用户名: 密码: 验证码:
大庆油田三元复合驱结垢机理及防垢剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三元复合驱提高采收率技术是油田开发后期的重要技术措施,大庆油田自2009年以来,三次采油区块不再安排聚合物驱,而全面开展三元复合驱,随着三元复合驱的推广使用,在油层近井地带以及采出液中均出现了结垢现象,垢的存在不仅造成生产隐患、降低生产效率、增大生产成本,同时还制约了三元复合驱技术的广泛应用。
     本论文以大庆油田采油四厂实际情况为例,研究在油田开采过程中,三元复合驱强碱驱油体系采出液与地层岩石的相互作用,分析了三元复合驱强碱驱油体系采出液的结垢成因,并得出三元复合驱强碱驱油体系采出液的结垢机理。
     针对三元复合驱强碱驱油体系采出液的成垢特点,确立以化学防垢剂作为三元复合驱强碱驱油体系采出液防垢的技术核心,确定了以自由基聚合的反应原理,设计了合成试验,自行研制出一种以马来酸酐(MA)、丙烯酸(AA)、2-丙烯酰胺基-2甲基丙磺酸(AMPS)为反应单体,(NH_4)2S_2O_8+NaHSO_3为引发剂,去离子水为溶剂,适用于三元复合驱强碱驱油体系采出液的三元共聚型高分子防垢剂,通过研究防垢剂主单体摩尔比、引发合成温度、引发剂配比等实验条件对防垢效果的影响,由此得出最佳合成条件:n(MA:AA:AMPS:(NH_4)2S_2O_8+NaHSO_3)=0.5:1:0.019:0.0089,,通入氮气0.5h,引发温度60℃,引发剂滴加时间1.5h,继续反应时间2h。以配置的模拟现场注入水及采出液为研究对象,研究建立了三元复合驱防垢剂的评价方法。同时根据三元复合驱现场实验条件,在不同研究体系下评价了防垢剂的防垢效果,实验表明,防垢剂在20mg/L的用量下,综合防垢率达到85%以上。
     为了验证结垢机理及防垢剂的合成,本论文采用了扫描电子显微镜、X射线能谱分析、傅立叶红外谱图分析等手段进行了分析测试,测试数据表明,得出与上述研究成果相一致的结论。
Asp flooding recovery is an important technical measure at late stage of oilfielddevelopment. Since2009, EOR blocks of Daqing oilfield have abandoned polymerflooding and adopted Asp flooding in an all-round way, with the wide use of Aspflooding, scale phenomenon exist in near bore zones and produced fluid. Theexistence of scale production not only cause hidden troubles to production, reduceproduction efficiency, increase production costs, restrict the wide application oftechnology of Asp flooding.
     This paper takes actual situation in4factory of Daqing oilfield as an example,studies interaction of produced fluid of Asp flooding recovery and strata rocks inoilfield exploitation process, analyzes cause of scaling of Asp flooding, and get thescaling mechanism of Asp flooding produced liquid.
     According to the scale forming characteristic of produced liquid in Asp flooding,a chemical scale inhibitor was established as technological core of scale preventionfrom produced liquid in Asp flooding. The reaction principle of the radicalpolymerization was determined. The synthetic tests was designed. Terpolymerpolymer scale inhibitor was self developed. Maleic anhydride (MA), acrylic acid(AA),2-acrylamide base-2methyl c sulfonic acid (AMPS) were adopted as thereactive monomers.(NH_4)2S_2O_8+NaHSO_3were adopted as the initiators.Deionizedwater were adopted as the solvent, this scale inhibitor was applied to the producedliquid in Asp flooding. Through investigating the influence of experimental conditionincluding the scale inhibitor main monomer molar ratio, initiating synthesistemperature, initiator partitioning exerted upon the antiscaling effect on. Hence camethe optimum synthesis conditions are n(MA:AA:AMPS:(NH_4)2S_2O_8+NaHSO_3)=0.5:1:0.019:0.0089. N2Pumped in0.5hour, invitation temperaturewas60℃, dropping time of the initiators was1.5hours; continuous reaction time was2hours. Taking simulated field injection water and produced liquid for research object,evaluation method of scale inhibitor of synthesis of Asp flooding was established. Atthe same time, according to present experimental condition of3-Dimension complexdrive, effect of scale inhibitor of synthesis was evaluated on different study system.Experiment showed that comprehensive inhibiting rate of scale inhibitor of synthesisreached over85%at the amount of20mg/L.
