用户名: 密码: 验证码:
Ta_xMe_(1-x)N硬质薄膜及其DLC复合润滑薄膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前军事上用于制备零部件的主要材料仍然是Cr12MoV等模具钢,但现代武器服役环境的不断复杂化以及制造业的快速发展对零部件提出了越来越高的要求,单一零部件已经不能适应复杂的环境,需要对其进行不同的表面处理。近年来,随着加工更加快速连续、加工材料更加复杂以及加工尺度更加微小的精细加工业的快速发展,硬质薄膜、涂层(低于10gm)等表面处理的研究及应用变得越来越普遍。经过表面处理后,零件强度、韧性以及耐磨损性能都得到了有效的提升。当前,对薄膜综合性能(高耐蚀、耐磨、自润滑)需求的提高导致传统的单一硬质薄膜越来越难以有效保护零件。因此,开发新型复合多层薄膜成为目前薄膜、涂层技术提高零部件综合防护的重要途径。
     类金刚石(DLC)薄膜具有低摩擦系数、高硬度、高耐磨性的特点,可作为Cr12MoV表面改性的首选材料,但较低的热稳定性,以及与衬底的低结合强度制约了其应用。TaN薄膜作为硬质过渡金属氮化物在相关研究中展示了耐蚀性好、硬度及热稳定性高,摩擦系数低的特点,具有作为硬质耐磨薄膜及复合DLC承载层的研究前景。本论文旨在设计并获得与Cr12MoV衬底相匹配的TaxMe1-xN多层复合DLC润滑薄膜,提高薄膜的综合性能,达到钢基材料表面改性用硬质薄膜材料的要求。本文依照TaxMe1-xN单层→TaxMe1-xN多层→TaxMe1-xN多层复合DLC的顺序,采用全方位离子注入(Pill)、微波电子回旋共振等离子体(微波ECR)增强磁控溅射及化学气相沉积复合制备了DLC/TaxMe1-xN多层润滑薄膜。这种薄膜在磨损过程中产生白润化,提高了使用寿命。当外加载荷升高导致表层DLC失效后,薄膜体系承载层仍然能够保持较低的摩擦系数,以及较好耐磨性,防止了润滑层失效导致的摩擦副磨损加剧,达到了对Cr12MoV衬底耐磨润滑的改性要求。论文主要包括如下研究内容:
     (1)首先在掌握反应室内等离子密度变化规律的基础上,采用微波ECR增强磁控溅射技术在Cr12MoV衬底上制备了几组TaN薄膜,重点研究了温度、气压、偏压对TaN薄膜结构与性能的影响,并且分析了相关影响因素对薄膜力学性能的影响机理。制备的TaN薄膜呈现六方结构,摩擦系数低于0.2。薄膜硬度随制备温度升高逐渐增加,573K时硬度达到最高值39.36GPa,但在低真空度热处理时出现氧化现象;TaN薄膜硬度与弹性模量随制备气压增加而降低,随脉冲偏压上升而增加,-100V时达到最高值,并随着偏压继续增加而降低。通过对不同影响因素分析发现,制备温度、气压、偏压影响了薄膜形核生长过程中离子结合能量以及膜基界面质量,导致薄膜性能的改变。在制备温度较低、气压0.1Pa、Ar/N2流量比4.5/1、脉冲偏压-100V时制备的TaN薄膜具有最佳的力学性能、耐磨性能。
     (2)在TaN薄膜最佳制备工艺基础上添加过渡金属Me(Me=Ti、Cr)进行TaxMe1-xN复合制备,重点研究了掺杂量对TaxMe1-xN薄膜结构与性能的影响,分析讨论了复合第二相粒子对薄膜力学性能的影响机制。复合制备的TaxMe1-xN薄膜由TaN六方结构转变为三元固溶氮化物立方结构;当Ti/Ti+Ta、Cr/Cr+Ta分别达到0.43、0.61时,薄膜力学性能分别达到最佳值,其中Ta0.57Ti0.43N薄膜硬度为33±2GPa,结合强度为27N;Ta0.39Cr0.61N薄膜硬度为30±1.5GPa,结合强度为29N;薄膜摩擦系数随Ti、Cr掺杂量增加上升,最高值接近0.4。通过分析发现,适当比例的掺杂Ti、Cr有利于TaxMe1-xN薄膜形核以及晶粒尺寸降低,进而产生固溶、细晶强化作用。
     (3)在TaN及TaxMe1-xN薄膜最佳制备工艺的基础上进行了TaN/Ta、TaxMe1-xN/Me、 TaxMe1-xN/MeN/Me多层薄膜的制备,并对软硬多层薄膜提高结合强度机理进行了分析。制备的TaN/Ta薄膜在调制厚度为250nm时达到最佳力学性能,硬度为26-27GPa,结合强度为36N,耐磨性显著上升;TaxMe1-xN/Me、TaxMe1-xN/MeN/Me多层薄膜与单层TaxMe1-xN薄膜相比,耐磨性能及膜基结合强度显著得到提升,结合强度高于50N。通过分析发现,适当的调制周期下,软硬多层结构有效的缓解了薄膜应力,同时界面增加阻止了脆性层裂纹扩展,从而改善了薄膜耐磨性、结合强度。
     (4)分析了衬底轰击、注入对TaN薄膜性能的影响,并首次采用全方位离子注入与微波ECR增强磁控溅射相结合的方式了制备了多层界面注入TaN/Ta薄膜。高能Ar+离子轰击衬底形成均匀的山峰状结构,沉积TaN薄膜后表面均匀性、致密性明显改善,膜基结合强度达到30N以上;采用-16kV偏压在衬底上注入Ta、TaN过渡层后,TaN薄膜的结合强度提高到36N以上;多层界面注入Ta的TaN/Ta多层薄膜,膜基结合强度达到55N以上。通过分析发现高能Ar+离子轰击衬底增加了衬底表面积,增大了界面剪切抗力;注入形成非晶扩散区,有效的改善界面质量,降低了界面能;多层界面注入形成多个非晶扩散区,并保持了软硬多层薄膜结构中韧性层降低应力,提供剪切带的特性,有效的改善了膜基结合强度。
     (5)采用微波ECR化学气相沉积与磁控溅射相结合的方式分别制备了DLC薄膜,DLC润滑膜,并对润滑机理进行了分析。采用掺杂MoS2、Ti制备的DLC润滑薄膜非晶网络中弥散了大量的MoS2润滑相,有效的降低了DLC薄膜的摩擦系数,当C靶电流1.5A,MoS2靶电流0.3A时,薄膜摩擦系数达到最小值0.074,硬度为14GPa。通过分析发现弥散在DLC非晶网络中的MOS2司滑相对薄膜力学性能及摩擦系数有较大影响,通过改变溅射能量及制备偏压调控薄膜沉积过程中C-C、C-H、S-H结合可以有效控制薄膜中S/Mo值及sp3键含量,进而平衡薄膜力学性能与润滑性。
     (6)采用全方位离子注入、微波ECR增强磁控溅射及化学气相沉积结合的方式制备了TaxMe1-xN多层复合DLC润滑薄膜。与单层DLC掺杂薄膜相比,结合强度提高了4倍、耐磨性提高了5-10倍。在1N,转速100r/min的磨损条件下起到润滑作用;在3N,转速400r/min磨损条件下,DLC层失效,氮化物承载层起到了耐磨作用,TaN/Ta多层薄膜由于摩擦系数低于0.15,形成了润滑梯度,保持了体系稳定性。
Currently, a large number of parts used in military are still prepared by die steels such as Crl2MoV. However, the requirements of the parts'performance are upgrading with the increasing complexity of the service environment for military weapons and the rapid development of modern manufacturing. The Cr12MoV components have not been able to meet the complex environment, so surface treatments become necessary way. In recently years, with the development of machining industries towards rapid and continuous processing of complex and small-scale materials, surface treatments as hard film, coating (less than10um) have been common methods for improving the service performance of the parts. Through the processing, parts'strength, toughness and wear resistance have been improved, and the service life of components is also improved. At present, the traditional hard films can no longer meet the requirement for the surface treatment of steel substrates due to the demand of better comprehensive performance (anti-corrosion, anti-wear, especially self-lubricating), so preparation of new composite films becomes important problems to be solved in this field.
