用户名: 密码: 验证码:
聚丙烯腈浓溶液的凝胶化行为及其在聚丙烯腈碳纤维原丝制备中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯腈(PAN)基碳纤维是碳纤维中用途最广泛、发展前景最好的一种。作为PAN基碳纤维的前驱体,PAN原丝的质量在很大程度上决定了PAN基碳纤维的性能。目前全世界对碳纤维的需求量逐年增加,然而我国生产的PAN基碳纤维总体上仍处于较低的水平,与世界先进水平差距很大。PAN原丝的质量无法满足生产高性能碳纤维的要求是制约碳纤维质量提高的重要因素,提高原丝的质量是提高我国碳纤维生产水平的当务之急。相关基础理论和制备工艺的研究对于提高原丝的质量和生产水平都是很重要的。本论文主要对作为PAN原丝的纺丝溶液的PAN/DMSO和PAN/DMSO/水浓溶液体系的凝胶化行为进行了系统研究,以PAN浓溶液的凝胶化行为和PAN凝胶的特点为依据提出了PAN原丝的新型纺丝方法,使用新型纺丝方法制备原丝并对其进行了结构性能表征。
     利用动态流变实验研究了PAN/DMSO浓溶液在热致变凝胶化过程中的粘弹性,讨论了影响体系凝胶化行为的两个相互关联的参量—凝胶浓度与凝胶化转变温度对体系凝胶化行为的影响。通过对不同浓度样品的频率扫描,根据损耗角正切tanδ和动态模量G′、G″等数据以及描述凝胶化过程的标度定律得到了体系的临界凝胶浓度cg,发现在不同温度下体系的cg不同,温度越高,cg的值越大。通过温度扫描和不同温度下的频率扫描,根据损耗角正切tanδ和动态模量G′、G″等数据得到了体系的临界凝胶化转变温度Tg,发现浓度较高的样品具有较高的Tg和临界凝胶强度S。虽然不同温度下体系的cg不同,但是临界点处的松弛指数n却几乎保持不变,而具有不同Tg的体系也具有相似的n值。因此,在一定条件下形成的PAN凝胶具有其特有的结构,不随体系中PAN的浓度和温度的变化而变化。
     利用动态流变测试研究了PAN/DMSO浓溶液在熟化过程中的凝胶化行为。体系在低于其临界凝胶化转变温度Tg的某一温度下恒温熟化一定的时间会发生凝胶化转变。在熟化过程中,熟化温度越低,体系的凝胶化速率越快,临界凝胶化转变时间tg越短。PAN凝胶体系符合标度定律,根据由标度定律得到的临界松弛指数n值与由实验结果直接得到的n值相符,且n值不随临界凝胶化转变时间tg的变化而变化。对于浓度相同的体系,由熟化过程得到的临界凝胶强度小于由降温过程得到的临界凝胶,表现为较大的n值和较小的S值,这很可能是因为两种情况下凝胶形成的条件不同。
     浊点滴定三元相图和特征粘度测量的结果表明,体系中的含水量越高,体系越容易发生相分离。流变测试的结果表明水的存在对体系的凝胶化行为有明显影响。体系的临界凝胶化转变温度Tg随含水量的提高而升高,凝胶强度因子S随含水量的增加略有下降,而n值却几乎不变,这说明在一定条件下形成的PAN凝胶结构不受体系中含水量的影响。水的存在加速了体系的凝胶化过程,表现为临界凝胶化转变时间tg的减小。结合扫描电镜和原子力显微镜的结果可知,虽然水的存在使形成的凝胶结构更为致密,但会使体系在凝胶化过程中发生相分离,使凝胶变得不均匀,并且使凝胶的强度有所降低。
     通过动态流变和AFM图像分析的方法对由PAN/DMSO/水三元体系形成的PAN凝胶的分形结构进行了研究。依据Winter的理论得到了两个不同含水量PAN凝胶样品的分形维数df可能的取值范围。利用Wu and Morbidelli的理论得到了两个PAN凝胶的分形维数df值,与由Winter的理论得到的结果符合得很好。根据Wu and Morbidelli的理论,PAN凝胶体内团簇内部的联结与团簇之间的联结对凝胶弹性的贡献比较接近。由AFM图像分析得到的PAN凝胶的df值与由两种标度定律得到的df值相符合。流变测量和图像分析的结果都表明,体系中的含水量对凝胶的df值几乎没有影响。
     利用动态流变测试、差示扫描量热法(DSC)和广角X射线衍射(WAXD)等实验方法研究了PAN/DMSO和PAN/DMSO/水体系在温度变化条件下的热可逆凝胶化行为以及体系处于不同状态时(溶液或者不同条件下形成的凝胶)的结晶性。G′和G″在升温和降温过程中随温度的变化反映了PAN凝胶的热可逆性,但是在升温和降温过程中的体系粘弹性的变化是有区别的,G′和G″的变化轨迹不完全相同。另外,体系在先降温后升温和先升温后降温两个过程中的粘弹性变化也是不同的。通过动态应变扫描和剪切后的频率扫描结果发现PAN凝胶结构在受到破坏后可以迅速恢复,说明PAN凝胶的交联点不是由微晶构成的,而很可能是氰基之间的偶极一偶极相互作用。对内含溶剂的凝胶样品进行DSC测试的结果表明,单纯通过降温形成的PAN凝胶不会发生结晶,结晶不是其形成的原因。PAN溶液在凝胶化转变过程中可能会发生相分离。X射线衍射实验的结果与流变和热分析实验的结果一致,即仅依靠温度变化而形成的PAN凝胶是无定形的。但是,在非溶剂水的作用下形成的PAN凝胶是可以结晶的。结晶度和平均晶粒尺寸随凝胶中水含量的减少而增大。
     使用基于降温和熟化过程中的热致变凝胶化机理的新型纺丝方法——未预凝胶化凝胶纺丝和预凝胶体凝胶纺丝以及干湿法纺丝制备了PAN基碳纤维原丝,利用扫描电镜(SEM),力学性能测试、广角X射线衍射(WAXD),小角X射线散射(SAXS)等手段对由这两种纺丝方法得到的PAN原丝进行了结构性能表征,并与由干湿法纺丝制得的原丝作了比较。使纺丝溶液在25℃的温度下熟化时,将熟化时间控制在112到190分钟之间可以使纺丝溶液发生凝胶化转变但仍具有流动性,保证了预凝胶体凝胶纺丝的可行性。与传统的干湿法纺丝相比,由未预凝胶化凝胶纺丝制得的初生纤维结构比较致密,孔洞较少,但是两者的皮芯结构差异并无明显区别。预凝胶体凝胶法纺丝时,预凝胶化的纺丝溶液由于在进入凝固浴之前已经形成了一定程度的交联网络结构而变得比较稳定,因此得到的初生纤维的截面形状比较圆,皮芯结构差异明显小于由干湿法纺丝得到的初生纤维,同时其可纺性也明显好于干湿法和未预凝胶化凝胶法纺丝。比较由干湿法纺丝、未预凝胶化凝胶法和预凝胶体凝胶法纺丝得到的原丝,由预凝胶体凝胶法得到的原丝内部孔洞体积最小,孔洞的分形维数最小,力学性能最好,由未预凝胶化凝胶法得到的原丝次之,但是由不同纺丝方法得到的原丝的结晶度差别很小。预凝胶体凝胶法优于未预凝胶化凝胶法,更优于干湿法,因为由其制得的原丝具有最优的结构和物理性能。而在两种预凝胶体凝胶纺原丝中,由萃取浴得到的原丝结构更加均一,性能也优于由凝固浴得到的原丝,并且在拉伸过程中更容易形成择优取向、堆砌完善的超分子结构。
Polyacrylonitrile (PAN)-based carbon fiber is the most widely used and promising carbon fiber. As the precursor of PAN-based carbon fiber, the quality of PAN precursor fiber determines the performance of PAN-based carbon fiber to a large extent. At present, the demand for carbon fiber is growing fast in the world. However, domestically fabricated PAN-based carbon fibers are generally at low quality level compared with those produced by some developed countries. The low-quality PAN precursor fibers are not qualified for producing high-performance carbon fiber, which has been restricting the improvement of PAN-based carbon fiber. Studies on relevant fundamental theories and fiber fabrication technics are important for improving the production level of PAN precursor fiber. In this dissertation, the gelation behavior of concentrated PAN/DMSO and PAN/DMSO/water solution which are usually used as PAN fiber spinning solutions has been systematically investigated. New spinning methods for PAN precursor fiber based on the gelation behavior and the characteristics of PAN gel have been applied to the formation of PAN precursor fibers and the structure and properties of the resultant fibers were characterized.
