edward W. Collings,Shi Xue Dou, Xiao Lin Wang,Enhancement of ferromagnetic and dielectric properties in lanthanum doped BiFeO3 by hydrothermal synthesis, J Alloys Compd,20104, 90,637.
    [85]G. Le Bras, D. Colson, A. Forget, N. Genand-Riondet, R. Tourbot, and P. Bonville Magnetization and magnetoelectri, Phys Rev B,2009,80,134417.
    [86]Y. F. Cui, Y. G. Zhao, L. B. Luo, J. J. Yang, H. Chang, M. H. Zhu, D. Xie, and T. L. Ren, Dielectric, magnetic, and magnetoelectric properties of La and Ti codoped BiFeO3, Appl Phys Lett, 2010, 97,222904
    [87]Benfang Yu, Meiya Li, JingWang, Ling Pei, Dongyun Guo, and Xingzhong Zhao,Enhanced electrical properties in multiferroic BiFeO3 ceramics co-doped by La3+ and V5+, J Phys D: Appl Phys, 2008, 41,185401.
    [88]F. Z. Huang, X. M. Lu, W.W. Lin, X.M.Wu, Y. Kan, and J. S. Zhu, Effect of Nd Dopant on Magnetic and Electric Properties of BiFeO3 Thin Films Prepared by Metal Organic Deposition Method, App Phys Lett., 2006, 89, 242914.
    [89]V. L. Mathe, K. K. Patankar, R. N. Patil, and C. D. Lokhande, Synthesis and dielectric properties of Bi1-xNdxFeO3 perovskites, J Magn Magn Mater, 2004, 270,380.
    [90]G. L. Yuan, or S. W, J. M. Liu, and Z. G. Liu, Structural transformation and ferroelectromagnctic behavior in single-phase Bi1-xNdxFeO3 multiferroic ceramics, Appl Phys Lett, 2006, 89,052905.
    [91]V. L. Mathe, K. K. Patankar, R. N. Patil, and C. D. Lokhande, Synthesis and Dielectric Properties of Bi1-xNdxFeO3 Perovskite, J Magn Magn Mater, 2004, 270, 380.
    |92| G. L. Yuan, Siu Wing and Helen Lai Wa Chan , Raman scattering spectra and ferroelectric properties of Hi1-xNdxFeO3, x=0-0.2 multiferroic ceramics, J Appl Phys, 2007, 101,064101.
    |93| Mathe V L, Patankar K K, Patil R N, et al. Preparation and characterization of NdxBi1-xFeO3 perovskites, J Magn Magn Mater, 2004, 270,380.
    [94]Zuei Quan, Wei Liu, Hao Hu, Shcng Xu, Bobby Sebo, Guojia Fang, Meiya Li, and Xingzhong ZhaoaMicrostructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films, J Appl Phys, 2008, 104, 084106.
    [95]Jun Liu, Meiya Li(a), Ling Pei, Jing Wang, Zhongqiang Ilu, Xiao Wang and Xingzhong Zhao Effect of Ce and Zr codoping on the multiferroic properties of BiFeO3 thin films , Euro Phys Lett, 2010, 89, 57004
    [96]Jun Liu, Meiya Li, Ling Peil, Benfang Yu, Dongyun Guo and Xingzhong Zhao,Effect of Ce doping on the microstructureand electrical properties of BiFeO3 thin films prepared by chemical solution deposition, J Phys D:Appl Phys. 2009, 42,115409.
    [97]V.A. Khomchenko, J.A. Paixa, V.V. Shvartsman, P. Borisov, W. Kleemann,D.V. Karpinskyc and A.L. Kholkin,Effect of Sm substitution on ferroelectric and magnetic properties of BiFeO3, Scripta Materialia ,2010, 62 ,238.
    [98]G.L.Yuan and S.W, Multiferrocity in Polarized Single-Phase Bi0.875Sm0.125FeO3 Ceramics, Appl Phys Lett, 2006, 100, 024109.
    [99]Poonam Uniyal, K.L. Yadav, Study of dielectric magnetic and ferroelectric properties in Bi1-xGdxFeO3, Mater Lett, 2008, 62,2858.
    [100]V. A. Khomchenko, D. A. Kiselev, I. K. Bdikin, V. V. Shvartsman, P.Borisov, W. Kleemann, J. M. Vieira, and A. L. Kholkin, Crystal Structure and Multiferroic Properties of Gd-Substituted BiFeO3, Appl Phys Lett, 2008, 93, 262905.