     Diamond-like carbon (DLC) film shows low friction coefficient, high hardness, wear resistance, and could be the first choice for surface modification of Cr12MoV steels. However, the application of DLC film has been restricted by the low thermal stability and low adhesion strength with steel-base materials. Moreover, the TaN film in relevant research shows high corrosion resistance, hardness, thermal stability, and low friction coefficient, demonstrating the prospect as hard wear-resistant and bearing layer of composite DLC film. This paper aimed to design and prepare DLC films composited with TaxMe1-xN multilayer films to match Cr12MoV steels, in order to improve comprehensive performance of the film. In this paper, DLC/TaxMe1-xN were prepared by PSII, MW-ECR MS and CVD, following the order of TaxMe1-xN→TaxMe1-xN multilayer→DLC/TaxMe1-xN multilayer. The functional graded DLC films improved the employ life of substrates by the lubrication. And the system also could keep the wear resistance of the system with a lower friction coefficient when the DLC layer failed under the increasing loads, for preventing the failure of parts due to a sudden increase of the friction coefficient. The film met the performance modification requirement of Crl2MoV. The contents of this thesis are divided into sections as follows:
     (1) First, on the basis of plasma density variation in the deposition system, several groups of TaN films were prepared on Cr12MoV substrate using MW-ECR enhanced magnetron sputtering by controlling the process parameters. It focused on the influence of temperature, pressure, and bias on the structure and properties of TaN films, and the influence mechanism of different factors on film mechanical properties was discussed. TaN film exhibited hexagonal structure, and the coefficient of friction was less than0.2. The film hardness, modulus increased with increasing preparing temperature, the film hardness deposited under573K was39.36GPa, but the oxidation was found while the film was heat treatment in lower vacuum; The film hardness and modulus decreased with the increasing pressure; the values increased with the increase of bias, reached the maximum value at-100V, then decreased. Integrated consideration of different factors, it was found preparing temperature, pressure, and bias affect the ion energy and the quality of the interface between coating and substrate in the thin film nucleation and growth, resulting in the change of film properties. The mechanical properties and wear resistance of film attained the best value under lower preparing temperature, with pressure of0.1Pa, Ar/N2ratio of4.5/1, pulse bias voltage of-100V.
     (2) Transition metals of Ti and Cr were added into TaN films, the influence of doping amount on the TaxMe1-xN film structure and performance were investigated. The influence mechanism of doped second particle on film mechanical properties was also discussed. The structure of composite TaxMe1-xN film transited from hexagonal to cubic; When the Ti/Ti+Ta ratio reached0.43, the hardness of Ta0.57Ti0.43N film reached the maximum value of33±2GPa, adhesion strength reached27GPa; When Cr/Cr+Ta ratio was0.61, the Ta0.39Cr0.61N film showed the maximum hardness of30±1.5GPa, adhesion strength of29N; the friction coefficient increased from0.2to0.4with the increase of Ti, Cr contents. It was found that doped proper Ti, Cr into TaN film is in favor of film nucleation, reduction of grain size, and solid solution strengthen, resulting in the improvement of film properties。
     (3) The multilayer structure of TaN/Ta、TaxMe1-xN/Me、TaxMe1-xN/MeN/Me films were prepared on the basis of the TaN and TaxMe1-xN deposition. The strength mechanism of soft/hard multilayer structure on bonding strength was analyzed. TaN/Ta multilayer films with modulation thickness around250nm showed the best mechanical properties, hardness was26~27GPa, adhesion strength was around36N, wear resistance significantly increased; Compared to the monolayer TaxMe1-xN film, the wear resistance and bonding strength of TaxMe1-xN/Me、TaxMe1-xN/MeN/Me multilayer films were improved by the multilayer structure, the adhesion strength increased up to50N, the wear resistance was significantly improved. It was found that soft/hard structure with appropriate modulation period effectively relieve the film stress, and prevent crack propagation in the brittle layer, resulting in the improvement of the wear-resistance and adhesion strength.
     (4) The influence of bombardment and injection on the properties of TaN film was discussed, and the TaN/Ta film was prepared by multilayer injection for the first time. The surface roughness of substrate increased with the increase of uniform mountain-like structure by high-energy Ar ion bombardment processing. After the deposition of TaN film, the uniformity and compactness of surface were significantly improved, the adhesion strength increased up to30N; The TaN film on the substrate injected with Ta and TaN at16kV bias showed better adhesion strength, which was up to36N; multilayer injected TaN/Ta films with Ta showed better adhesion strength up to55N. It was found the substrate surface area increased with increasing energy of Ar ion bombardment, which improved the shear resistance at the interface, resulting in the improvement of adhesion; Amorphous diffusion zone formed by implantation of Ta reduced the interfacial energy, leading to the improvement of interface quality; The adhesion strength of multilayer injected TaN/Ta were improved due to the formation of more diffusion zones between the TaN/Ta interfaces, meanwhile, the soft layer resulted in the reduction of stress due to the characteristics of shear bands.