     The viscoelastic behavior of concentrated PAN/DMSO solutions during thermal-induced gelation was investigated via dynamic rheological measurements. The effect of two correlated parameters-gel concentration and gelation temperature on the gelation behavior of the systems were discussed. The loss tangent tanδand the dynamic moduli G'andG" of different samples were obtained through frequency sweep, based on which the critical gel concentration cg was determined using scaling laws. It was found that the cg value increased with the increase of temperature. According to tanδ, G'andG" obtained from temperature sweep and frequency sweep at different temperatures, the critical gelation temperature Tg was determined and found to be proportional to the PAN concentration of the system. Also, the critical gel strength S increased with the increase of the concentration. Although cg changed with temperature, the value of the relaxation exponent n at the gel point hardly changed. The same phenomenon occurred at the critical gelation temperature Tg. It was thus concluded that PAN gel formed under certain conditions has unique structure, irrespective of the PAN concentration and the gelation temperature.
     The gelation behavior of concentrated PAN/DMSO solution during aging process was investigated through dynamic rheological measurements. The system would gel after a certain period of aging at a constant temperature below its gelation temperature Tg. In the aging process, the gelation rate increased with decreasing aging temperature, which meant the critical gelation time decreased with decreasing aging temperature. Scaling laws could be applied to PAN systems. The critical n values obtained from the scaling laws were in good accordance with those obtained directly from experimental results, and the n value kept almost constant when the critical gelation time tg changed. For the systems with the same PAN concentration, the critical gel strength S of the gels formed in aging process was smaller than that of the gels formed in the cooling process, likely ascribed to the different gel forming conditions.
     The results of cloud point titration and intrinsic viscosity measurements indicated that phase separation was more likely to occur when the water level was higher. The result of dynamic rheological measurements showed that water in the system could significantly affect the gelation behavior of the system. Tg was found to increase with increasing water content and S decreased a little when the water content grew. In addition, n was hardly affected by the water content, implying the structure of PAN gel formed under certain condition was hardly affected by the water level in the system. The presence of water could accelerated the gelation process, reflected by the decreased critical gelation time tg. The results of dynamic rheological measurements as well as atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that, though the presence of water made the gel structure more compact, it could lead to phase separation during the gelation process of the system. The gel thus became inhomogeneous and its strength reduced.
     The fractal characteristics of PAN gels formed from PAN/DMSO/water systems were studied via dynamic rheology and AFM image analysis. The possible ranges of the fractal dimension df value for the PAN gels with different water levels were determined using Winter's theory. By applying Wu and Morbidelli's model to our gel systems, the df values for the two PAN gels of different water level were obtained and found to agree well with the results from Winter's theory. According to Wu and Morbidelli's theory, the contributions of intrafloc and interfloc links to the gel stiffness were comparable for PAN gels. Also the fractal analysis based on AFM image gave df values consistent with those obtained from the rheological measurements. The amount of water in PAN solution was found to have little effect on the df value and hence on the gel structure, and the conclusion has been confirmed by both rheology and image analyses.
     Dynamic rheological measurements, differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were employed to investigate the thermoreversibility of PAN/DMSO and PAN/DMSO/water systems, and the crystallization of the systems in varied states. The changes of G'and G" during heating and cooling processes showed the thermoreversibility of PAN gel. However, the viscoelasticity changes of the systems in heating and cooling processes were different, reflected by the difference in the traces of G'and G". Besides, the viscoelasticity changes in the cooling-heating process and heating-cooling process were also different. It was found from the dynamic strain sweep and the frequency sweep after shear that the PAN gel structure could recover immediately after it was broken, which indicated that the dipole-dipole interaction between nitrile groups rather than PAN crystallites acted as the cross-linking points in PAN gels. The results of DSC tests for the solvent-containing PAN gels showed that PAN gels formed only by cooling could not crystallize, so crystallization was not the cause for the formation of PAN gel. Phase separation may occur when PAN solution underwent gelation. The results of WAXD agreed well with those of rheological measurements and thermal analyses, i.e., cooling alone could not make the resultant gel crystallize. However, the water-induced PAN gel could crystallize and the average crystallite size increased with reduced water content in the gel.
     Two new spinning methods-not-pre-gelled gel spinning and pre-gel gel spinning which were on the basis of thermal-induced gelation mechanism in both cooling and aging processes were employed to produce PAN precursor fibers. The traditional dry-wet spinning was also used for comparison. SEM, mechanical tests, WAXD, small angle X-ray scattering were conducted to characterize the structure and properties of the resultant fibers. In the aging process, it was found that aging the spinning solution for 112 to 190 minutes could make the solution gel but not lose flowability, which guaranteed the feasibility of pre-gel gel spinning. Compared with the fibers produced by dry-wet spinning, the fibers from the not-pre-gelled gel spinning had more compact structure and fewer pores inside the fiber. The skin-core difference between the two types of fibers was, however, not pronounced. In pre-gel gel spinning, since the pre-gelled spinning solution had formed somewhat stable interconnected network structure, the as-spun fibers formed from the pre-gelled spinning solution possessed comparatively circular cross-section, and spinnability of the spinning solution was better. Of the fibers produced with the three methods, the pre-gel gel spun fiber had a smallest total volume of pores, smallest fractal dimension of pores and best mechanical properties. The not-pre-gelled gel spun fiber took the second place. However, the crystallinity of the three types of fibers was very close. The pre-gel gel spinning was the best spinning methods, as the fabricated fiber possessed the most favorable structure and best physical properties. For the pre-gel gel spinning, the fiber obtained from the extraction bath had better mechanical properties than that obtained from the coagulation bath. In addition, the fiber from the extraction bath had more easily oriented and better packed micro-structure.