    [101]B. F. Yu ,M. Y. Li, Z. Q. Hu, L. Pei, D. Y. Guo, X. Z. Zhao, and S. X. Dong, Enhanced Multiferroic Properties of the High-Valence Pr Doped BiFeO3 ThinFilm, Appl Phys Lett., 2008, 93, 182909.
    [102]V. F. Freitas, H. L. C. Grande, S. N. deMedeiros, I. A. Santos, L. F. Coetica,and A. A. Coelho, Structure, Microstructural and Magnetic Investigations in High-Energy Ball Milled BiFeO3 and Bi0.95Eu0.05FeO3 Powders, J Alloys Compd,2008, 461, 48.
    [103]V. R. Reddy, D. Kothari, A. Gupta, and S. M. Gupta, Study of Weak Ferromagnetism in Polycrystalline Multiferroic Eu Doped Bismuth Ferrite, Appl Phys Lett, 2009, 94, 082505.
    [104]I. O. Troyanchuk, M. V. Bushinsky, D. V. Karpinsky, O. S. Mantytskaya, V. V. Fedotova,and O.I. Prochnenko Structural transformations and magnetic properties of Bi1-xLnxFeO3 (Ln = La, Nd, Eu) multiferroics, Phys Status Solid B.2009.246, No. 8, 1901.
    [105]SungWook Hyun ? Kang Ryong Choi?Chul Sung Kim, The Magnetic Properties for Europium-Doped BiFeO3, J Supercond Nov Magn , 2011, 24,635.
    [106]P. Uniyal and K. L. Yadava, Room temperature multiferroic properties of Eu doped BiFeO3, J Appl Phys ,2009, 105, 07D914.
    [107]Yu-jie Zhang, Hong-guoZhang, Jin-huaYin , Hong-wei Zhang, Jing-lanChen , Wen-quan Wang, Guang-heng Wu,Structural and magnetic properties in Bi1-xRxFeO3 (x=0-1, R=La,Nd,Sm,Eu and Tb) polycrystalline ceramics, J Magn Magn Mater ,2010, 322, 2251.
    [108]Y. J. Wu, J. Zhang, X. K. Chen, and X. J. Chen, Phase evolution and magnetic property of Bi1-xHoxFeO3 powders, Solid State Commun , 2011, 151 , 1936.
    [109]S. K. Pradhan, B. K. Roul, and D. R. Sahu, Enhancement of ferromagnetism and multiferroicity in Ho doped Fe rich BiFeO3, Solid State Commun, 2012, 152,1176.
    [110]N. Jeon, D. Rout, I. W. Kim, and S. J. L. Kang, Enhanced multiferroic properties of single-phase BiFeO3 bulk ceramics by Mo doping, Appl Phys Lett , 2011, 98,072901.
    [111]Pankaj Thakuria and P. A. Joy High room temperature ferromagnetic moment of Ilo substituted nanocrystalline BiFeO3, Appl Phys Lett, 2010, 97,162504.
    |112]Poonam Uniyal, K.L.Yadava Enhanced magnetoelectric properties in Bi0.95Ho0.05FeO3 polycrystalline ceramics, J Alloys Compd, 2012, 11,149.
    [113|S.K. Pradhan, J.Das, P.P.Rout, V.R.Mohanta, S.K.Das, Effect of holmium substitution for the improvement of multiferroic properties of BiFeO3, J Phys Chemy Solids, 2010, 71,1557.
    [114]Nguyen Van Minh, Nguyen Gia Quan, Structural, optical and electromagnetic properties of Bi1-xHoxFeO3 multiferroic Materials, J Alloys Compd,2011, 509 ,2663.
    [115]Shu xia Zhang, Wanju Luo, Dongliang Wang, Yanwei Ma ,Phase evolution and magnetic property of Bi1-xDyxFeO3 ceramics, Mater Lett, 2009, 63,1820.
    [116]V. A. Khomchenko, D. V. Karpinsky,A. L. Kholkin, N. A. Sobolev,G. N. Kakazei, J. P. Araujo, Rhombohcdral-to-orthorhombic transition and multiferroic properties of Dy-substitutcd BiFeO3,J Appl Phys ,2010, 108, 074109.
