用户名: 密码: 验证码:
水溶性阻燃剂微胶囊的合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过水溶性阻燃剂甲基膦酸二甲酯(DMMP)胶囊化前后与一些无机化合物作为抑余燃、阴燃协效剂的复配实验以及DMMP微胶囊和复配体系的微胶囊的合成与应用,探讨了阻燃剂DMMP在微胶囊化前后及无机化合物协效剂的添加对棉织物阻燃效果的影响,研究了微胶囊合成过程中各种因素的影响,初探了W/O/W相中相乳化法合成DMMP微胶囊的合成机理。
     论文主要由三部分组成:(1)水溶性阻燃剂DMMP与无机化合物协效剂抑余燃、阴燃、抑烟复配体系的研究;(2)水溶性阻燃剂DMMP的微胶囊化及其应用;(3)复乳法合成微胶囊乳状液的稳定性及相间传质机理的探究
     (1)水溶性阻燃剂DMMP与无机化合物协效剂抑余燃、阴燃、抑烟复配体系的研究
     在确定DMMP作为本文的阻燃剂及微胶囊的囊心后,以被整理织物燃烧后的炭长、余燃时间、阴燃时间及烟量为织物阻燃的评定标准,通过在DMMP阻燃体系中加入不同的无机化合物的复配试验,我们发现:无机化合物中含有的某些非金属元素(含P、N、B的一些无机化合物,如:磷酸、赤磷、磷酸二氢钠、氯化铵、硼砂等)和金属元素(含Mg~(2+)、Al~(3+)、Ca~(2+)、Zn~(2+)、Cu~(2+)、Mn~(4+)的一些无机化合物,如硫酸铜、氯化镁、氧化铝、碳酸钙、氢氧化铝、氢氧化锌、氢氧化镁、氧化铜、二氧化锰等)能良好地抑制余燃及阴燃,而一些较活泼的金属离子(如Ca~92+)、Al~(3+)、Cu~(2+)、Zn~(2+)等)和某些阴离子(如氢氧根离子、氧化物等)能有效地抑制烟量的产生,因此可作为添加剂在DMMP阻燃体系中使用。
     (2)水溶性阻燃剂DMMP的微胶囊化及其应用
     以DMMP作为芯材,以聚乙烯醇(PVA)与戊二醛(GA)反应所得缩醛为壁材,应用W/O/W相中相乳化法合成DMMP微胶囊,并讨论了各种因素对微胶囊的平均粒径、粒径分布范围的影响。通过大量实验数据的分析,确定了合成水溶性阻燃剂DMMP微胶囊的最佳工艺条件:PVA水溶液浓度为3%较适宜;乳化剂SPAN80用量为体系的5%(体积比);内水相与中间相最佳体积比为1∶1~4∶5之间:乳化分散时间20分钟,搅拌速度为1400r/min;固化1小时,搅拌速度为400~600r/min;PVA水溶液的用量在50%~60%(体积比);内水相中水的用量为6mL,催化剂HCl为1mL。
     为了进一步了解微胶囊的性能,对DMMP微胶囊进行了表征,DSC热分析表明戊二醛的浓度决定了壁材的热性能,内水相中GA浓度为15%时对微胶囊破裂时的温度较为合适。红外光谱分析表明大量的C-O-C键的生成说明微胶囊的壁材是聚乙烯醇与戊二醛反应所得的缩醛;溶解实验说明形成壁材的PVA缩醛具有一定程度的网状结构,因此很难溶解于很多常用的溶剂之中;磷的定性检测结果证实了微胶囊中已成功地包覆有DMMP。
     将微胶囊化的水溶性阻燃剂DMMP用于棉织物的烟蒂阻燃实验,实验结果表明微胶囊化的DMMP阻燃剂对于由未熄的烟蒂而可能引起的火灾具有一定的阻止作用。
     将微胶囊化的水溶性阻燃剂DMMP再与无机物进行复配,根据织物燃烧后的炭长、余燃、阴燃时间等找出能够抑余燃及阴燃的最佳整理液配方。在实验中发现:DMMP微胶囊化后与无机物Sb_2O_3和H_3PO_4共同用于棉织物的阻燃整理起到了很好的阻燃效果。
     以DMMP分别与抑余燃协效剂Sb_2O_3、抑阴燃协效剂H_3PO_4作为芯材,以聚乙烯醇(PVA)与戊二醛(GA)反应所得缩醛为壁材,应用W/O/W相中相乳化法合成复配体系的DMMP微胶囊,通过大量实验数据的分析,确定了两组复配体系的微胶囊化的最佳合成工艺条件:
     抑余燃复配体系微胶囊合成最佳工艺参数:内水相中DMMP用量为20mL,水用量为6mL,HCl用量为5mL,Sb_2O_3用量为1.5克,GA用量为5mL;中间相中环己烷用量为50mL;乳化剂SPAN80用量为6mL;外水相中3%PVA水溶液的用量110mL;乳化分散时间15分钟,固化时间1小时。
     抑阴燃复配体系微胶囊合成最佳工艺参数:内水相中DMMP用量为20mL,水用量为12mL,磷酸用量为10mL,GA用量为5mL;中间相中环己烷用量为50mL,乳化剂SPAN80用量为6mL;外水相中3%PVA水溶液的用量为110mL;乳化分散时间20分钟,固化时间1小时。
     将抑余燃微胶囊与抑阴燃微胶囊共同用于棉织物的阻燃整理,实验结果显示具有良好的阻燃效果;比较复配体系微胶囊化前后阻燃实验数据,发现胶囊化后体系的耐久性有了很大的提高,且对织物的强力损失也显著降低。
     (3)复乳法合成微胶囊乳状液的稳定性及相间传质机理的探究
     通过W/O初乳液的稳定性实验,确定了制备W/O初乳液最佳的工艺参数是:乳液含水量(体积比)为60%;Span80与Tween80复配体积比为4/1;乳化剂用量(体积比)为3.5%;水相pH值为1.05:乳化温度为40℃;乳化时间为25min;乳化强度为1500r/min。
     通过合成DMMP微胶囊的单因素实验,发现相体积比、乳化剂Span80的用量、催化剂盐酸用量、PVA浓度、乳化时间、乳化强度、固化时间、固化强度等对微胶囊粒径大小及其分布的影响具有一定规律,交联剂GA用量对微胶囊粒径大小及其分布的影响规律不明显。