引文
1.张旺玺,王艳芝.聚丙烯睛基炭纤维综述.合成技术及应用,1998,14(2),20-22
    2.贺福,王茂章.炭纤维及其复合材料.北京:科学出版社,1995
    3. 罗益锋.新世纪初世界炭纤维透视.高科技纤维与应用,2000,25(1),1-7
    4. 罗益锋.炭纤维的新形势与新技术.新型炭材料,1995,10(4),13-25
    5.孙酣经.炭纤维及其复合材料.化工新材料,1998,(4),41-42
    6. 贺福,赵建国,王润娥.炭纤维工业的长足发展.高科技纤维与应用,2000,25(4),9-1
    7.赵稼祥,王曼霞.复合材料用高性能炭纤维的发展和应用.新型炭材料,2000,15(1),68-75
    8. 陈绍杰.先进复合材料的民用研究与发展.材料导报,2000,14(11),8-10
    9.吴人杰.下世纪我国复合材料的发展机遇与挑战.复合材料学报,2000,17(1), 1-4
    10. Sudo C, Shimizu K. A New Carbon Fiber from Lignin. J. Appl. Polym. Sci., 1992,44(1),127-134
    11.赵根祥,邱海鹏.聚酸亚胺基炭纤维的开发.合成纤维工业,2000,23(1),75-77
    12. James A. N., Dan D. E., Fuller E. L. Kinetics of Carbonization and Graphitization of PBO Fiber. J. Appl. Polym. Sci.,1996,60(6),825-832
    13.张武最,罗益锋,杨维榕.合成树脂与塑料一合成纤维,北京:化学工业出版社,1999
    14. Zhang D., Sun Q. Structure and Properties Development during the Conversion of Polyethylene Precursors to Carbon Fibers. J. Appl. Polym. Sci.,1996,62(2), 367-373
    15.赵稼祥.炭纤维的现状与新发展.材料工程,1997,(12),3-6
    16.王德诚.PAN基及沥青基炭纤维生产现状与展望.合成纤维工业,1998,21(2),45-48
    17. Edie D.D. The Effect of Processing on the Structure and Properties of Carbon Fibers. Carbon,1998,36(4),345-362
    18.许登堡,吴叙健.聚丙烯睛基炭纤维原丝.广西化纤通讯,2000,(2),19-25
    19. Yang M., Yu D. Influence of Precursor Structure on the Properties of Polyacrylonitrile-based Activated Carbon Follow Fiber. J. Appl. Polym. Sci., 1996,59,1725-1731
    20.吴雪平,杨永岗,郑经堂,贺福.高性能聚丙烯睛基炭纤维的原丝.高科技纤维与应用,2001,26(6),6-10
    21.贺福,王茂章.碳纤维及其复合材料.北京:科学出版社,1995,1-22
    22.张旺玺,王艳芝.聚丙烯腈基碳纤维综述.合成技术及应用,1998,14(12),20-22
    23. Fitzer E. PAN-based Carbon Fiber-Prsent State and Trend of the Technology. Carbon,1998,27,621-645
    24.贺福.炭纤维开发与炭纤维原丝质量.新型碳材料,1998,13(1),64-74
    25.张旺玺.浅谈提高聚丙烯腈碳纤维性能的几种关键技术.合成技术及应用,2002,17(2),19-22
    26.贺福,杨永岗.创新是发展我国炭纤维工业的必由之路.材料导报,2000,14(11),3-4
    27.赵稼祥.大丝束碳纤维及其应用.纤维复合材料,1999,16(4),52-55
    28.贺福,赵建国.世纪之交展望我国的碳纤维工业.化工新型材料,2000,28(3),3-7
    29.张旺玺,王艳芝.聚丙烯腈原丝及其碳纤维的新进展.精细石油化工进展,2001,2(12),30-33
    30.汪晓峰,倪如青,刘强,沃志坤.高性能聚丙烯腈基原丝的制备.合成纤维,2000,29(4),23-27
    31.贺福,杨永岗.突破碳纤维产业化的“瓶颈”原丝已是当务之急.炭素技术,2002,12(2),1-4
    32.杨国华.碳素材料(下册).北京:中国物资出版社,1999,1-139
    33.陈秀仁,张怀有,田锡义.二甲基亚砜的性质和应用.化工科技,2000,29(1),31-35
    34.袭建人,庄光山,蔡华苏等.我国聚丙烯腈碳纤维工业的现状.新型碳材料,1997,12(3),22-25
    35.罗益锋.世界PAN基炭纤维发展透析及对我国的研发建议.材料导报,2000,14(11),11-13
    36.宋育梅,王刚.二甲基亚砜法碳纤维用聚丙烯腈原丝的技术进展,化工科技,2001,9(3),60-63
    37. Wood H., Sourirajian S. The Effect of Additives, Solvent Type, and Polymer Concentration on Macromolecule Dimensions. J. Appl. Polym. Sci.,1991,43(1), 213-217
    38. Krik H., Sourirajan S. Phase Separations for Cellulose Acetate-acetone Solutions. J. Appl. Polym. Sci.,1973,17,3717-3726
    39. Zhang H., Lau W. W. Y., Sourirajan S. Factors Influencing the Production of Polyethersulfone Microfiltrations Membrane by Immersion Phase Inversion Process. Sep. Sci. Technol.,1995,30(1),33-52
    40. Qian B., Lin W. The Role of Macromolecular Entanglements in the Gel Spinning Process and Properties of High Performance Polyacrylonitrile Fibers. J. Polym Eng.,1995,15(3-4),327
    41.董纪震,赵耀明,陈雪英等.合成纤维生产工艺学(下册)(第二版),中国纺织出版社,1994
    42.徐梁华,吴红枚.PAN/DMSO干湿法纺丝凝固工艺的研究.高分子材料科学与工程,2000,16(6),163-166;
    43.历雷,吴承训.超高相对分子质量聚丙烯腈的制备及其合成动力学研究.合成纤维工业,1998,10(2,5-11
    44. Qian B., Pan D., Wu Z. The Mechanism and Characteristics of Dry-Jet Wet-Spinning of Acrylic Fibers. Adv. Polym. Technol.,1986,6,509-529
    45.汪晓峰,倪如青,刘强,沃志坤.高性能聚丙烯腈基原丝的制备.合成纤维,2000,29(4),23-27
    46.何翼云,施祖培.聚丙烯腈熔融纺丝技术进展.合成纤维工业,1998,21(2),32-37
    47. Sen K., Bahrami S. H. High Performance Acrylic Fibers. J. Macromol. Sci., Rev. Macromol. Chem. Phys.,1996, C36 (1),1-76
    48.陈蕾,杨明远,毛萍君.聚丙烯腈纤维的熔融纺丝.合成技术及应用,1998,13(3),36-41
    49.古谷禧典.丙烯腈共聚物熔融纺丝法.日本公开特许公报,JP872268 812.1987
    50.古谷禧典.丙烯腈共聚物熔融纺丝法.日本公开特许公报,JP872268 813.1987
    51. Pan Y. S., Xiong D. S., Chen X. L. Mechanical Properties of Nanohydroxyapatite Reinforced Poly(vinyl alcohol) Gel Composites as Biomaterial. J. Mater. Sci., 2007,42,5129-5134
    52. Takegami K., Kaneko Y, Watanabe T., Maruyama T., Matsumoto Y, Nagawa H. Polyacrylamide Gel Containing Egg White as New Model for Irradiation Experiments Using Focused Ultrasound. Ultrasound. Med. Biol.2009,30, 1419-1422
    53. Tanaka Y. Viscoelastic Properties of Polyacrylonitrile Gels:Dependence of Sol-Gel Transition on Concentration and Aging Time.2003,200,265-270
    54. Chiu H-T., Wang J-H. Characterization of the Rheological Behavior of UHMWPE Gels Using Parallel Plate Rheometry. J. Appl. Polym. Sci.,1998,70, 1009-1018
    55. te Nijenhuis K. Dijkstra H. Investigation of the Aging Process of a Polyvinyl Chloride Gel by the Measurement of Its Dynamic Moduli.1975,14,71-84
    56. Michon C. Cuvelier G. Launay B. Concentration Dependence of the Critical Viscoelastic Properties of Gelation at the Gel Point. Rheol. Acta.,1993,32, 94-103
    57. Madbouly S. A., Otaigbe J. U. Rheokinetics of Thermal-Induced Gelation of Waterborne Polyurethane Dispersions. Macromolecules,2005,38,10178-10184
    58. Lue A., Zhang L. Investigation of the Scaling Law on Cellulose Solution Prepared at Low Temperature. J. Phys. Chem. B.,2008,112,4488-4495
    59. Appaw C, Gilbert R.D., Khan S.A., Kadla J.F. Viscoelastic Behavior of Cellulose Acetate in a Mixed Solvent System. Biomacromolecules,2007,8, 1541-1547
    60. Sugimoto M., Hida H., Taniguchi T., Koyama K., Aoki Y. Rheological Properties of Poly(vinyl chloride)/plasticizer Systems-Relation between Sol-gel Transition and Elongational Viscosity. Rheol. Acta.,2007,46,957-964
    61. Russo P. S. Reversible Polymeric Gels and Related Systems. American Chemical Society, Washington, D.C.1987
    62. Benguigui L. Fracture of Polymer Gels. Physica. A.,1999,270,1-7