     (5) MW-ECR magnetron sputtering and chemical vapor deposition were used to prepare DLC films and DLC lubrication films, and the lubrication mechanism was also analyzed. It was found the friction coefficient of DLC film was reduced by doping MoS2in the amorphous DLC network. When C current was1.5A, MoS2current0.3A, the friction coefficient attained the lowest value of0.074, and the hardness was around14GPa. It was found that the MoS2dispersed in the amorphous DLC influenced on the mechanical properties and friction coefficient of DLC film. The Mo/S ratio and sp3contents could be changed by the sputtering energy and bias, for changing the C-C, C-H, and S-H bond, resulting in the balance of the mechanical properties and lubricity of films.
     (6) MW-ECR enhanced sputtering, chemical deposition, and implantation were used to prepare multilayer DLC/TaxMe1-xN functional gradient multilayer lubricant films. Compared to the DLC film without support layer, the wear resistance was significantly improved up to4times, adhesion was increased up to5-10times. The DLC film showed lower friction coefficient under1N; when the DLC lubricant layer failed under higher load (3N,400r/min), the nitride bearing layer played wear-resisted role, friction coefficient of DLC/TaN/Ta system was still lower than0.15after the failure of DLC layer, maintaining the stability of system.
引文
[1]宋贵宏,杜吴,贺春林.硬质与超硬涂层[M].北京:化学工业出版社,2007.
    [2]闻立时,黄荣芳.离子镀硬质膜技术的最新进展和展望[J].真空,2000,1:1.
    [3]肖兴成,江伟辉,宋力昕,等.超硬膜的研究进展[J].无机材料学报,1999,4(5):705-710.
    [4]Holleck H, LahresM, Woll P. Multilayer coatings influence of fabrication parameters on constitution and properties[J]. Surf.Coat.Technol,1990,41(2):179-190.
    [5]Miyoshi K, Pohlchuck B, Street Kenneth W, etal. Sliding Wear and Fretting Wear of Diamond-Like Carbon-Based Functionally Graded Nano-Composite Coatings[J].W ear,1999,225-229(1):65-73
    [6]吕反修.超硬材料薄膜涂层研究进展及应用[J].热处理,2004,19(4):1-6.
    [7]陶斯武,雷诺,曲选辉.纳米硬质薄膜的研究进展[J].稀有金属与硬质合金,2005,33(3)37-41.
    [8]杨林生,王君,陈长琦.硬质薄膜技术的最新发展[J].真空,2009,46(6):35-39.
    [9]SubramNⅡC, Saaford D. L. Review of Multi-component and Multi-layer Coatings for Tribiological Applied load[J], Wear,1993, (165):85-95.
    [10]田民波,刘德令译.薄膜科学与技术手册(上册(M).北京:机械工程出版社,1991.
    [11]S PalDey, S. C Deevi. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review[J]. Mater Sci Eng:A,2003,342:58-79
    [12]Y. Cheng, Y. F. Zheng. Characterization of TiN, TiC and TiCN coatings on Ti-50.6 at.% Ni alloy deposited by PⅢ and deposition technique[J]. Surf. Coat. Technol,2007,201:4909-4912
    [13]Pengfei Xue, Qingsen Meng, Shaoping Chen. Tribological property of (TiC-TiB2)pNi ceramics prepared by field-activated and pressure-assisted synthesis[J]. Rare Metals, 2011,30:599-603
    [14]J. Paulitsch, M. Schenkel, Th. Zufra B, etal. Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit[J]. Thin Solid Films,2010,518:5558-5564
    [15]A Singh, M Geetha, N Kumar, etal. A comparative wear study of sputtered ZrN coatings on Si substrate[J].T. Indian. I. Metals,2011,64:37-40
    [16]DP Monaghan, DG Teer, RD Arnell, etal. Ion-Assisted CVD of Graded Diamond-Like Carbon (DLC) Based Coatings[J]. De Physique Ⅳ,1993,3(C3),579-587
    [17]Voevodin A. A,Walck S. D, Zabinski J.S. Architecture of multilayer nano-composite coatings with super-hard diamond-like carbon layers for wear protection at high contact loads[J].Wear,1997,203-204:516-527.
    [18]D. Klaffke. Tribological characterization of hard coatings with and without DLC top layer in fretting tests[J]. Tribotest,2006,12:29-46.
    [19]李根,张高会.硬质薄膜研究综述[J].宁波教育学院学报,2010,12(5):82-85
    [20]Y.X. Leng, H. Sun, P.Yang, et al. Biomedical properties of tantalum nitride films synthesized by reactive magnetron sputtering[J]. Thin Solid Films,2001,398-399: 471-475
    [21]G. R. Lee, H. Kim, H. S. Choi, etal. Superhard tantalum nitride films formed by inductively coupled plasma-assisted sputtering[J]. Surf Coat Technol,2007,201:5207-5210
    [22]刘成龙.医用金属材料表面惰性涂层改性研究[D].大连:大连理工大学,2005.