     通过比较内水相液滴、W/O初乳液液滴、W/O/W复乳液滴以及微胶囊的平均等效直径,推断PVA与GA缩醛反应的传质机理是:GA穿过中间相与外水相中的PVA发生缩醛反应,生成的缩醛化合物沉积在中间相与外水相的相界面上形成微胶囊囊壁。
     水溶性阻燃剂微胶囊化应用于织物的整理,国内外鲜见报道,同时水溶性物质的微胶囊化也是微胶囊技术的难点,因此对此领域的基础研究具有一定的理论和实践意义。本文在这方面只是做了一些初步的尝试工作,希望籍此工作能为水溶性阻燃剂应用领域的扩展研究打下一点基础,积累一些经验。
The paper dealt with the study of the microencapsulation of a water-soluble flame retardant dimethyl methylphosphonate (DMMP) which was used for the flame retarding finishing of cotton fabric, when it was microencapsulized and built-up with some inorganic compounds as the synergists of suppress afterflame or afterglow. Factors affecting the microencapsulation and the flame retarding efficiency of the built-up system were discussed. The mass-transfer mechanism of synthesizing microcapsules by W/O/W multiple emulsion method was also studied.
     The work mainly consisted of three parts. First, systems of built-up flame retardants, which included the water-soluble flame retardant DMMP and inorganic compounds as the synergists of suppress afterflame, afterglow or smoke suppression, were studied. Second, the microencapsulation of DMMP and its flame retarding application on cotton fabric were researched, and the optimal technical parameters for microencapsulation were confirmed. Third, the stability of W/O emulsion and the mass-transfer mechanism were delved.
     Part 1. DMMP was selected as the flame retardant of the study and the core of the microcapsules. The flame retarding efficiency had been evaluated by means of measurements of char length, afterflame time, afterglow time, and fuming amount. From the built-up experiment results, we found that inorganic compounds containing some nonmetal elements (P, N, and B, such as phosphoric acid, red phosphorus, sodium dihydrogen phosphate, ammonium chloride, borax) and metal ions (Mg~(2+), Al~(3+), Ca~(2+), Zn~(2+), Cu~(2+), and Mn~(4+), such as copper sulfate, magnesium chloride, aluminium oxide, calcium carbonate, aluminium hydroxide, zinc hydroxide, magnesium hydroxide, copper oxide, manganese dioxide) could suppress the afterflame and afterglow well. The production of fuming amount could also be suppressed by adding the inorganic compounds containing more active metal ions (such as Ca~(2+), Al~(3+), Cu~(2+), and Zn~(2+)) or some anion ions (such as oxide and hydroxide anions). So they could be used as additive to the system of flame retardant.