    63. Burchard W., Ross-Murphy S. B. Physical Networks-Polymers and Gels. Elsevier Applied Science,1988
    64. Escobedo F. A., de Pablo J. J. Molecular Simulation of Polymeric Networks and Gels:Phase Behavior and Swelling. Polymer,1999,318(3),85-112
    65. Smith P., Lemstra P. J., Booij H. C. Polyethylene Gel Formed from Concentrated Polyethylene/Dimethylbenzene Solution. J. Polym. Sci. Polym. Phys.,1981,19, 877
    66. Krik H., Sourirajan S. Phase Separations for cellulose Acetate-acetone solutions. J. Appl. Poly. Sci.,1973,17,3717-3726
    67. Derossi D., Kajiwara K., Osada Y., Yamauchi A. Polymer Gels:Fundamentals and Biomedical Applications. Plenum Press, New York,1991
    68. Ferry J. D. Viscoelastic Properties of Polymers. John Wiley, New York,1980
    69. Doi M., Edwards S. F. The Theory of Polymer Dynamics. Clarendo n Press, Oxford,1986
    70. Ross-Murphy S. B., Kavanagh G. M. Rheological Characterization of Polymer Gels. Prog. Polym. Sci.,1998,23,533-562
    71. Kikutani T. Formation and Structure of High Mechanical Performance Fiber. Ⅱ Flexible Polymers. J. Appl. Polym. Sci.,2002,83,559-571
    72. Barham P. J., Hill M. J., Keller A. Gelation and the Production of Surface Grown Polyethylene Fibers. J. Appl. Polym. Sci.,1980,258,899-908
    73. Zhang Y, Xiao C, Jia G, An S. Study on Gel-Spinning Process of Ultra-High Molecular Weight Polyethylene. J. Appl. Polym. Sci,1999,74,670-675
    74. Smith P., Lemstra P. J. Ultra-Drawing of High Molecular Weight Polyehylene Cast from Solution. Colloid. Polym. Sci.,1980,258,891-894
    75. Kavesh S., Prevorsek D. C. High Tenacity, High Modulus Polyethylene and Polypropylene Fiber and Intermediates. US Patent 4,413,110,1983
    76. Kikutani T. Formation and Structure of High Mechanical Performance Fiber. II Flexible Polymers. J. Appl. Polym. Sci,2002,83,559-571
    77. Cho J. W., Lee G. W., Chun B. C. Mechanical Properties of Nylon 6 Fibers Gel-spun from Benzyl Alcohol Solution. J. Appl. Polym. Sci,1996,62(5), 771-778
    78. Yamaura K., Kumakura R. Gel-spinning of Partially Saponificated Poly (vinyl alcohol). J. Appl. Polym. Sci,2000,77(13),2872-2876
    79. Hu X. P. The Molecular Structure of Polyacrylonitrile Fibers. J. Appl. Polym. Sci, 1996,62(11),1925-1932
    80. Bohn C. R., Schaefgen J. R., Statton W. O. Laterally Ordered Polymers: Polyacrylonitrile and Poly (vinyl trifluoroacetate). J. Polym. Sci,1961,55,531
    81. Colvin B. G, Storr P. The Crystal Structure of Polyacrylonitrile. Eur. Polym. J, 1974,10,337
    82. Simitzis J. C. Handbook of Thermoplastics. New York:Marcel Dekker, Inc.,1997
    83.沈新元,朱新远,王庆瑞.UHMW-PAN中空纤维膜的研制及应用(4).膜科学与技术,2006,26(2,13-17
    84.日本东丽公司.碳纤维用原丝制法.日本专利,特开平07-331528,1995-12-19
    85. Piculell L., Thuresson K., Lindman B. Mixed Solutions of Surface and Hydrophobically Modified Polymer. Polym. Adv. Technol.,2001,12,44-69
    86. Kobashi T., Takao S. Method for the Production of High Strength Polyacrylonitrile Fiber. US Patent 4,659,529,1987
    87. Kobashi T., Takao S. Polyacrylonitrile Fiber with High Strength and High Modulus of Elasticity. US Patent 4,658,004,1985
    88. Smith P., Lemstra P. J. Process for Making Polymer Filament Which Have a High Tensile Strength and a High Modulus. U.S. patent 4,344,908,1982
    89. Chen J. C, Harrison I. R. Modification of Polyacrylonitrile (PAN) Carbon Fiber Precursor via Post-Spinning Plastilization and Stretching in Dimethyl Formamide (DMF). Carbon,2002,40(1),25-45
    90.王廷相,王成国.拉伸对聚丙烯腈原丝结构和性能的影响,合成纤维,2004,31(5),6-8
    91.张旺玺.聚丙烯腈基碳纤维.东华大学出版社,2005,4-8
    92.贺福,赵建国.世纪之交展望我国的碳纤维工业.化工新型材料,2000,28(3): 3-7
    93. Chiu H., Wang J. Characterization of the Rheological Behavior of UHMWPE Gels Using Parallel Rheometry. J. Appl. Polym. Sci.,1998,70,1009-1016
    94. Chambon F., Winter H.H. Linear Viscoelasticity at the Gel Point of a Crosslinking PDMS with Imbalanced Stoichiometry. J. Rheol.,1987,31(8), 683-697
    95. Madbouly S.A, Ougizawa T. Rheological Study on Thermo-reversible Gel. J. Macromol. Sci. Phys.,2004, B43,471
    96. Michon C, Cuvelier G, Launay B. Concentration Dependence of the Critical Viscoelastic Properties of Gelatin at the Gel Point. Rheol. Acta.,1993,32,94-103
    97. Te Nijenhuis K., Winter H. H. Mechanical Properties at the Gel Point of a Crystallizing Poly (vinyl chloride) Solution. Macromolecules,1989,22,411-414
    98. Cho J., Heuzey M-C. Dynamic Scaling for Gelation of a Thermosensitive Chitosan-β-glycerophosphate Hydrogel. Colloid. Polym. Sci.,2008,427-434
    99. Scalan J.C., Winter H.H. Composition Dependence of the Viscoelasticity of End-linked Poly(dimethylsiloxane) at the Gel Point. Macromolecules,1991,24, 47-54
    100.Hess W., Vilgis T. A., Winter H. H. Dynamical Critical Behavior during Chemical Gelation and Vulcanization. Macromolecules,1988,21,2536
    101. Muthukumar M. Screening Effect on Viscoelasticity near the Gel Point. Macromolecules,1989,22,4656
    102. Winter H. H., Mours M. Rheology of Polymers Near Liquid-Solid Transitions. Adv. Polym. Sci.,1997,134,165-234
    103. Castro J. M., Macosko C. W., Perry S. J. Viscosity Changes during Urethane Polymerization with Phase Separation, Polym. Commun.,1984,25,82-87
    104. Apicella A., Masi P., Nicolais L. Rheological Behavior of a Commercial TGDDM-DDS Based Epoxy Matrix during the Isothermal Cure. Rheol. Acta, 1984,23,291-296
    105. Lue A., Zhang L. Investigation of the Scaling Law on Cellulose Solution Prepared at Low Temperature. J. Phys. Chem.,2008,1124488-4495
    1. Chen H., Liang Y., Wang C. Solubility of Highly Isotactic Polyacrylonitrile in Dimethyl Sulphoxide. J. Polym. Res.2005,12,325-329