    [23]Nobuzo Terao. Structure of tantalum nitrides[J]. Jpn. J. Appl. Phys,1971,10:248-259
    [24]张庆瑜,陈斌,王敏.TaN膜的结构、成分及性能[J].大连理工大学学报,1995,35(4):482-486
    [25]许俊华,李戈扬,顾明元.磁控反应溅射TaN薄膜的结构和性能[J].功能材料,2000,31(3):306-307
    [26]Gerstenbery. D, Calbick. C. J. Effects of nitrogen, methane, and oxygen on structure and electrical properties of thin tantanlum films[J]. J.Appl. Phys,2009,35,402-407
    [27]R. HUbner, M. Hecker, N. Mattern, et al. Structure and thermal stability of graded Ta-TaN diffusion barriers between Cu and Si02[J].Thin Solid Films,2003,437:248-256
    [28]Juerg Bryner, Dieter M. Profunser, Jacqueline Vollmann, et al. Characterization of Ta and TaN diffusion barriers beneath Cu layers using picosecond ultrasonics[J]. Ultrasonics,2006,44:1269-1275
    [29]V. R. K. Gorantla, S. B. Emery, S. Pandija, etal. Chemical effects in chemical mechanical planarization of TaN:investigation of surface reactions in a peroxide-based alkaline slurry using Fourier transform impedance spectroscopy[J]. Mater. Let,2005,59:690-693
    [30]J. Nazon, J. Sarradin, V. Flaud, etal. Effects of processing parameters on the properties of tantalum nitride thin films deposited by reactive sputtering[J]. J. Alloys Compd, 2008,464:526-531
    [31]Suok-Min Na, In-Soo Park, Se-Young Park, etal. Electrical and structural properties of Ta-N thin filim and Ta/Ta-N multulayer for embedded resistor[J]. Thin Solid Films, 2008,516:5465-5469
    [32]C.M.Wang, J. H. Hsieh, C.Li. Elecrical and piezoresistive properties of TaN-Cu nanocomposite thin films[J]. Thin Solid Films,2004,469-470:455-459
    [33]S. M. Kang, S. G. Yoon, S. J. Suh, etal. Control of electrical resistivity of TaN thin films by reactive sputtering for embedded passive resistors[J]. Thin Solid Films, 2008,516:3568-3571
    [34]T. Riekkinen, J Molarius, T Laurila, etal. Reactive sputter deposition and properties of TaN thin films[J]. Microelectronic Engineering,2002,64:289-297
    [35]K. Radhakrishnan, Ng Geok Lin, R. Gopalakrishnan. Reactive sputter deposition and characterization of tantalum nitride thin films[J]. Mater.Sci. Eng., B,1999,57: 224-227
    [36]S.K.Kim, B. C. Cha. Deposition of tantalum nitride thin films by DC magnetron sputtering[J]. Thin Solid Films,2005,475:202-207
    [37]R. Westergard, M. Bromark, M. Larsson, etal. Mechanical and tribological characterization of DC magnetron sputtered tantalum nitride thin films[J]. Surf. Coat. Technol,1997,97:779-784
    [38]Deok-kee Kim, Heon Lee, Donghwan Kim, etal. Electrical and mechanical properties of tantalum nitride thin films deposited by reactive sputtering[J]. J. Cryst. Growth, 2005,283:404-408
    [39]J.H. Hsieh, P. C. Liu, C. Li,etal. Mechanical properties of TaN-Cu nanocomposite thin films[J]. Surf. Coat. Technol,2008,202:5530-5534
    [40]C. C. Tseng, J. H. Hsieh, S.C. Jang, etal. Microstructural analysis and mechanical properties of TaN-Ag nanocomposite thin films[J]. Thin Solid Film,2009,517: 4970-4974
    [41]安健,张庆瑜.TiN/TaN多层膜的机构和摩擦学性能[J].摩擦学学报,2005,25:7-12
    [42]吝君瑜,王小兵,程勇.金刚石薄膜及其在军事光学元件上的应用与制备[J].国防技术基础,2003,6:22
    [43]Aisenberg S, Chabot R. Ion Beam Deposition of Thin Films of Diamond-like Carbon[J]. J. Apply. Phys,1971,42:2953-2958.
    [44]Wei W, Narayan J. Superhard diamond like carbon:preparation, theory, and properties[J]. International Materials Reviews,2000,45(4):133-164.
    [45]Polo M C, Andujar J L, Hart A, et al. Preparation of tetrahedral amorphous carbon films by filtered cathodic vacuum arc deposition[J]. Diamond and Related Materials,2000, 9(3-6):663-667.
    [46]Lifshitz Y. Diamond-like carbon-present status[J]. Diamond and Related Materials,1999, 8(8-9):1659-1676.
    [47]Mossbrucker J, Asmussen J.3-D determination of the location and absolute amount of sp2 and sp3 bound carbon and stress components in CVD diamond films using multi-color polarized Raman spectroscopy[J]. Diamond and Related Materials,1999,8:663-667.
    [48]Yuan J, Brown L M. Investigation of atomic structures of diamond-like amorphous carbon by electron energy loss spectroscopy[J]. Micron,2000,31:515-525.
    [49]Chen C W, Robertson J. Surface atomic properties of tetrahedral amorphous carbon[J]. Diamond & Related Materials,2006,15:936-938.
    [50]Ferrari A C. Determination of bonding in diamond-like carbon by Raman spectroscopy[J]. Diamond and Related Materials,2002,11:1053-1061.
    [51]Jiang X, Reichelt K, Stritzker B. The hardness and Young's modulus of a-C:H films[J]. Vacuum,1990,41(4-6):1381-1382.
    [52]Wang J S, Sugimura Y, Evans A G, et al. The mechanical performance of DLC films on steel substrates[J].Thin Solid Films,1998,325(1-2):163-174.
    [53]Kirsten I. Schiffmann, Andreas Hieke. Analysis of microwear experiments on thin DLC coatings:friction, wear and plastic deformation[J]. Wear,2003,254:565-572
    [54]Takanori Takeno,Hiroyuki Miki, Toshifumi Sugawara, etal. A DLC/W-DLC multilayered structure for strain sensing applications[J]. Diamond Relat. Mater,2008,17:713-716
    [55]Takanori Takeno, Yuhtaro Hoshi, Hiroyuki Miki, etal. Activation energy in metal-containing DLC films with various metals of various concentrations [J]. Diamond Relat. Mater,2008,17:1669-1673
    [56]Takanori Takeno, Hiroyuki Miki, Toshiyuki Takagi, etal. Electrically conductive properties of tungsten-containing diamond-like carbon films[J]. Diamond. Relat. Mater, 2006,15:1902-1905
    [57]K Bewilogua, C. V Cooper, C Specht, etal. Effect of target material on deposition and properties of metal-containging DLC (Me-DLC) coatings[J]. Surf. Coat. Technol, 2000,127:223-231
    [58]Jyh-Ming Ting, Howard Lee. DLC composite thin films by sptter deposition[J]. Diamond. Relat. Mater,2002,11:1119-1123
    [59]Wan-Yu Wu, Jyh-Ming Ting. Growth and characteristics of metal-containing diamond-like carbon using a self-assembled process[J]. Carbon,2006,44:1210-1217
    [60]C. Corbella, M. Vives, A.Pinyol, etal. Preparation of metal (W, Mo, Nb, Ti) containing a-C:H films by reactive magnetron sputtering[J]. Surf. Coat.Technol, 2004,177-178:409-414
    [61]魏秋明,J. Sankar, J. Naaya.功能梯度类金刚石薄膜的脉冲激光制备[J].金属热处理学报,2000,21:57-62
    [62]Narayan Roger Jager. Laser processing of diamond-like carbon-metal compposites[J]. Appl.Surf. Sci.2005,245:420
    [63]祝土富,沈立如.类金刚石膜的性能、制备与应用(二)[J].真空,2008,45(1):51-55.