     For validating scaling mechanism and synthesis of scale inhibitor, this paperadopted scanning electron microscope, energy-dispersive x-ray analysis, Fourierinfrared spectra analysis and other analytical method. Test date consistence toresearch results above.
引文
A.Bottino,G.Capannelli and A.Comite,Prepa-ration and characterization of novel porousPVDF–ZrO2composite membranes,Desalination,146(2002)35–40.
    APHA,1980.Standard Methods for the Examination of Water and Wastewater,15th ed.AmericanPublic Health Associ-ation,Washington,DC,P429–433.
    Barker,D.J.,Mannucchi,G.A.,Salvi,S.M.L.,et al.,1999.Characterization of soluble residual chemicaloxygen demand(COD)in anaerobic wastewater treatment effiuents.WaterRes.33(11),2499–2510.
    Baker,J.R.,Milke,M.W.,Mihelcic,J.R.,1999.Relationship between chemical and theoretical oxygendemand for specific classes of organic chemicals.Water Res.33(2),327–334.
    Baviere M, Glenat P, Plazanet V et al. Improved EOR by use of chemicals in combination. SPEReservoir Engineering,1995;10(3):187~193
    Belkin,S.,Brenner,A.,Abeliovich,A.,1992.Effect of inorganic constituents on chemical oxygendemand—I.Bromides are unneutralizable by mercuric sulfate complexation.WaterRes.26(12),1577–1581.
    B.K.Andrzej and R.W.Field,Process factors during removal of oil-in-water emulsions withcross-flow microfiltration,Desalination,105(1996)79.
    Bock J, Siano D B, Pace S J. Enhanced oil recovery with hydrophobically associatingpolymers.CA1300362,1992
    Burdyn R F, Cheng H L, et al. Recovery by alkaline-surfactant water flood[P].US:4006638,1997-01-25.
    Cheryan M. Rajagopalan N. Membrane processing of olily streams. Wastewater treatment andwaste reduction [J]. Menbr Sci1998.151:13~28
    Clark S R, Pitts M J. Design and application of an alkaline-surfactant-polymer recovery system tothe West Kiehl field.SPE17538,1988
    Campos J C, Borge R M, Oliveira A M. Oilfield wasterwater treatment by combinedmicrofiltration and biological process [J]. Water Research,2002,3695~104
    Cowie J M G. Alternating Copolymers. New York:Plenum,1985
    Cuisia, Dionisio Guerrero, Hwa, et al. Method of inhibiting scale[P].US4048066,1977-09-13.
    D.-J.Lin,C.-L.Chang,G.-M.Huang and L.-P.Cheng,Effect of salt additive on the formation ofmicroporous poly(vinylidene fluoride)membranes by phase inversion fromLiClO4/water/DMF/PVDF system,J.Polymer,44(2003)413–422.
    Doll T E. An update of polymer-augmented alkaline flood at the Isenhour Unit, Sublette County,Wyoming.SPE/DOE14954,1986
    Elias H G. An Introduction to Polymer Science. Weinheim,Germany:VCH VerlagsgesellschaftmbH,1997
    Godlewski, Irene T Schuck, et a1.Polymers for use in water treatment[P].US4029577,1977-06-14.
    Hill,D.T.,Payne,V.W.E.,Rogers,J.W.,Kown,S.R.,1997.Ammonia effects on the biomass productionof five constructed wetland plant species.Bioresour.Technol.62(3),109–113.
    Holm L W, Robertson S D. Improved micellar-polymer flooding with high pHchemicals[C].SPE7583,1978:1~15
    House,C.H.,1999.Combining constructed wetlands and aquatic and soil filter for reclamation andreuse of water.Ecol.Eng.12,27–38.