    2. Dong R., Keuser M., Zeng X., Zhao J., Zhang Y., Wu C, Pan D. Viscometric Measurement of the Thermodynamics of PAN Terpolymer/DMSO/Water System and Effect of Fiber-Forming Conditions on the Morphology of PAN Precursor. J. Polym.Sci. Polym Phys.2008,46,1997-2011.
    3. Payro E. R., Llacuna J. L. Rheological Characterization of the Gel Point in Sol-gel Transition. J. Non-cryst. Solids.2006,352,2220-2225
    4. Mellema, M.; van Vliet, T.; van Opheudsen, J. H. J. Categorization of Rheological Scaling Models for Particle Gels Applied to Casein Gels. J. Rheol. 2002,46,11-29.
    5. Ikeda, S.; Foegeding, E.A.; Hagiwara, T. Rheological Study on the Fractal Nature of the Protein Gel Structure. Langmuir 1999,15,8584.
    6. Muller R., Gerard E., Dugand P., Rempp P., Gnanou Y. Rheological Characterization of the Gel Point:A New Interpretation. Macromolecules,1991; 24,1321-1326
    7. Takahashi M., Yokoyama K., Masuda T., Takigawa T. Dynamic Viscoelasticity and Critical Exponents in Sol-gel Transition of an End-linking Polymer. J Chem Phys,1994; 101,798-804
    8. Muthukumar M. Screening Effect on Viscoelasticity near the Gel Point. Macromolecules,1989; 22,4656-4658
    9. Martin J. E., Adolf D., Wilcoxon J. P. Viscoelasticity near the Sol-gel. Phys Rev A,1989; 39,1325-1332
    10. Winter H.H., Chambon F. Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point. J Rheol,1986; 30(2),367-382
    11. Kobayashi K., Huang C-I, Lodge T. P. Thermoreversible Gelation of Aqueous Methylcellulose Solutions. Macromolecules,1999,32,7070-7077
    12. Muthukumar M. Winter H.H. Fractal Dimension of a Crosslinking Polymer at the Gel Point. Macromolecules,1986,19,1284-1285
    13. Zhao Y., Cao Y., Yang Y, Wu C. Rheological Study of the Sol-gel Transition of Hybrid gels. Macromolecules,2003,36,855
    14. Madbouly S. A., Otaigbe J. U., Nanda A. K., Wicks D. A. Thermal-Induced Simultaneous Liquid-Liquid Transition in Aqueous Polyurethane Dispersions. Polymer,2005,46,10897-10907
    15. Te Nijenhuis K., Winter H. H. Mechanical Properties at the Gel Point of a Crystallizing Poly (vinyl chloride) Solution. Macromolecules,1989,22,411-414
    16. Michon C, Cuvelier G, Launay B. Concentration Dependence of the Critical Viscoelastic Properties of Gelation at the Gel point. Rheol. Acta.,1993,32, 94-103
    17. Chambon F. and Winter H. H. Linear Viscoelasticity at the Gel Point of a Crosslinking PDMS with Imbalanced Stoichiometry. J. Rheol.,1987; 31(8): 683-697
    18. Chambon F., Winter H. H. Stopping of Crosslinking Reaction in a PDMS. Polymer at the Gel Point. Polym. Bull.,1985,13,499-503
    19. Kakiuchi M., Aoki Y., Watanabe H., Osaki K.) Viscoelastic Properties of Poly(vinyl chloride) Gels:Universality of Gel Elasticity. Macromolecules,2001, 34,2987-2991
    20. Izuka A., Winter H. H. Molecular Weight Dependence of Viscoelasticity of Polycaprolactone Critical Gels. Macromolecules.1992,25,2422-2428
    21. Lue A., Zhang L. Investigation of the Scaling Law on Cellulose Solution Prepared at Low Temperature. J. Phys. Chem.,2008,1124488-4495
    22. Masataka S., Hirokazu H., Takashi T. Rheological Properties of Poly(vinyl chloride)/plasticizer Systems-relation between Sol-gel Transition and Elongational Viscosity. Rheol Acta,2007; 46,957-964
    23. Winter H. H., Morganelli P., Chambon F. Stoichiometry Effect on Rheology of Model Polyurethanes at the Gel Point. Macromolecules,1988,21,532
    24. Kjoniksen A-L., Nystrom B. Dynamic Light Scattering of Poly(vinyl alcohol) Solutions and Their Dynamical Behavior during the Chemical Gelation Process. Macromolecules,1996,29,5252
    25. Madbouly S.A, Ougizawa T. Thermal Cross-linking of Poly(vinyl methyl ether). II. Rheological Behavior at the Gel Point. J. Macromol Sci, Phys,2004, B43,471
    26. Kavanagh G. M., Ross-Murphy S. B. Rheological Characterization of Polymer Gels. Prog. Polym. Sci.,1998,23,533-562
    27. Winter H. H., Mours M. Rheology of Polymers Near Liquid-Solid Transitions. Adv. Polym. Sci.,1997,134,165-234
    28. Cho J., Heuzey M-C. Dynamic Scaling for Gelation of a Thermosensitive Chitosan-β-glycerophosphate Hydrogel. Colloid. Polym. Sci.,2008,286,427-434
    29. Madbouly S. A., Otaigbe J. U. Rheokinetics of Thermal-Induced Gelation of Waterborne Polyurethane Dispersions. Macromolecules,2005,38,10178-10184
    30. Martin J. E., Adolf D., Wilcoxon J. P. Viscoelasticity near the Sol-gel Transition. Phys Rev A,1989,39,1325
    31. Stauffer D., Coniglio A., Adam A. Gelation and Critical Phenomena. Adv. Polym. Sci.,1982,44,103-158
    32. Najeh M., Munch J. P., Guenet J. M. Physical Gels from PVC:Effect of Solvent Type. Macromolecules,1992,25,7018-7023
    33. Mijangos C, Lopez D., Munoz M. E., Santamaria A. Study of Gelation Kinetics for Macromolecules. Macromolecules,1993,26,5693
    34. Semsarzadeh M. A., Barikani S. M., Ansari M. Effect of Temperature on Dynamic Physical Behavior of Poly(vinyl chloride) Gel Structure with Ester Plasticizers. Macromol. Symp.,2006,239,251-258
    1. Izuka A., Winter H. H. Molecular Weight Dependence of Viscoelasticity of Polycaprolactone Critical Gels. Macromolecules.1992,25,2422-2428
    2. Chambon F, Winter HH (1985) Polym Bull 13:499
    3. Yilmaz Y, Gelir A., Alveroglu E., Uysal N. Testing Percolation Theory in the Laboratory:Measuring the Critical Exponents and Fractal Dimension during Gelation. Phys. Rev. E.2008,77,051121
    4. Venkataraman S. K., Winter H. H. Finite Shear Strain Behavior of a Cross-linking Polydimethylsiloxane near Its Gel Point. Rheol. Acta.,1990,29,423-432
    5. Te Nijenhuis K., Dijkstra H. Invstigation of the Aging Process of a Polyvinyl Chloride Gel by the Measurement of Its Dynamic Moduli. Rheol. Acta.,1975,14, 71-84
    6. Bisschops J. Gelation of Concentrated Polyacrylonitrile Solutions. Ⅱ. J. Polym. Sci.,1955,17,89-98