    [117]JianMci Xu , GeMing Wang , HuiXiao Wang , DeFang Ding , Yuan He ,Synthesis and weak ferromagnetism of Dy-doped BiFeO3 powders, Mater Lett ,2009, 63,855.
    [118]Yubin Li , Jun Yu , Jianjun Li , Chaodan Zheng, Influence of Dy-doping on ferroelectric and dielectric properties in Bi1.052-xDyxFeO3 ceramics, J Mater Sci:Mater Electron, 2011,22,323.
    [119]P Uniyal and K L Yadav Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3, J phys:Condcns Mat ,2009, 21,012205.
    [120]Shu xia Zhang, Wanju Luo, Lei Wang, Dongliang Wang, and Yan wei Ma, Simultaneously improved magnetization and polarization in BiFeO3 based multiferroic composites, J Appl Phys, 2010, 107, 054110.
    [121]W.M. Zhu, L.W. Su, Z.G. Ye, W. Ren, Enhanced magnetization and polarization in chemically modified multiferroic (1- x) BiFeO3-xDyFeO3 solid solution , Appl Phys Lett, 2009, 94,142908.
    [122]F. Z. Qian, J. S. Jiang,S. Z. Guo, D. M. Jiang, and W. G. Zhang, Multiferroic properties of Bi1-xDyxFeO3 nanoparticles, J Appl Phys,2009,106,084312.
    [123]Shu xia Zhang, Lei Wang, Yao Chen, Dongliang Wang, Yingbang Yao, Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics, J Appl Phys,2012,111,074105.
    [124]Wei-tin Chen, Anthony J. Williams, Luis Ortega-San-Mart, Robust Antiferromagnetism and Structural Disorder in BixCa1-xFeO3 Perovskites, Chem Mater,2009,21,2085.
    [125]Wang D H, Goh W C, Ning M, et al. Effect of Ba doping on magnetic, ferroelectric and magnetoel ectrc properties in multiferroic BiFeO3 at room temporature, Appl Phys Lett,2006,88,2129073.
    [126]O. D. Jayakumar, S. N. Achary, K. G. Girija, A. K. Tyagi, et al,Theoretical and experimental evidence of enhanced ferromagnetism in Ba and Mn cosubstituted BiFeO3, Appl Phys Lett,2010,96,032903.
    [127]Jong Kuk Kim, Sang Su Kim, and Won-Jeong Kim, Substitution effects on the ferroelectric properties of BiFeO3 thin films prepared by chemical solution deposition, J Appl Phys,2007,101,014108.
    [128]V.R.Palkar, D. C. Kundaliya, S. K. Malik, and S. Bhattacharya, Magnetoelectricityat Room Temperature in the Bi0.9-xTbxLa0.1FeO3 System, Phys Rev B,2004,69, 212102.
    [129]C. H. Yang, T. Y. Koo, and Y. H. Jeong, How to Obtain Magnetocapacitance Effects at Room Temperature:the Case of Mn-Doped BiFeO3, Solid State Commun, 2005,134,299.
    [130]J. K. Kim, S. S. Kim, and W. J. Kim, Enhanced Ferroelectric Properties of Cr-Doped BiFeO3 Thin Films Grown by Chemical Solution Deposition, Appl Phys Lett,2006,88,132901.
    [131]Xiao-Hui Liu, Zhuo Xu, Xiao-Yong Wei and Xi Yao, Ferroelectric and Ferromagnetic Properties of 0.7BiFe1-xCrxO3-0.3BaTiO3 Solid Solutions, J Am Ceram Soc,2008,91,3731.
    [132]X. D. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3, Appl Phys Lett,2005,86,062903.
    [133]Y. Wang and C. W. Nan, Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films, Appl Phys Lett,2006,89,052903.
    [134]M. Kumar and K. L. Yadav, Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system, J Appl Phys , 2006,100, 074111.
    [135]Y. H. Gu, Y. Wang, F. Chen, If. L. W. Chan, and W. P. Chen, Nonstoichiometric BiFeo.9Tio.05O3 multiferroic ceramics with ultrahigh electrical resistivity, J Appl Phys , 2010,108,094112.
    [136]Shu xia Zhang, Wanju Luo, Lei Wang, Dongliang Wang, and Yanwei Ma, Simultaneously improved magnetization and polarization in BiFcO3 based multiferroic composites, J Appl Phys, 2010 ,107,054110.