    [64]Zier M, Oswald S, Reiche R, et al. XPS and ARXPS investigations of ultra thin TaN films deposited on Si02 and Si[J]. Appl Surf Sci,2005,252:234
    [65]W. Ensinger, M. Kiuchi, Effect of ion and atom masses on the crystallographic orientation of nitride films prepared by ion-beam-assisted deposition[J]. Surf. Coat. Technol,1994,66:313
    [66]K. Y.Zhu, Y. Jun, Q. Qin, Synthesis and properties of tantalum nitride films formed by ion beam assisted deposition [J].Surf. Coat. Technol,1994,66:326,
    [67]Q.Y.Zhang, B.Chen. Investigation of TaN films implanted with nitrogen and argon ions [J]. Surf. Coat. Technol,1994,66:468
    [68]Q. Y. Zhang, X. X. Mei, D.Z.Yang, etal. Preparation, structure and properties of TaN and TaC films obtained by ion beam assisted deposition[J]. NIMB,1999,127/128:664-668
    [69]李立,牛二武,吕国华等.Preparation and microstructure of tantalum nitride thin film by cathodic arc depositon[J]. Chin. Phys. Lett,2006,23:3018
    [70]A. Arranz, C. Palacio. Composition of tantalum nitride thin films grown by low-energy nitrogen implantation:a factor analysis study of the Ta 4f XPS core level[J]. Appl.Phys.A,2005,81:1405-1410
    [71]MH Tsai, SC Sun, HT Chiu, etal. Metalorganic chemical vapor deposition of tantalum nitride by tertbutylimidotris(diethylamido) tantalum for advanced metallization [J]. Appl.Phys. Let,1995,67:1128
    [72]Raghavasimhan Sreenivasan, Takuya Sugawara, Krishna, etal. High temperature phase transformation of tantalum nitride films deposited by plasma enhanced atomic layer depositon for gate electrode application[J]. Appl. Phys. Let,2007,90:102
    [73]V. Palshin, E. I.Meletis, S.Ves.etal. Characterization of ion-beam-deposited diamond-like carbon films[J]. Thin Solid Films,199,270:165-172
    [74]Xing-zhao Ding, Fu-min Zhang, Xiang-Huai Liu, etal. Ion beam assisted deposition of diamond-like nanocomposite films in an actylene atmosphere[J]. Thin Solid Flms, 1999,346:82-85
    [75]K. Bewilogua, R. Wittorf, H. Thomsen,etal. DLC based coatings prepared by reactive d. c. magnetron sputtering[J]. Thin Solid Films,2004,447-448:142-147
    [76]A. A. Voevodin, M. A. Capano, A. J. Safriet, etal. Combined magnetron sputtering and pulsed laser deposition of carbides and diamond-like carbon films[J]. Appl. Phys. Lett,1996,69:188
    [77]Hirofumi Takikawa, Kikuko Izumi, Ryuichi Miyano, etal. DLC thin film preparation by cathodic arc deposition with a super droplet-free system [J]. Surf. Coat. Techonl,2003, 163-164,368-373
    [78]S. C. H. Kwok, W.Zhang, G. J. Wan, etal. Hemocompatibility and anti-bacterial properties of silver doped diamond-like carbon prepared by pulsed filtered cathodic vacuum arc depositon[J]. Diamond. Relat. Mater,2007,16:1353-1360
    [79]Conrad.J.R, Radtke. J.L, Dodd. R. A, etal. Plasma source ion-implantation technique for surface modification of materials[J]. J.Appl. Phys,1987,62:4591-4596
    [80]Park. Kyu Chang, Moon. Jong Hyun, Jang. Jin, etal. Deposition of hydrogen-free diamond-like carbon film by plasma enhanced chemical vapor depositon[J]. Appl. Phys. Let,1996,68:3596-3595
    [81]Y. T. Kim, S. M. Cho, W. S. Choi, etal. Dependence of the bonding structure of DLC thin films on the deposition conditions of PECVD method[J]. Surf. Coat. Technol, 2003,169-170,291-294
    [82]A.M. Bonnot. Raman microspectroscopy of diamond crystals and thin films prepared by hot-filament-assisted chemical vapor deposition[J]. Phys. Rev. B,1990,42:6040-6049
    [83]Motohide Murayama, Kiyoshi Uchida. Synthesis of uniform diamond films by flat flame combustion of acetylene/hydrogen/oxygen mixture[J]. Combustion and Flame,1992,91: 239-242
    [84]Jin Wei, Hiroshi Kawarada, Jun-ichi Suzuki, etal. Growth of diamond films at low pressure using magnto-microwave plasma CVD[J]. J. Cry. Grow,1990,99:1201-1205
    [85]Takuya Yara, Motokazu Yuasa, Manabu Shimizu, etal. Fabrication of diamond films aat low pressure and low-temperatrue by magneto-active microwave plasma chemical vapor deposition[J]. Jpn. J.Appl. Phys,1994,33:4404-4408
    [86]Jafee H. W. Siu, Lawrence K.Y.Li. An investigation of effect of surface roughness and coating thickness on the friction and wear behaviour of a commercial MoS2-metal coating on SISI 400C steel[J]. Wear,2000,237:283-287
    [87]D B Miller. An experimental X-band electron-cyclotron-resonance plasma accelerator IEEE trans[J]. Microwave theory and tech.1966,14(3):162-164
    [88]H G Kosmahl, D B Miller, G W Bethke. Plasma acceleration with microwaves near cyclotron resonance[J]. J. App. Phy.1967,38:4572-4582
    [89]A M Levine, A P KuckeS, R W Motiey. Electron-Cyclotron Resonance Heating of Alkali Plasrnas [J]. J. APP. Phy.1967,38:4435-440
    [90]K.SUZuki, S.Okudaira, N.Sakudo, etal. Microwave plasma etching[J]. J. Appl. Phys. 1977,16:1979-1984
    [91]马腾才,胡希伟,胡银华.等离子体物理原理.合肥:中国科技大学出版社.1988.
    [91]徐军.微波—ECR等离子体增强非平衡磁控溅射技术及cN薄膜的制备研究[D].大连:大连理工大学,2001
    [92]Langmuir, M Mott-Smith. Gen Elec Rev, hys Rev.,1926,28:727
    [93]I. H. Hutchinson, Principles of plasma diagnostics[M], cambrige university press,New York,1987.
    [94]钱振型.固体电子学中的等离子体技术[M],北京:电子工业出版社,1987:69-80
    [95]袁方圆,利用朗缪尔双探针诊断电弧离子镀等离子体参数[D].大连:大连理工大学,2009
    [96]Milton Ohring. Materials science of thin films deposition and structure[M],Academic press, Singapore,2006.