    7. De Rosa M. E., Winter H. H. The Effect of Entanglements on the Rheological Behavior of Polybutadiene Critical Gels. Rheol. Acta.,1994,33,220-237
    8. Mours M., Winter H. H. Relaxation Patterns of Nearly Critical Gels. Macromolecules,1996,29,7221-7229
    9. Zhang Y., Xu X., Xu J., Zhang L. Dynamic Viscoelastic Behavior of Triple Helical Lentinan in Water:Effects of Concentration and Molecular Weight. Polymer,2007,48,6681-6690
    10. Semsarzadeh M. A., Barikani S. M, Ansari M. Effect of Temperature on Dynamic Physical Behavior of Poly(vinyl chloride) Gel Structure with Ester Plasticizer. Macromol. Symp.,2006,239,251-258
    11. Lue A., Zhang L. Investigation of the Scaling Law on Cellulose Solution Prepared at Low Temperature. J. Phys. Chem. B.,2008,112,4488-4495
    12. Cho J, Heuzey M. Dynamic Scaling for Gelation of a Thermosensitive Chitosan-β-glycerophosphate Hydrogel. Colloid. Polym. Sci.2008,286,427-434
    13. Martin J. E., Adolf D., Wilcoxon J. P. Viscoelasticity near the Sol-gel. J. Phys. Rev. A.1989,39,1325-1332
    14. Winter H. H. Transient Networks, Evolution of Rheology during Chemical Gelation. Prog. Colloid. Polym. Sci.1987,75,104-107
    15. Winter H. H., Chambon, F. Analysis of Linear Viscoelasticity of a Cross-linking Polymer at the Gel Point. J. Rheol.1986,30,367
    1. Dong R., Keuser M, Zeng X., Zhao J., Zhang Y., Wu C, Pan D. Viscometric Measurement of the Thermodynamics of PAN Terpolymer/DMSO/Water System and Effect of Fiber-Forming Conditions on the Morphology of PAN Precursor. J. Polym. Sci. Polym Phys.2008,46,1997-2011.
    2. 董纪震,罗鸿烈,王庆瑞等.合成纤维生产工艺学(上册).北京:纺织工业出版社,1993,93-163
    3. Piculell L., Thuresson K., Lindman B. Mixed Solution of Surfactant and Hydrophobically Modified Polymer. Polym. Adv. Technol.2001,12,44-69.
    4. Du W., Chen H., Xu H., Pan D., Pan N. Viscoelastic Behavior of Polyacrylonitrile /Dimethyl Sulfoxide Concentrated Solution with Water. J. Polym.Sci. Polym Phys. 2009,47,1437-1442
    5. Dong R., Zhao J., Zhang Y., Pan D. Morphology Control of Polyacrylonitrile (PAN) Fibers by Phase Separation Technique.2009,47,261-275
    6. Wei Y. M., Xu Z. L., Yang X. T., Liu H. L. Mathematical Calculation of Binodal Curves of a Polymer/solvent/nonsolvent System in the Phase Inversion Process. Desalination,2006,192,91-104
    7. James J., Vellaichami S., Krishnan R. S. G, Samikannu S., Mandal A. B. Interaction of Poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) Triblock Copolymer of Molecular Weight 2800 with Sodium Dodecylsulfate (SDS) micelles:some physicochemical studies. Chem. Phys.,2005,312,275-287
    8. Haghtalab A., Mokhtarani B. The New Experimental Data and a New Thermodynamic Model based on Group Contribution for Correlation Liquid-liquid Equilibria in Aqueous Two-phase Systems of PEG and (K2HPO4 or Na2SO4). Fluid. Phase. Equilibr.,2004,215,151-161
    9. Sadeghi R., Ziamajidi F. Vapor-liquid Equilibria of Binary Tri-potassium citrate+water and Ternary Polypropylene Oxide 400+tri-potassium citrate+water Systems from Isopiestic Measurements over a Range of Temperatures. Fluid. Phase. Equilibr.2007,255,46-54
    10. Garcia-Lopera R., Monzo I. S., Abad C, Campos A. A Thermodynamic Approach to Study Hydrogen-bonding Interactions in Solvent/solvent/polymer Ternary Systems. Euro. Polym. J.,2007,43,231-242
    11. Boom R. M., van den Boomgaard T., can den Berg J. W. A., Smolders C.A. Linearized Cloud Point Curve Correlation for Tenary Systems Consisting of One Polymer, One Solvent and Non-solvent. Polymer,1993,34,2348-2356
    12. Kim J. K., Son H.W., Lee Y., Kim J. The Effect of Phase-separated Morphology on the Rheclogical Properties of Polystyrene/poly(vinyl methyl ether) Blend. J. Polym. Sci. Polm. Phys.1999,37,899-906
    13. Ohta Y., Murase H., Sugiyama H., Yasuda H. Non-Newtonian Rheological Behavior of Semi-dilute Ultra-high Molecular Weight Polyethylene Solution in Gel-spinning Process, I:Concentration Effect on the Fundamental Rheological Properties. Polym. Eng. Sci.2000,40(11),2414-2422
    14. Chuang H.K., Han CD. Rheological Behavior of Polymer Blends. J. Appl. Polym. Sci.1984,29,2205-2229
    15. Han CD., Jhon M.S. Correlations of the First Normal Stress Differences with Shear Stressand of the Storage Modulus with Loss Modulus for Homopolymers. J. Appl. Polym. Sci.1986,32,3809-3840
    1. Badii R., Politi A. Complexity. Cambridge University Press,2000
    2. Vicsek T. Fractal Growth Phenomena, World Scientific, Singapore-New Jersey-London-Hong Kong,1989
    3. Meakin P. Fractal, Scaling, and Growth far from Equilibrium, Cambridge University Press,2000
    4. Sarker N. Chaudhuri B. B. An Efficient Approach to Estimate Fractal Dimension of Texture Image. Pattern. Recogn.,1992,25(9),1035-1041
    5. Bale H. D., Schmidt P. W. Small-angle X-ray Scattering Investigation of Submicroscopic Porosity with Fractal Properties. Phys. Rev. Lett.,1984,53(6), 596-599
    6. Zhu S., Hamielec A. E. Influence of Cross-link Density Distribution on Network Formation in Free-radical Copolymerization of Vinyl/divinyl Monomers. Macromolecules,1992,25,5457-5464
    7. Appaw C, Gilbert R.D., Khan S.A., Kadla J.F. Viscoelastic Behavior of Cellulose Acetate in a Mixed Solvent System. Biomacromolecules,2007,8,1541-1547
    8. Kontogiorgos V., Vaikousi H., Lazaridou A., Biliaderis C.G. A fractal Analysis Approach to Viscoelasticity of Physically Cross-linked Barley β-glucan Gel Networks. Colloid. Surface. B,.2006,49,145-152
    9. Bushell G.C., Yan Y.D., Woodfield D., Raper J., Amal, R. On Techniques for the Measurement of the Mass Fractal Dimensions of Aggregates. Adv. Colloid. Interf. Sci.,2002,95,1.