    I.Genne,S.Kuypers and R.Leysen,Effect of theaddition of ZrO2to polysulfone based UFmem-branes,J.Membr.Sci.,113(1996)343–350.
    J.C. Camposa, R.M.H. Borgesa, A.M. Oliveira Filhob, R. Nobregaa, G.L. Sant’Anna Jr. Oilfeldwastewater treatment by combined microfiltration and biological processes [J]. WaterResearch36(2002)95~104
    J.E. Myers and N. Nijhawan, ChevronTexaco Constructed Treatment Wetland Plant MonitoringParameters [J]. SPE94329
    Knight,R.L.,Kadlec,R.H.,Harry,M.,1999.The use of treatment wetlands for petroleum industryeffiuents.Environ.Sci.Technol.33,973–980.
    Larry P, Koskan.Polyspartic acid as a calcium sulfate and a barium sulfate inhibitors[P].US:5116513,1991-05-04.
    Masler, William F, Amjad, et a1. Scale inhibition in water systems [P].US4566973,1986-01-28.
    N.A.Ochoa,M.Masuelli and J.Marchese,Effect of hydrophilicity on fouling of an emulsified oilwaste-water with PVDF/PMMA membranes,J.Membr.Sci.,226(2003)203–211.
    Odian G. Principles of Polymerization.4th. John Wiley&Sons Inc,2004
    P Aerts,A.R.Greenberg,R.Leysen,W.B.Krantz,V.E.Reinsch and P.A.Jacobs,The influence offillerconcentration on the compaction and filtration properties of Zirfon-compositeultrafiltration mem-branes,J.Sep.Purif.Technol.,22–23(2001)663–669.
    Pezeshki,S.R.,Hester,M.W.,Lin,Q.,Nyman,J.A.,2000.The effects ofoil spill and clean-up ondominant US Gulf coast marsh macrophytes:a review.Environ.Pollut.108,129–139.
    Robert J Ross, Kim C Low, James E Shannon.Green Chemistry Applier to corrosion and ScaleInhibitors [J].Material Performance/April,1997,52-57.
    Ross R J, Low K C, Shannon J E. Polyaspartate scale inhibitors-biodegradable alternatives topolyacrylates[J].Material Performance,2003,36(4):53-57.
    Shuler P J, Kuehne D L, Lerner R M. Improving chemical flood efficiency withmicellar/alkaline/polymer processes.JPT,1989;41(1):80~88
    S.Lee,Y.Aurelle and H.Roques,Concentrationpolarization,membrane fouling and cleaning inultrafiltration of soluble oil,J.Membr.Sci.,91(1994)231.
    Stevnts M P. Polymer Chemistry.3rd. New York: Oxford University Press,1999
    Surkalo H. Enhanced alkaline flooding.JPT,1990;42(1):6~7
    Tellez,G.T.,Nirmalakhandan,N.,Gardea-Torresdey,J.L.,2002.Performance evaluation of anactivated sludge system for removing petroleum hydrocarbons from oilfield pro-ducedwater.Adv.Environ.Res.6(4),455–470.
    Taylor K C, Hawkins B F, Rafiq Islam M. Dynamic interfacial tension in surfactant enhancedalkaline flooding.JCPT,1990;29(1):50~55
    U.Daiminger,W.Nitsch,P.Plucinski and S.Hoffmann,Novel techniques for oil/waterseparation,J.Membr.Sci.,99(1995)197–203.
    W.Scholz and W.Fuchs,Treatment of oil con-taminated wastewater in a membranebioreactor,J.Water Res.,34(14)(2000)3621–3629.