     Part 2. The microcapsules were synthesized by the w/o/w multiple emulsion method, with the water-soluble DMMP as the core material and the acetal product of polyvinyl alcohol (PVA) and glutaraldehyde (GA) as the shell material. Factors affecting the average particle size and distribution of microcapsules were discussed. Based on a large amount of experimental data, the optimal condition of synthetic technology was established: the mass concentration of PVA was 3%, the volume percentage of emulsifier SPAN80 in cyclohexane was 5%, the optimal volume ratio between inner phase and intermediate phase was 1 : 1 - 4 : 5, the time of emulsification was 20 minutes and the speed of agitator was 1400 r/min, the time of cure was 1 hour and the speed of agitator was 400 - 600 r/min, the volume percentage of PVA solution was 50%-60%, the volume of water in inner phase was 6mL, the volume of catalyst HCl in interior phase was 1mL.
     The DMMP microcapsules were characterized to realize their properties well. It was showed by DSC thermal analysis that the thermal behavior of the microcapsules shell was determined by the concentration of GA, and it was suitable for shell burst as the volume percentage of GA was 15%. The shell materials were acetal made from PVA and GA by IR spectrum analysis certified in the formation of the large amount of bond C-O-C. The solubility test showed that the acetal could not dissolve in several common solvents owing to a certain degree of stereo-reticular structure. It was verified that DMMP was capsuled in the microcapsules successfully through qualitative analysis of phosphor.
     The microcapsules, with flame retardant DMMP as the core material, had a good flame retarding efficiency to the fire caused by unextinguished stump.
     The microencapsulated DMMP was built-up with a series of inorganic compounds, and then the optimal finishing formula of suppress afterflame and afterglow was confirmed, according to measurements of char length, afterflame time and afterglow time. It was found that an excellent flame retarding efficiency was obtained when the DMMP microcapsule and inorganic compounds containing Sb_2O_3 and H3PO4 as built-up system were used in flame retarding of cotton fabric.
     Sb_2O_3 was selected as synergist of suppressing afterflame, which was dissolved in HCl, and H_3PO_4 as synergist of suppressing afterglow. Further more, the microcapsules of built-up system were synthesized by the w/o/w multiple emulsion method, with the water-soluble DMMP and Sb_2O_3 or H_3PO_4 respectively as the core material and the acetual product of polyvinyl alcohol (PVA) and glutaraldehyde (GA) as the shell material. The optimal condition of synthetic technology of two series built-up systems was determined:
     (1) The optimal parameters of synthesizing microcapsules which could suppress afterflame: 20 mL DMMP, 6 mL water, 5 mL HCl, 1.5 g Sb_2O_3 and 5 mL GA were contained in the inner phase; and in the intermediate phase the volume of cyclohexane was 50 mL, emulsifier SPAN80 6 mL; in the outer phase the volume of 3% PVA solution (mass concentration) was 110 mL; the time of emulsification was 15 minutes, and the time of cure was 1 hour.
     (2) The optimal parameters of synthesizing microcapsules which could suppress afterglow: 20 mL DMMP, 12 mL water, 5 mL HCl, 10 mL H_3PO_4 and 5 mL GA were contained in the inner phase; and in the intermediate phase the volume of cyclohexane was 50 mL, emulsifier SPAN80 6 mL; in the outer phase: the volume of 3% PVA solution (mass concentration) was 110 mL; the time of emulsification was 20 minutes, and the time of cure was 1 hour.
     The excellent flame retarding efficiency was obtained after the two kinds of microencapsulated flame retardants were used for cotton fabric. Compared with unmicroencapsulated flame retardants, the durability of flame retardants was greatly improved, and the loss of cotton fabric strength was reduced.
     Part 3. Based on the stability test of W/O initial emulsion, the optimal technical parameters for preparation of W/O emulsion were confirmed as follows, water content: 60 %vol; ratio of Span80 and Tween80: 4/1 (v/v); amount of emulsifier: 3.5 %vol; pH value of water phase: 1.05; emulsification temperature: 40℃; time of emulsification: 20min; emulsification intensity: 1500r/min.