    10. Mellema M., Heesakkers J.W.M., van Opheusden J.H.J., van Vliet T. Structure and Scaling Behavior of Aging Rennet-Induced Casein Gels Examined by Confocal Microscopy and Permeametry. Langmuir,2000,16,6847.
    11. Bremer, L. G. B.; Bijsterbosch, B. H.; Schrijvers, R.; van Vliet, T. On the Fractal Nature of the Structure of Casein gels. Colloid. Surface.,1990,51,159-170.
    12. Marangoni A. G., Barbut S., McGauley S. E., Marcone M, Narine S. S. On the Structure of Particulate Gels-the Case of Saltinduced Cold Gelation of heat-denatured whey protein isolate. Food. Hydrocolloid.,2000,14,61-74.
    13. Mellema M., van Vliet T., van Opheudsen J. H. J. Categorization of Rheological Scaling Models for Particle Gels Applied to Casein Gels. J. Rheol.,2002,46, 11-29.
    14. Ikeda S., Foegeding E.A., Hagiwara, T. Rheological Study on the Fractal Nature of the Protein Gel Structure. Langmuir,1999,15,8584.
    15. Ould Eleya M.M., Ko S., Gunasekaran, S. Scaling and Fractal Analysis of Viscoelastic Properties of Heat-induced Protein Gels. Food. Hydrocolloid.,2004, 18,315-323.
    16. Shih W. H., Shih W. Y., Kim S. I., Liu J. Aksay I. A. Scaling Behavior of the Elastic Properties of Colloidal Gels. Phys. Rev. A.,1990,42,4772-4779.
    17. Wu H., Morbidelli M. A Model Relating Structure of Colloidal Gels to Their Elastic Properties. Langmuir,2001,17,1030-1036.
    18. Bohm N., Kulicke W.M. Rheological Studies of Bar-ley (1->3)(1->4)-beta-glucan in Concentrated Solution:Kinetic Investigation of the Gel Formation. Carbohydr. Res.,1999,315,302-311.
    19. Kasapis S., Giannouli P., Hember M.W.N., Evageliou V., Poulard C, Tort-Bourgeois B., Sworn G. Structural Aspects and Phase Behaviour in Deacylated and High Acyl Gellan Systems. Carbohydr. Polym.,1999,38,145-154
    20. Van der Linden E., Sagis L.M.C. Isotropic Force Percolation in Protein Gels. Langmuir,2001,17,5821-5824.
    21. Renkema, J.M.S.; van Vliet, T. Concentration Dependence of Dynamic Moduli of Heat-induced Soy Protein Gels. Food. Hydrocolloid.,2004,18,483-487.
    22. Ould Eleya M. M., Gunasekaran S. Gelling Properties of Egg White Produced Using a Conventional and a Low-shear Reverse Osmosis Processes. J. Food. Sci., 2002,67,725-729.
    23. Muthukumar, M. Screening Effect on Viscoelasticity near the Gel Point. Macromolecules,1989,22,4658-4660.
    24. Winter H.H., Mours M. Rheology of Polymers Near Liquid-Solid Transitions. Adv. Polym. Sci.,1997,134,185
    25. Renkema J.M.S., van Vliet T. Concentration Dependence of Dynamic Moduli of Heat-induced Soy Protein Gels. Food. Hydrocolloid.,2004,18,483-487
    26. Tada T., Matsumoto T., Masuda T. Dynamic Viscoelasticity and Small-angle X-ray Scattering Studies on the Gelation Mechanism and Network Structure of Curdlan Gels. Carbohydr. Polym.,1999,39,53-59.
    27. Clark A.H., Ross-Murphy S.B. The Concentration Dependence of Biopolymer Gel Modulus. Br. Polym. J.,1985,17,164-168.
    28. Lue A., Zhang L. Investigation of the Scaling Law on Cellulose Solution Prepared at Low Temperature. J. Phys. Chem. B.,2008,112,4488-4495.
    29. Kj(?)niksen A.-L., Hiorth M., Roots J., Nystrom B. Shear-induced Association and Gelation of Aqueous Solutions of Pectin. J. Phys. Chem. B.,2003,107, 6324-6328.
    30. Lattuada M., Wu H., Hasmy A., Morbidelli M. Estimation of Fractal Dimension in Colloidal Gels. Langmuir,2003,19,6312-6316
    31. Eissa A. S.; Khan, S. A. Acid-induced Gelation of Enzymatically Modified, Preheated Whey Proteins. J. Agric. Food Chem.2005,53,5010-5017.
    32. Pugnaloni L. A., Matia-Merino L., Dickinson E. Microstructure of Aacid-induced Caseinate Gels Containing Sucrose:Quantification from Confocal Microscopy and Image Analysis. Colloids. Surf. B.,2005,42,211-217.