    [97]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,2005.
    [98]周玉.材料分析方法[M].北京:机械工业出版社,2000.
    [99]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004.
    [100]曹立礼.材料表面科学[M].北京:清华大学出版社,2007.
    [101]张泰华,杨业敏.纳米硬度技术的发展和应用[J].力学进展,2002,32(3):349-364.
    [102]谢存毅.纳米压痕技术在材料科学中的应用[J].物理,2001,30(7):432-435.
    [103]K. Baba, R. Hatada, K. Udoh, etal. Structure and properties of NbN and TaN films prepared by ion beam assisted deposition[J]. Nucl Instrum Meth B,1997,127-128:841-845
    [104]K.-N. Tu, J. W. Mayer, L. C. Feldman. Electronic thin film science for electrical engineers and materials scientists[M]. Macmillan, New York,1992
    [105]C. A.Neugebaure. Handbook of thin-film technology, eds. L. I.Maissel and R. GlangMcGraw-Hill, New York,1970.
    [106]宋贵宏,杜吴,贺春林等.硬质与超硬层[M].北京:化学工业出版社,2007.
    [107]J. E. E. Baglin, Handbook of ion beam processing technology[M]. Noyes Publication, Park Ridge, NJ,1989
    [108]R. Dagostino, Plasma Deposition, Treatment and Etching of Polymers[J]. Academic Press, Boston,1990
    [109]Y.-J.Lee, B.-S. Suh, S.-K. Rha, etal. Structural and chemical stability of Ta-Si-N thin film between Si and Cu[J]. Thin Solid Films,1998,320:141-146.
    [110]L. Y. Yang, D.H.Zhang, C. Y. Li, etal. Comparative study of Ta, TaN and Ta/TaN bi-layer barriers for Cu-ultra low-k porous polymer integration[J]. Thin Solid Films,2004,462-463:176-181.
    [111]Youngkwon Kang, Chongmu Lee, Jaegab Lee. Effects of processing variables on the mechanical properties of Ta/TaN multilayer coatings[J]. Mater. Sci. Eng. B,2000,75:17-23.
    [112]C.C.Chang, J.S. Jeng, J.S.Chen. Microstructural and electrical characteristics of reactively sputtered Ta-N thin films[J]. Thin Solid Films,2002,413:46-51.
    [113]L.Li, E. Niu, G. Lv, etal. Synthesis and electrochemical characteristics of Ta-N thin films fabricated by cathodic arc deposition[J]. Appl. Surf. Sci.2007,253:6811-6816.
    [114]J. C. Chuang, M. C. Chen. Properties of thin Ta-N films reactively sputtered on Cu/SiO2/Si substrates[J].Thin Solid Films,1998,322:213-217.
    [115]A. Arranz, C. Palacio. Composition of tantalum nitride thin films grown by low-energy nitrogen implantation:a factor analysis study of the Ta 4 f XPS core level [J]. Appl. Phys. A,2005,81:1405-1410.
    [116]0. Kerrec, D. Devilliers, H. Groult,etal. Study of dry and electrogenerated Ta205 and Ta/Ta2O5/Pt structures by XPS[J]. Mater. Sci. Eng. B,1998,55:134-142.
    [117]M. Zier, S. Oswald, R. Reiche, etal. Interface formation and reactions at Ta-Si and Ta-SiO2 interfaces studied by XPS and ARXPS[J]. J. Electron Spectrosc. Relat. Phenom.2004,137-140:229-233.
    [118]O. Banakh, P.-A. Steinmann, L. Dumitrescu-Buforn. Optical and mechanical properties of tantalum oxynitride thin films deposited by reactive magnetron sputtering [J]. Thin Solid Films.2006,513:136-141.
    [119]M. Zhang, B. Yang, J. Chu, etal. Hardness enhancement in nanocrystalline tantalum thin films[J].Scripta Mater.2006,54:1227-1230.
    [120]C.-S. Chen, C.-P. Liu, C.-Y. A. Tsao. Influence of growth temperature on microstructure and mechanical properties of nanocrystalline zirconium carbide films[J]. Thin Solid Films.2000,479:130-136.
    [121]P. Patsalas, C. Charitidis, S. Logothetidis. The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films[J]. Surf. Coat. Technol.2000,125:335-340.
    [122]R. Westergard, M. Bromark, M. Larsson, etal. Mechanical and tribological characterization of DC magnetron sputtered tantalum nitride thin films[J]. Surf. Coat. Technol.1997,97:779-784.
    [123]Q. Y. Zhang, X. X. Lei, D. Z. Yang, etal. Preparation, structure and properties of TaN and TaC films obtained by ion beam assisted deposition[J]. Nucl. Instrum. Methods Phys. Res. B.1997,127/128:664-668.
    [124]Huang M D, Lee Y P, Dong C, etal. Preparation of TiN films by arc ion plating using dc and pulsed biases[J]. J. Vac. Sci. Technol.2004, A 22(2):250
    [125]Mattox D M. Particle bombardment effects on thin-film deposition:A review[J]. J. Vac. Sci. Technol.1989, A 7(3):1105.
    [126]Wen L S, Huang R F, Guo L P, etal. Microstructure and mechanical properties of metal/ceramic Ti/TiN multilayers[J]. J. Magnet. Mater.1993,126:200.
    [127]赵彦辉,林国强,李晓娜等.脉冲偏压对电弧离子镀Ti/TiN纳米多层薄膜显微硬度的影响[J].金属学报.2005,41(10):1106-1110
    [128]W.C.Oliver, G. M. Phar. Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology[J]. J. Mat. Res.2004,19:3-20.
    [129]A. Leyland, A. Matthews. On the significance of the H/E ratio in wear control:a nanocomposite coating approach to optimised tribological behaviour [J]. Wear,2000,246: 322.