     Premised on the single-factor experiments of synthesizing microcapsules, factors affecting the average particle size and size distribution of the microcapsules were confirmed. Those factors included water content, amount of emulsifier Span80, amount of catalyst HCl, concentration of PVA, time of emulsification and solidification, intensity of emulsification and solidification. However, affecting regularity of GA amount was not detectable.
     By the comparison of the average particle size among inner phase droplets, W/O initial emulsion droplets, W/O/W multiple emulsion droplets and microcapsules, the mass-transfer mechanism of PVA and GA in the acetalization was found. The shell of microcapsules was formed at the interface between middle phase and outer water phase by the acetalization of GA with PVA to produce deposit as GA passed through middle phase to outer water phase.
     In summary, the study of the microencapsulated water-soluble flame retardants used for flame retarding finish of cotton fabric has rarely been reported. It was difficult for microcapsule technique in encapsulizing water-soluble materials. The fundamental research in this area had both theoretical and practical importances. Although the work described in this paper was a preliminary attempt in this field, it established a very useful foundation for further research.
引文
1.纺织部印染开发中心,印染信息,No.5 1982
    2. George E. Booth, Using Open-Flame Barriers to Achieve State-of-the-Art Performance, Spring Industries, Inc. Honea Path, SC.
    3.Dr.Agena,P.A.G Francis et al.氧化锑的毒性研究——阻燃剂氧化锑和其它锑化合物对人和环境危害的文献综述,阻燃材料与技术,No.5,2000:12~15
    4.機能材料(日),Vol.8,No.12,1988:29~45
    5. USP 2635953
    6. USP 4421782
    7. Modern Plastics Encyclopedia, 1986~1987
    8. Vol.40, No.1, 1988: 68-100
    9. Richard D. Hilton, Flame Retardant Patent Activity——Trends in the 1990s, Business Communications Company, Inc. Houston, TX
    10.杨家玲,绿色化学与技术,北京邮电大学出版社,北京,2001:3~6
    11.郭如新,环境友好型阻燃剂——氢氧化镁,化工科技市场,No.6,2000:10~13
    12. Walter M. D., Recent Adv. Flame Retard., Polym. Mater. No.9, 1998: 274~285
    13.欧育湘,阻燃剂——制造、性能及应用,兵器工业出版社,北京,1997:182~195
    14.吴金坤,硅酮系阻燃剂及其阻燃技术,化工新型材料,Vol.28,No9,2000:12~15
    15.徐加艳等,阻燃材料工业中的绿色化学与技术,高分子材料科学与工程,Vol.18,Nol,2002:17~21
    16. Gilman J W. Kashiwagi T., Annual Conference on Fire Research No.2~5, 1998: 37
    17.张玉龙 李长德等,纳米技术与纳米塑料,中国轻工业出版社,北京,2002:108
    18.宋健等,微胶囊化技术及应用,化学工业出版社,北京,2001:361~365
    19.崔健,微胶囊技术在阻燃剂中的应用,塑料科技,No.4,2001:37~39
    20.李玉荣等,包覆红磷的研制和应用,现代化工,No.2,1997:19~20,34
    21. G. E. ZAIKOV and S. M. LOMAKIN, Ecological Aspects of Polymer Flame Retardation, Journal of Vinyl & Additive Technology, Vol.5, No. 1 1999: 12~19
    22. RONGCAI XIE, BAOJUN QU, Journal of Applied Polymer Science, No.8, 2001: 1190~1197
    23.于永忠 吴启鸿 葛世成,阻燃材料手册,群众出版社,北京,1997
    24. Jeffrey W, Ritchie Steven J, Kashiwagi et al, Fire and Materials, Vol.21, No.1, 1997: 23~32