    33. Davila E., Toldra M., Saguer E., Carretero C, Pares D. Characterization of Plasma Protein Gels by Means of Image Analysis. LWT-Food. Sci. Technol., 2007,40,1321-1329
    1. Nijenhuis, K. Thermoreversible Networks:Viscoelastic Properties and Structure of Gels. Adv. Polym. Sci.1997,130,96-105
    2. Gerasimov V.I., Chvalun S.N., Kazarin L.A., Goponenko A.A., Mashchenko V.I., Filyyakin A.M. Fiber. Chem.,2001,33(3),183-188
    3. Bisschops J. Reversible Gelation of Concentrated Polyacrylonitrile Solutions. J. Polym. Sci,1954,12:583-597
    4. Labudzinska A., Ziabicki A. Effect of Composition and Gelation Conditions on Structural Changes Accompanying the Gelation of PAN, PVAand Gelation Solutions. Kolloid Z,1971,243,21
    5. Beckmann J., Zenke D. Thermoreversible gelation of Polyacrylonitrile /dimethylformamide Solutions. Colloid. Polym. Sci,1993,271,436-445
    6. Flodin P. Macromol Chem, Macromol Symp,1988,22,253
    7. Bisschops J. Reversible Gelation of Concentrated Polyacrylonitrile Solutions Ⅱ. J. Polym. Sci,1955,17,89-98
    8. Bashir Z. Thermoreversible Gels of Polyacrylonitrile. J. Polym. Sci, Polym. Phys., 1992,30,1299-1304
    9. Bashir Z. Thermoreversible Gelation and Plasticization of Polyacryonitrile. Polymer,1992,33(30),4304-4313
    10. Bashir Z., Atureliya S.K., Church S.P. Production of Oriented Polyacrylonitrile Films by Flow-induced Chain Extension and Crystallization from Solution. J. Mater. Sci,1993,28,2721-2732
    11. Tom(?)ic M., Prossnigg F., Glatter O. A Thermoreversible Double Gel: Characterization of a Methylcellulose and κ-carrageenan Mixed System in Water by SAXS, DSC and Rheology. J. Colloid. Interf. Sci.,2008,322,41-50
    12. Wang Q., Li L. Effects of Molecular Weight on Thermoreversible Gelation and Gel Elasticity of Methylcellulose in Aqueous Solution. Carbonhyd. Polym.,2005, 62,232-238
    13. Grassie N., McGuchan R. Pyrolysis of Polyacrylonitrile and Related Polymers I. Eur.Polym.J.,1971,7,1091
    14. Beevers R. B. Problem OF Order in Polymers-Makromoleculare Chemie-Macromolecular Chemistry and Physics. Macromolecular Review,1968, 3,113-254
    15. Ohta Y, Murase H., Sugiyama H., Yasuda H. Non-Newtonian Rheological Bbehavior of Semi-dilute Ultrahigh Molecular Weight Polyethylene Solution in Gel Spinning Process.1:Concentration Effect on the Fundamental Rheological Properties Polym. Engi. Sci,2000,40(11),2414-2422
    16. Allen R. A., Ward I. M., Bashir Z. An Investigation into the Possibility of Measuring an X-Ray Modulus and New Evidence for Hexagonal Packing in Polyacrylonitrile. Polymer,1994,35(10),2063-2071
    17. Bohn C. R., Schaefgen J. R., Statton W. O. Laterally Ordered Polymers: Polyacrylonitrile and Poly (vinyl trifluoroacetate). J. Polym. Sci,1961,55,531
    18. Klement J. J., Geil P. H. Growth and Drawing of Polyacrylonitrile. Crystals Grown from Solution. J. Polym. Sci,1968,6,138
    19. Tsai J-S., Lin C-H. The Effect of the Distribution of Composition among Chains on the Properties of Polyacrylonitrile Precursor for Carbon fibre. J. Appl. Polym. Sci,1991,42,3039
    20. Yamazaki H., Kajita S., Kamide K. Solution-Grown Single Crystal of Polyacrylonitrile Polymerized by y-Ray Irradiation on Urea-Acrylonitrile Canal Complex:Preparation and Preliminary Structure Analysis. Polym. J.,1987,19: 995
    21. Colvin B. G, Storr P. The Crystal Structure of Polyacrylonitrile. Eur. Polym. J, 1974,10,337
    22. Bashir Z., Atureliya S. K., Church S. P. The Effect of Solvent on the X-ray Scattering from Polyacrylonitrile. J. Mater. Sci,1993,28,2730
    1. Mittal J., Mathur RB, Bahl OP. Post Spinning Modification of PAN Fibres-A Review. Carbon,1997,35,1713-1722.
    2. Gu SY, Ren J, Vancso GJ. Process Optimization and Empirical Modeling for Electrospun Polyacrylonitrile (PAN) Nanofiber Precursor of Carbon Nanofibers. Eur. Polym. J.,2005,41,2559-2568.
    3. Shindo A. Comprehensive Composite Materials, Elsevier Science:Hyogo,2000, 1-30.
    4. Guigon M, Oberlin A., Desarmot G. Microtexture and Structure of Some High Tensile Strength PAN Based Carbon Fibre. Fiber. Sci. Technol.,1984,20,55-72.
    5. Xu Q, Xu L, Cao W, Wu S. A Study on the Orientation Structure and Mechanical Properties of Polyacrylonitrile Precursors. Polym. Adv. Technol.,2005,16, 642-645.
    6. Ji B, Wang C, Wang Y. Effect of Jet Stretch on Polyacrylonitrile As-spunFiber Formation. J. Appl. Polym. Sci.,2007,103,3348-3352.
    7. Chen J, Ge H, Dong X, Wang C. The Formation of Polyacrylonitrile Nascent Fibers in Wet-Spinning Process. J. Appl. Polym. Sci.,2007,106,692-696.
    8. Zeng X, Hu J, Zhao J, Zhang Y, Pan D. Investigating the Jet Stretch in the Wet Spinning of PAN Fiber. J. Appl. Polym. Sci.,2007,106,2267-2273.
    9. Tan L, Chen H, Pan D, Pan N. Investigating the Spinnability in the Dry-jet Wet Spinning of PAN Precursor Fiber. J. Appl. Polym. Sci.,2008,110,1997-2000.
    10. Rahman MA, Ismail AF, Mustafa A. The Effect of Residence Time on the Physical Characteristics of PAN-based Fibers Produced Using a Solvent-free Coagulation Process. Mat. Sci. Eng. A,2007,448,275-280.
    11. Bajaj P, Sreekumar TV, Sen K. Structure Development during Dry-Jet-Wet Spinning of Acrylonitrile/Vinyl Acids and Acrylonitrile/Methyl Acrylate Copolymers. J. Appl. Polym. Sci.,2002,86,773-787.
    12. Zhang W, Liu J, Wu G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon,2003,41,2805-2812.
    13. Qian BJ, Lin WP, He JM, Hu PP, Wu CX. Role of Macromolecular Entanglements in the Gel Spinning. J. Polym. Eng.,1996,15,327-345.
    14. Kobashi T, Takao S. Method for the Production of High Strength Polyacrylonitrile Fiber. US Patent 1987,4659529.
    15. Gupta A. K., Paliwal D. K., Bajaj P. Acrylic Precursors for Carbon Fibers. MS-Rev. Macromol. Chem. Phys.,1991, C31(1),13.
    16. Tan L, Chen H, Pan D, Pan N. Investigating the Spinnability in the Dry-jet Wet Spinning of PAN Precursor Fiber. J. Appl. Polym. Sci.,2008,110,1997-2000
    17. Suresh KI, Thomas KS, Rao BS, Nair CPR. Polym. Adv. Technol.2008,19, 831-837
    18. Godshall D, Rangarajan P, Baird DG, Wilkes GL, Bhanu VA, McGrath JE. Polymer 2003,44,4221-4428

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700