    [130]M. R. Hantehzadeh, S. II. Mortazavi, S. Faryadras, etal. The effect of temperature on the structure of tantalum nitride (TaN) thin films deposited by DC plasma[J]. J. Fusion. Energ,2012,31,84-88
    [131]N. R. Moody, R. Q. Hwang, S.Venka-tarman, etal. Adhesion and fracture of tantalum niride films[J]. Ac ta. mater,1998,46,585-897
    [132]Wen-Horng Lee, Jing-Cheng Lin, Chiapyng Lee. Characterization of tantalum nitride films deposited by reactive sputtering of Ta in N2/Ar gas mixtures[J], Mater. Chem. Phys,2001,68,266-271
    [133]Ta-Ching Li, Ben-Je Lwo, nen-Wen Pu, etal. The effects of nitrogen partial pressure on the properties of the TaNx films deposited by reactive magnetron sputtering[J], Surf. Coat.Technol,2006,201,1031-1036
    [134]Krishna. Studies on hard TaN thin film deposition by R C-Mag technique[J], J. Vac. Sci.Technol. A,2009,27,626-630
    [135]张庆瑜,陈斌,王敏等.TaN膜的结构节性能[J].大连理工大学学报,1995,35,482-486
    [136]Aditya Aryasomayajula, Krishna Valleti, Subrahmanyam Aryasomayajula, etal. Pulsed DC magnetron sputtered tantalum nitride hard coatings for tribological applications[J], Surf. Coat. Technol,2006,201,4410-4405
    [137]Aditya Aryasomayajula, Mohit Kumar Gupta, Santhosh Kumar Janarthanam. Studies on tantalum nitride (TaN) hard coatings on turning tools by DC magnetron sputtering technique[C], International mechanical engineering congress and exposition, November 5-11,2005, Orlando, Florida:ASME, c2005-80176
    [138]R. Prange, R. Cremer, D. Neuschutz. Plasma-enhanced CVD of (Ti, Al) N films from chloridic precursors in a DC glow discharge[J]. Surf. Coat. Technol.2000,133-134: 208-214
    [139]V.V. Uglov, V.M. Anishchik, S.V. Zlotski, etal. Structural and mechanical stability upon annealing of arc-deposited Ti-Zr-N coat ings[J]. Surf. Coat. Technol.2008,202: 2394-2398
    [140]J.L. Endrino, G. S. Fox-Rabinovich. Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel[J]. Surf. Coat. Technol.2006,200:6840-6845
    [141]Yin-Yu Chang, Shun-Jan Yang, Da-Yung Wang. Characterization of TiCr (C, N)/amorphous carbon coatings synthesized by a cathodic arc deposition process[J]. Thin Solid Films,2007,515:4722-4726
    [142]P. Patsalas, G. Abadias, G. M. Matenoglou, etal. Electronic and crystal structure and bonding in Ti-based ternary solid solution ni trides and Ti-Cu-N nanocomposite films[J]. Surf. Coat. Techno],2010,205,1324-1330
    [143]G. M. Matenoglou, Ch. E. Lekka, L.E. Koutsokeras, etal. Structure and electronic properties of conducting, ternary TixTal-xN films[J]. J. Appl. Phys.2009,105:103.
    [144]G. Abadias, L. E. Koutsokeras, Ph. Guerin, etal. Stress evolution in magnetron sputtered Ti-Zr-N and Ti-Ta-N films studied by in situ wafer curvature:Role of energetic particles[J]. Thin Solid Films.2009,518:1532-1537.
    [145]J.E. Sanchez,O. M. Sanchez, L Ipoz, etal. Mechanical, tribological, and electrochemical behavior of Cr1-xAlxN coatings deposited by r. f. reactive magnetron co-sputtering method[J]. Applied Surface Science.2010,256:2380-2387.
    [146]D. L. Smith, Thin Film Deposition:Principles and Practice[M]. McGraw-Hill.1995, p.477
    [147]Bao-Shun Yau, Cheng-WeiChu, DorisCin, etal. Tungsten doped chromium nitride coatings[J]. Thin Solid Fimls.2008,516:1977-1882
    [148]E.O. Hall. The deformation and ageing of mild steel:II Characteristics of the Luders deformation[J]. Proc. Phys. Soc. Ser. B.1951,64:747.
    [149]M. Zhou, Y. Makinz, M. Nose, etal. Phase transition and properties of Ti-Al-N thin films prepared by rf-plasma assisted magnetron sputtering[J]. Thin Solid Films.1999,339:203.
    [150]R. Prange, R. Cremer, D. Neuschutz. Plasma-enhanced CVD of (Ti, Al) N films from chloridic precursors in a DC glow discharge[J]. Surf. Coat. Tech.2000,133-134: 208-214.
    [151]ICSD, Inorganic Crystal Structure Database, FIZ Karlsruhe, Rel.97/2
    [152]PDF. Powder Diffraction Database, International Centre for Diffraction Data,12 Campus Blvd., Newton Square, PA 19703-3273, USA
    [153]A. L. Patterson. The Scherrer formula for X-ray particle size determination [J]. Phys. Rev.1939,56:978-982
    [154]Wenran Feng, Hai Zhou, Si-ze Yang. Gas pressure dependence of composition in Ta-Ti-N films prepared by pulsed high energy density plasma[J]. Mater. Chem. Phys 2010,124: 287-290
    [155]L. E.Koutsokeras, G. Abadias, P.Patsalas. Texture and microstructure evolution in single-phase Tixja1 xN alloys of rocksalt structure[J]. J. Appl.Phys.2011,110:043535
    [156]G. Abadias, L. E. Koutsokeras, S. N. Dub, etal. Reactive magnetron cosputtering of hard and conductive ternary nitride thin films:Ti-Zr-N and Ti-Ta-N[J]. J. Vac. Sci. Technol. A. 2010,28(4):541-544
    [157]Ranjana Saha, Rama B. Inturi, John A. Barnard. Structural and mechanical characterization of Cr-Ta-N hard coatings prepared by reactive magnetron sputtering[J]. Surf. Coat. Technol.1996,82:42-47
    [158]E. Bemporad, M. Sebastiani, C. Pecchio, etal. High thickness Ti/TiN multilayer thin coatings for wear resistant applications[J]. Surf. Coat. Technol.2006,201:2155-2165
    [159]Piotr Wiecinski, Jerzy Smolik, Halina Garbacz, etal. Microstructure and mechanical properties of nanostructure multilayer CrN/Cr coatings on titanium alloy[J]. Thin Solid Films.2011,519:4069-4073.
    [160]Z. X. Song, J.A.Wang, Y.H.Li, etal. The self-formation graded diffusion barrier of Zr/ZrN[J]. Microelectronic Engineering.2010,87:391-393.
    [161]M. Flores, S.Muhl, L. Huerta, etal. The influence of the period size on the corrosion and the wear abrasion resistance of TiN/Ti multilayers[J]. Surf. Coat. Technol.,2005, 200:1315-1319.
    [162]L. Major, J. Morgiel. B. Major, etal. Crystallographic aspects related to advanced tribological multilayers of Cr/CrN and Ti/TiN types produced by pulsed laser deposition (PLD)[J]. Surf. Coat. Technol.2006,200:6190-6195.