    Wu Sh. J. Purification of Contaminated Water by Ultrasonic Degradation [J].Physics,2001,30(12):782~786
    Wyatt K, Pitts M J, Harry V S et al. Alkaline-surfactant-polymer technology potential of theMinnelusa Trend, Powder River Basin.SPE29565,1995
    白谷正宏等.水溶性共聚物及纯二氧化硅垢防止剂[J].水处理信息报导,2008,4:17-20
    毕凤琴王勇张旭昀等.弱碱三元复合驱采出液腐蚀与结垢特性及固体缓蚀阻垢剂研制.[J].兵器材料工程与科学,2009,32(4):38-43
    陈敏烨.一种新型三元复合驱防垢剂的合成及评价[J]大庆石油学院学报.2007,21(3):50-52.
    陈仕宇刘安芳孙雪娜刘明涛林涛.弱碱三元复合驱结构分析及除防垢技术研究[J].大庆石油地质与开发,2006,25:97-99
    陈卫东于会宇倪锡成.萨北油田三元复合驱防垢技术研究[J].大庆石油地质与开发,2001,20(2):89-92.
    陈新萍徐克明李睿张永忠李伟宏.三元复合驱高含硅垢除垢剂的研制[J].大庆石油学院学报,2003,27(2):37-39
    陈忠,蔡国兴,马利成,周志齐.碱与储层矿物反应液中硅、铝浓度测定及表面活性剂和聚合物的影响[J].油田化学,2003,20(4):360-362
    陈忠,罗蜇潭,沈明道等.三元复合驱强化采油技术[J].西南石油学院学报,1997,19(4):44-47.
    程杰成,王德民,李群等.大庆油田三元复合驱矿场试验动态特征[J].石油学报,2002,23(6):37-40
    邓云祥,刘振兴,冯开才.高分子化学、物理和应用基础.北京:高等教育出版社,1997
    范振中万家瑰.聚合物阻垢剂ZG的合成及阻垢性能[J].精细石油化工进展,2003,4(6):39-40.
    冯磊.弱碱三元复合驱配注系统物理防垢技术[J].油气田地面工程,2008,27(7):8-9
    付剑高亚丽吴卫国等.孤岛油田三元复合驱结垢机理与防垢技术[J].西安石油大学学报(自然科学版),2004,19(1):55-58.
    复旦大学高分子系高分子教研室.高分子化学.上海:复旦大学出版社,1995
    高清河李睿陈新萍等.三元复合驱机采井缓释防垢技术[J].油气田地面工程,2006,25(12):13.
    高小鹏张伟峰王炎明等.孤岛油田三元复合驱油井结垢机理分析与治理措施[J].油气地质与采收率,2003,(10)2:65-67.
    管公帅.三元复合驱采出液中硅离子定量分析研究与应用[J].石油地质与工程,2008,22,(2):88-90
    韩哲文.高分子科学教程.上海:华东理工大学出版社,2001
    胡永亮.三元复合驱技术研究[J].工程技术,2008,11:114
    贾庆.三元复合驱采出系统防垢研究[J].油气田地面工程,2001,20(5):94.
    贾庆吴迪焦大刚等.杏二中三元复合驱采出系统结构与控制研究[J].油气田地面工程,2006,25(11):18-19
    加藤知夫(日本栗田公司).硅垢附着防止剂及附着防止方法[J].水处理信息导报,2007,2:16-18
    贾忠伟,宫文超,李凤琴等.三元复合驱结垢机理及防垢技术研究.黑龙江省石油学会首届学术年会优秀论文集.大庆:黑龙江石油学会,2003,144-152
    姜民政朱君李金玲等.三元复合驱油井结垢分析及防垢剂研制[J].石油化工腐蚀与防护,2003,20(3):25-27.
    江能房永江勇.次氯酸钠氧化法测定聚丙烯酰胺浓度的研究[J].工业水处理,2005,25,(8):46-49.
    孔柏岭.聚丙烯酰胺浓度测量方法综述[J].油田化学,1996,13(3):284-288,272.
    李爱山马利成鞠玉芹.马来酸酐、甲基丙烯酸羟乙酯共聚物防垢剂的合成及评价[J].精细化工,1996,13(4):13-16.
    李金玲李天德陈修君.强碱三元复合驱结垢对机采井的影响及解决措施[J].大庆石油地质与开发,2008,27(3):89-91.