    25. Dr. G. P. Nair, Flammability in textiles and routes to flame retardant textiles(Ⅺ), Colourage, No.7, 2001: 39~41
    26. Dr. G. P. Nair, Flammability in textiles and routes to flame retardant textiles(Ⅹ), Colourage, No.6, 2001: 37~40
    27.陈永红,红磷的微胶囊化及应用研究,塑料科技,No.1,1998:45~47
    1.纺织部印染开发中心,印染信息,1982(5)
    2. F. H. Holmes, Textile, 1983, 12, 2
    3. J. E. Stephenson, Speciality Chem., 1981(1), 2, 14
    4. A. RooR, Textile Praxis, 1984, 34, 41
    5.国外纺织技术(阻燃专辑),1984,8,20
    6.纺织部印染开发中心,印染信息,1988(5)
    7.徐应麟,王元宏等,高聚物材料的实用阻燃技术,北京,化学工业出版社,1987,13
    8. A. R. Horrocks. Scanning electron microscopic studies of wool/intumescent char formation. Rev. Prog. Coloration, 1986(8), 16~67
    9. W. E. Franklin, Thermal degradation of cellulose and cellulose esters. J. Macrmol. Sci. Chem., 1983, A 19(2), 265~282
    10. W. E. Franklin, Thermal degradation of cellulose in nitrogen, J. Macrmol. Sci. Chem., 1983, A 19(4), 619~641
    11. Charles A. Wilkie, Polybutadiene-modified clay and its polystyrene nanocomposites, Journal of vinyl & additive technology, 1999(12), 172~185
    12. Baljinder K. Kandola, A. Richard Horrocks, Complex char formation in flame-retarded fiber/intumescent combinations: physical and chemical nature of char, Textile Research Journal, 1999, 69(5), 374~381
    13. Shigeko Nakanishi, Toshimasa Hashimoto, Flame retardation of cellulosic fibers as characterized by thermal degradation behavior, Textile Research Journal, 1998, 68(11), 807~813
    14. Shigeko Nakanishi, Junko Morikawa, Toshimasa Hashimoto, Flame retardation of cellulosic Fibers characterized by apparent activation energy of thermal degradation, Textile Research Journal, 1999, 69(3), 208~213
    15.欧育湘,阻燃剂—制造、性能及应用,北京,兵器工业出版社,1997,1~10
    16. E. D. Weil, Additivity, synergismand and autagonism in flame retardancy, Flame retardancy of polymeric materials, Vol. 3, Edited W. C. Karyla and A. J. Papa, Marcel Dekker INC, 1976, 185~243
    17.张军,纪奎江,夏延致,聚合物燃烧与阻燃技术,北京,化学工业出版社,2005,193~213
    18.杨荫堂,印染,1992,18,51
    19. Alec Williams, Flame Resistant Fabric, Noyes Data Corporation, 1994, 139
    20. G. P. Nair, Colourage, 2000(6), 31
    21.周卫平等,金属离子对塑料燃烧发烟的影响,中国塑料,2001(6),63~64
    22.周卫平等,酸根离子对聚氯乙烯燃烧发烟的影响,中国塑料,2000(6),59~60
    23.薛恩钰等,阻燃科学及应用,北京,国防工业出版社,1988,99
    24.周卫平等,结合水在PVC消烟中的作用初探,中国塑料,1999(3),49~50
    1.欧育湘,阻燃剂—制造、性能及应用,北京:兵器工业出版社,1997:116~118
    2.梁治齐,微胶囊技术及其应用,北京:中国轻工业出版社,1999:1~3
    3.董炎明,微胶囊化及用作壁材的聚合物,塑料开发1991(3):134~143
    4.王东辉、赵裕蓉,微胶囊的应用与研究进展,化工新型材料 1999,27(7):11~14
    5.陈根荣,阻燃剂的微胶囊化,塑料 1989(2):38~39
    6.陈永红,红磷的微胶囊化及应用研究,塑料科技 1998(2):45~47
    7.李玉荣、李立、范辰东,包覆红磷的研制和应用,现代化工 1997(2):19-20,34
    8. G. E. Zaikov, S. M. Lamakin, Ecological Aspects of polymer Flame Retardation Journal of vinyl & Additive technology 1999(3): 12~19
    9. Dr. G. P Nair, Flammability in textiles and routes to flame retardant textiles (Ⅺ) Colourage 2001(7): 39~41