    [163]K.S.Chan, M.Y.He, J. W. Hutchinson. Cracking and stress redistribution in ceramic layered composites[J]. J. Mater. Sci. Eng. A 1993,167:57
    [164]Y.Sugimura, P. G. Lim, C. F. Shih, etal. Fracture normal to a bimaterial interface: effects of plasticity on crack-tip shielding and amplification[J]. Acta Metall. Mater,1995,43(3):1157
    [165]D. Wappl ing, J.Gunnars, P.Stahle. Crack growth across a strength mismatched bimaterias interface[J]. Int. J. Fracture,1998,89(3):223
    [166]Urban Wiklund, Per Hedenqvist, Sture Hogmark. Multilayer cracking resisance in bending[J]. Surf.Coat. Technol,1997,97:773-778
    [167]Maria Nordin, Mats Larsson, Sture Hogmark. Wear resistance of multilayered PVD TiN/TaN on Hss[J]. Surf. Coat. Technol,1999,120-121:528-534
    [168]Milton Ohring. Materials Science of Thin Solid films Deposition and Structure[M]. Academic, Singapore,2006
    [169]Y. Pauleau, Generation and evolution of residual stresses in physical vapour-deposited thin films[J]. Vacuum,2001,61:17.
    [170]G. Knuyt, W. Lauwerens, L.M. Stals, A unified theoretical model for tensile and compressive residual film stress [J]. Thin Solid Films,2000,370:232.
    [171]B. N. Chapman, Plamsma Deposition[J]. J. Vac. Sci. Technol.1974,11:106
    [172]J. E. E. Baglin, Materials and processes for surface and interface engineering[M]. Kluwer, Dordrecht,1995
    [173]J. E. E. Baglin, Handbook of ion beam processing technology[M]. Noyes Publication, Park Ridge, NJ,1989
    [174]R. Dagostino, Plasma Deposition, Treatment and Etching of Polymers[J]. Academic Press, Boston,1990
    [175]Kenneth Holmberg, Allan Matthews. Coatings tribology properties, mechanisms, techniques and applications in surface enginerring [M]. Elservice, Britain,2000
    [176]Q. Zhang, Y. X. Leng, F. Qi. Mechanical and corrosive behavior of Ti/TiN multilayer films with different modulation periods[J]. Nuc. Instr. Meth. Phys. Res. B,2007,257,411-415
    [177]Youngkwon Kang, Chongmu Lee, jaegab Lee. Effect of processing variables on the mechanical properties of Ta/TaN multilayer coatings[J]. Mater. Sci. Eng. B, 2000,B75,17-23
    [178]M. C. Shaw. The effects of strength probabilistics on the fracture mode of ceramic/metal multilayer[J]. Eng. Frac. Mech,1998,61,49-74
    [179]Robertson J. Mechanical properties and structure of diamond-like carbon[J]. Diamond and Related Materials,1992,1(5-6):397-406.
    [180]Robertson J. Diamond-like amorphous carbon[J].Materials science and engineering R, 2002,37:129-281.
    [181]Robertson J. Properties of diamond-like carbon[J]. Surface and Coatings Technology, 1992,50(3):185-203.
    [182]A.A. Voevodin. M. S. Donly. Review preparation of amorphous diamond-like carbon by pulsed laser deposition:a critical review[J], Surf. Coat. Technol,1996,82:199-213
    [183]Ferrari A C, Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon[J]. Physical Review B,2001,64:075414-1-075414-13.
    [184]V. Rigato, G. Maggioni, D. Boscarino, etal. A study of the structural and mechanical properties of TiMoS2 coatings deposited by closed field unbalanced magnetron sputter ion plating. Surf. Coat. Technol.116-119 (1999) 176-183
    [185]Zhang X W, Ke N, Cheung W Y, et al. Synthesis and structure of nitrogenated tetrahedral amorphous carbon thin films prepared by a pulsed filtered vacuum arc deposition[J]. Diamond and Related Materials,2003,12:1-7.
    [186]Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B,2000,61(20):14095-14107.
    [187]蒋娜娜,邵天敏,陈大融.利用脉冲激光真空弧沉积技术制备类金刚石薄膜[J].无机材料学报,2005,20(1):187-192.
    [188]聂朝胤,谢红梅,杨娟等.非平衡磁控溅射Ti掺杂类金刚石薄膜的基本特性[J].材料热处理学报,2008,29:147-152
    [189]K. M. Garadkar, A. A. Patil, P.P. Hankare, etal. MoS2:Preparation and their characterization[J], J. Alloys Compd.2009,487:786-789
    [190]Li Ji, Hongxuan Li, Fei Zhao,etal. Microstrure and mechanical properties of Mo/DLC nanocomposite films[J], Diamd.Rel. Mater,2008,17:1494-1954
    [191]H. Dimigen, H.Hubsch, P. Willich. Stoichiometry and friction properties of sputtered MoSx layers[J], Thin Solid Films,1985,129:79-91
    [192]M Weiler, S Sattel, K Jung, etal. Highly tetrahedral, diamond-like amorphous hydrogenated carbon prepared from a plasma beam source[J]. Appl.Phy.Let,1994,64:2797-2799
    [193]邹友声,汪伟,郑静地等.偏压对电弧离子镀沉积类金刚石膜的影响[J].金属学报,2004,40(5):537-540.
    [194]F. Bulbul, I. Efeoglu, E. Arslan. The effect of bias voltage and working pressure on S/Mo ratio at MoS2-Ti composite films[J]. Appl. Surf. Coat,2007,253:4415-4419.
    [195]Bernard C. Stupp, Synergistic effects of metals co-sputtered with MoS2[J]. Thin Solid Films,1981,84:257
    [196]Tomas Polcar, Manuel Evoristo, Albano Cavaleiro. Friction of Self-Lubricating W-S-C Sputtered Coatings Sliding Under Increasing Load[J], Plasma. Process. Poly,2007,4:541-546
    [197]于德洋,翁立军.物理气相沉积减摩与耐磨薄膜[J].摩擦学学报,1996,16:282-288
    [198]A. A. Voevodin, M. S. Donley,J. S. Zabinski. pulsed laser deposition of diamond-like carbon wear protective coatings:review[J], Surf. Coat. Technol,1997,92:42-49
    [199]马胜歌,于大洋,杨宏伟等.复合离子镀膜技术制备Cr+Ti+TiNC/TiNC+C/DLC膜性能研究[.J],核技术,2008,31:111-114
    [200]Kwang-Leong Choy, Emmanuelle Felix. Fuctionally graded diamond-like carbon coatings on metallic substrates[J], Matel. Sci. Eng. A,2000,278:162-169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700