    李金玲李天德李睿陈新萍.三元复合驱硅垢除垢剂在螺杆泵举升井中的应用[J].大庆石油学院学报,2005,29,(1):28-29
    李金玲刘合袁涛.三元复合驱采油井用的固体缓释防垢剂[J].油田化学,2003,20(4):304-306.
    李立东.弱碱三元注入系统结垢机理及防垢技术[J].大庆石油地质与开发,2008,27(4):109-112.
    李萍程祖锋王贤君等.三元复合驱油井中硅垢的形成机理及预测模型[J].石油学报,2003,24(5):63-66
    李睿李卫宏董国君.三元复合驱弱碱体系评价防垢剂的方法[J].化学工程师,2004,107,(8)
    李伟宏陈新萍李睿董国君.三元复合驱成垢物质分析[J].化学工程师,2003,6:29-30
    李学军谭新富刘学.浊度法检测聚丙烯酰胺浓度的研究[J].油田地面工程,1992,11(3):41-44.
    蔺爱国刘培勇刘刚等.膜分离技术在油田含油污水处理中的应用研究进展[J].工业水处理,2006,26(1):5-8
    刘东升李金玲李天德等.强碱三元复合驱硅结垢特点及防垢措施研究[J].石油学报,2007,28(5):139-145
    骆华锋林柏松万德立.缓释性固体阻垢剂的研制与应用[J].腐蚀与防护,2009,30(7):502-505.
    刘伟成颜世刚姜炳南等.在用碱的化学驱油中硅铝垢的生成——碱与高岭土的成垢性能[J].油田化学,1996,13(1):64-67
    刘伟成颜世刚姜炳南等.在用碱的化学驱油中硅铝垢的生成——碱与岩芯组分的成垢机理和性能[J].油田化学,1996,13(1):68-71
    卢江,梁晖.高分子化学.第二版.北京:化学工业出版社,2010
    卢磊高宝玉岳钦艳等.油田聚合物驱采出污水絮凝过程研究[J].环境科学,2007,28(4):761-765
    马庆霞张忠智苗建生等.淀粉-碘化镉法测定部分水解聚丙烯酰胺浓度的影响因素分析[J].化学与生物工程,2010,27(6):80-82.
    马自俊黄浪.氨电极法测定部分水解聚丙烯酰胺浓度[J].理化检测(化学分册),2008,44(1):19-21.
    莫非顺国臣王国庆朱晶.螺杆泵在三元复合驱井中的抗垢性能分析[J].石油机械,2002,20(8):62-63
    潘祖仁.高分子化学.第二版.北京:化学工业出版社,1997
    冉福强何建华李睿珊等.高效液相色谱仪检测聚丙烯酰胺浓度的方法研究[J].江汉石油科技,2006,16(2):1-4.
    宋守国侯学志葛树生等.三次采油用聚丙烯酰胺浓度的测定——化学发光定氮法[J].石油工业技术监督,2002,18(7):27-29.
    苏连江陈新萍李卫宏李睿.三元复合驱弱碱体系防垢剂的研制[J].哈尔滨师范大学自然科学学报,2003,19,(6):59-60
    隋欣.三元复合驱硅垢形成规律与主要控制因素研究:[硕士论文].黑龙江:大庆石油学院,2006
    唐洪明,等.大庆油田三元复合驱过程中垢预测与垢研究[J].钻井液与完井液,2002,19(2):9-12
    唐善法喻选梅李利明.聚合物对污水中聚丙烯酰胺的去除效果研究[J].石油天然气学报,2006,28(2):125-127
    田利邹明珠许宏鼎等.采油污水中部分水解聚丙烯酰胺浓度的测定[J].吉林大学学报(理学版),2003,41(2):224-227.
    王德民.大庆油田“三元”“二元”“一元”驱油研究[J].大庆石油地质与开发,2003,22(3):1-9.
    王芳吴庆红刘海福等.三元复合驱替过程中防垢实验研究[J].钻井液与完井液,2002,19(1):15-20.