    10. Dr. G. P Nair, Flammability in textiles and routes to flame retardant textiles (Ⅹ) Colourage 2001 (6)
    11.崔健,微胶囊技术在阻燃剂中的应用,塑料科技 2001(8):37~39
    12.夏纪鼎、倪永全,表面活性剂和洗涤剂化学与工艺学,北京:中国轻工业出版社,1997:413~415
    13. Choong-Kyun Yeom、Kew-Ho Lee, Pervaporation separation of water-acetic acid mixtures through Poly(vinyl alcohol) membranes crosslinked with glutaraldehyde, Journal of Membrane Science 109(1996): 257~265
    14.郑忠、胡纪华,表面活性剂的物理化学原理,广州:华南理工大学出版社,1995:114~116
    15.欧育湘,阻燃剂—制造、性能及应用,北京:兵器工业出版社,1997:181~195
    16.北京有机化工厂研究所编译,聚乙烯醇的性质和应用,北京:纺织工业出版社,1979:8~9
    17.严瑞瑄,水溶性高分子,北京:化学工业出版社,1998:42,57
    18.梁治齐、李金华,功能性乳化剂与乳状液,北京:中国轻工业出版社,2000:69~71
    19. C. K. Yeom, S. B. OH, J. W. Rhim、J. M. Lee, Microcapsulation of Water-soluble Herbicide by Interfacial Reaction 1. Characterization of Microcapsulation, Journal of Applied Polymer Science, 78(2000): 1645~1655
    20.宋健等,微胶囊化技术与应用,北京:化学工业出版社,2001:32,34~35
    21.梁文平,乳状液科学与技术基础,北京:科学出版社,2001:27~38
    22.王传好等,W/O/W多重乳液的制备及应用概述,日用化工1991(3):23~31
    23.李葵英,界面与胶体的物理化学,哈尔滨:哈尔滨工业大学出版社,1998:226
    24. Jun-Seo ParkJang-Woo Park、Eli Ruckenstein, On the Viscoelastic Properties of Poly(vinyl alcohol) and Chemically Crosslinked Poly(vinyl alcohol), Journal. of Applied Polymer Science, 82(2001): 1816~1823
    25.欧育湘,阻燃剂—制造、性能及应用,北京:兵器工业出版社,1997:148~174
    26.张军、纪奎江、夏延致,聚合物燃烧与阻燃技术,北京:化学工业出版社2005:42~45
    27.章梅芳、孙辰龄,无机化学,北京:高等教育出版社,1983:107~109
    28.赵国玺等,表面活性剂作用原理,北京:中国轻工业出版社,2003:584~587
    29.王菊生、孙铠,染整工艺原理(M)第二册,北京:纺织出版社,1990:310-322
    30. LIN Miao、XIAN Chun-ying、YANG Yong, Study on the Built-up Effect of Inorganic Compounds to Flame Retardant Containing Organophosphorus in Suppression of Smoke, Journal of DonghuaUniversity, Vol. 23, No. 4, 2006: 40~43
    1.沈钟、赵振国,胶体与表面化学,北京:化学工业出版社,2004:483~484
    2. W. J. Seifritz, J. Phys. Chem. 29, 745, 1925
    3.李光水、雍国平、许萍等,(W/O)/w型多重乳状液的实验研究,食品工业科技 2001,22(3):25
    4.黄鸿志、石轶松、王光慈,多重乳状液及其在食品高新技术中的应用,食品科技 1999,(2):13~14
    5.梁治齐、李金华,功能性乳化剂与乳状液,北京:中国轻工业出版,2000:18~80
    6.倪良、蒋文华、韩世钧,环己烷-水-SDS-添加剂O/W乳状液的分层速率和稳定性,石油化工,2001(6):456
    7.刘程,表面活性剂手册,北京:化学工业出版社,1995:1~46
    8.杨孔章、贝小来、曹宗顺,界面与膜及其应用,北京:科学出版社,1989:149~153
    9.严忠、孙文东,乳液液膜分离原理及应用,北京:化学工业出版社,2005:6~9
    10.安秀林、李庆忠,乳状液稳定性的影响因素和表达,张家口农专学报,2003,19:30
    11.裘炳毅,乳化作用及其在化妆品工业的应用,日用化学工业,1999,2:49
    12.徐燕莉,表面活性剂的功能,北京:化学化工出版社,2004:27
    13.梁文平,乳状液科学与技术,北京:科学出版社,2001:184~186
    14.颜肖慈、罗明道,界面化学,北京:化学化工出版社,2005:75~76
    15. Sanjeeb K. Sahoo, Jayanth Panyam, Swayam Prabha, Vinod Labhasetwar. Residual polyvinyl alcohol associated with poly (D,L-lactide co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of Controlled Release 2002(82): 105~114
    16.李玉荣、李立、范辰东,包覆红磷的研制和应用,现代化工,1997(2):19~34
    17. G. M. Tedajo, M. Seiller, P. Prognon, J. L. Grossiord. PH compartmented W/O/W multiple emulsions: a diffusion study, Journal of Controlled Release 2001(75): 45~53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700