    [137]Benfang Yu, Meiya Li,JingWang, et al Xingzhong Zhao Enhanced electrical properties in multiferroic BiFeO3 ceramics co-doped by La3+ and V5+, J Phys D:Appl Phys, 2008, 41, 185401.
    [138]Youn-Ki Jun, Seong-Hyeon Hong, Dielectric and magnetic properties in Co- and Nb-substituted BiFeO3 ceramics, Solid State Commu, 2007, 144, 329.
    [139]Kambiz Kalantari, Iasmi Sterianou , Sarah Karimi , Matthew C. Ferrarelli , Shu Miao ,Derek C. Sinclair, and Ian M. Reaney, Ti-Doping to Reduce Conductivity in Bi0.85Nd0.15FeO3 Ceramics, Adv Funct Mater, 2011, 21, 3737.
    [140]Manoj Kumara and K. L. Yadav, Magnetic field induced phase transition in multiferroic BiFe1-xTixO3 ceramics prepared by rapid liquid phase sintering , Appl Phys Lett ,2007, 91, 112911.
    [141]G. D. Hu,S. H. Fan,C. H. Yang, and W. B. Wu , Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film, Appl Phys Lctt,2008, 92, 192905.
    [142]I.O. Troyanchuk, N.V.Tercshko, A.N.Chobot, M.V.Bushinsky, K.Barncr, Weak ferromagnetism in BiFeO3 doped with titanium, Physiea B, 2009, 404, 4185.
    [143]N. F. Mott, Proc. Cambridge Philos. Soc, 1938,34, 568.
    [144]Yin-Pin Wang and Tseung-Yuen Tseng ,Electronic defect and trap-related current of (Ba0.4Sr0.6)TiO3 thin films, J Appl Phys, 1997, 81, 6762.
    [145]V. M. Fridkin, Ferroelectric Semiconductors (Plenum, New York, 1980) (especially, Chap. 6 for summary of experimental results).
    [146]V. M. Friedkin, A. A. Grekov, N. A. Kosonogov, T. R. Volk, Photodomain effect in BaTiO3, Ferroelectries, 1972,4, 169.
    [147]H. Yang, M. Jain, N. A. Suvorova, H. Zhou, H. M. Luo, D. M. Feldmann, P. C Dowden R. F. DePauIa, S. R. Foltyn/femperature-dependent leakage mechanisms of Pt/BiFeO3/SrRuO3thin film capacitors, Appl Phys Lett,2007,91,072911
    [148]Gary W. Pabst, Lane W. Martin, Ying-Hao Chu, and R. Ramesh, Leakage mechanisms in BiFeO3 thin films, Appl Phys Lett,2007,90,072902.
    [149]宋桂林,苏建,周晓辉等,Ho3+掺杂对BiFeO3陶瓷材料铁电和铁磁性能的影响,硅酸盐学报,2011,9,1445.
    [150]常方高,胡棚,王丹丹,等.Ho掺杂BiFeO3陶瓷的制备及介电性能[J].硅酸盐学报,2010,6,1003.
    [151]余洋,胡忠强,邱达,等.Ho掺杂BiFeO3多铁陶瓷的制备及性能,武汉大学学报(理学版),2009,5,540.
    [152]Srinivas A, Boey F. Study of piezoelectric, magnetic and magnetoelectric measurements on SrBi3Nb2FeO12 ceramic, Ceram Int,2004,30,1427.
    [153]Chang F G, Electrical properties of flexible polypropylene based cable insulation materials, J Mater Sci,2006,41,2037.
    [154]钟维烈.铁电体物理学[M].北京:科学出版社,1998:22.
    [155]J F Scot, Ferroelectrics go bananas, J phys:Condens Mat,2008,20,021001
    [156]郑朝丹 铁酸秘系列多铁材料的制备及电性能研究博士毕业论文华中科技大学武汉
    [157]N. M. Murari, R. Thomas, R. E. Melgarejo, S. P. Pavunny, and R. S. Katiyara, Structural electrical and magnetic properties of chemical solution deposited BiFe1-xTixO3 and BiFe0.9Ti0.05Co0.05O3 thin films, J Appl Phys,2009,106,014103.
    [158]Jiagang Wu and John Wang, Ferroelectric and Impedance Behavior of La- and Ti-Codoped BiFeO3 Thin Films, J Am Ceram Soc,2010,93,2795.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700