    王红艳张本艳张继超等.胜利油田三元复合驱体液用防垢剂研究[J].油田化学,2005,22(3):252-254.
    王槐三,寇晓康.高分子化学教程.北京:科学出版社,2002
    王明佳三元复合驱结垢及防垢机理研究.[硕士学位论文]黑龙江:大庆石油学院,2003
    王贤君王庆国.三元复合驱矿藏采油井结垢及清垢剂的研究及应用[J].油田化学,2003,20,(1):1-3
    王玉普程杰成.三元复合驱过程中的结垢特点和机采方式适应性[J].大庆石油学院学报,2003,27(2):20-22
    王忠辉刘庆旺.MA/SAS水溶性聚合物阻垢剂的合成与评价[J].精细石油化工进展,2005,6(10):19-22.
    魏敏,邹晓兰,贺莹.油田采油污水处理技术及面临的问题[M].山东化工,2007.36. p19~21
    吴一惠吴华黄宏度.浊度法测定聚丙烯酰胺浓度影响因素研究[J].石油天然气学报,2009,31(4):139-142.
    肖超渤,胡运华.高分子化学.武汉:武汉大学出版社,1998
    徐典平薛家锋包亚臣等.三元复合驱油井结构机理研究[J].大庆石油地质与开发,2001,20(4):98-100
    徐国民蒋玉梅.强碱三元复合驱化学防垢技术研究[J].油气田地面工程,2008,27(10):23-24.
    徐俊于水利梁春圃等.超滤膜处理含聚合物采油废水的实验研究[J].工业水处理,2006,26(5):38-40
    延玉臻齐江胥锐一等.一种新型膦酸防垢剂的合成及性能研究[J].精细石油化工,1997,11(6):40-43.
    杨付林张建李俊刚.三元复合驱采出液中微量硅的定量分析[J].大庆石油地质与开发,2002,21(3):63-64
    杨世光杨林饶小桐.聚丙烯酰胺浓度的测定——碘-淀粉比色法的改进[J].西南石油学院学报,1992,14(2):105-110.
    杨云霞,张晓健.我国主要油田污水处理技术现状及问题.油气田地面工程[J],2001,20(1):4~5
    叶德霖.硅垢及其阻垢剂[J].工业水处理,1994,14(3):3-926(5):38-40
    由庆赵福麟穆丽娜等.测定聚合物驱油井产出液中聚丙烯酰胺浓度的新方法—超滤浓缩薄膜干燥法[J].石油学报(石油加工),2007,23(1):109-112.
    于涛荆国林黎钢郭风林姜波.三元复合驱结构机理研究——NaOH对高岭石和蒙脱石的作用[J].大庆石油学院学报,2001,25(2):28-30
    余学海,陆云.高分子化学.南京:南京大学出版社,1994
    于跃琴常宪智田红杰.微波法合成聚天冬氨酸阻垢剂[J].青岛科技大学学报(自然科学版),2008,29(5):397-400.
    赵福麟.油田化学.东营:石油大学出版社,2000.P102
    赵明奎郑言成伍家忠等.含膦缓蚀阻垢剂的合成与性能评价[J].精细石油化工进展,2003,4(10)11-13.
    赵长久李新峰周淑华.大庆油田三元复合驱矿场结构状况分析[J].油田地质与采收率,2006,13(2):93-95
    张国庆夏丽韦娜等.油田水中部分水解聚丙烯酰胺浓度的检测技术优化[J].内蒙古石油化工,2006,32,(9):115-118.
    中国石油天然气股份有限公司大庆油田有限责任公司. Q/SY DQ0605-2006.大庆油田油藏水驱注水水质指标及分析方法.大庆,2006-08-15
    中国石油天然气股份有限公司. SY/T5162-1997.岩石样品扫描电子显微镜分析方法.大庆,1997-12-31
    中华人民共和国国家环境保护局. GB/T7477-87.水质-钙和镁总量的测定.北京:中国标准出版社,1987-08-01

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700