用户名: 密码: 验证码:
抗结皮复合镁铝尖晶石浇注料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥工业是国民经济的支柱产业,同时也是典型的高能耗行业。通过科技的发展和技术的进步,预分解窑逐渐取代了立窑等落后技术,不仅使水泥产质量显著提高,而且取得了巨大的节能减排效果。然而,预分解窑中仍存在传热分解效率较低的堆积态传热,增大了生产能耗。短流程预烧成技术通过提高入窑物料温度,强化悬浮态下的传热过程,提高换热效率,大幅度降低能耗,是水泥窑炉技术的一大进步。但是,短流程预烧成窑的入窑物料温度由900℃提高至1200℃,并且能够造成窑中碱氯硫环境的改变,更易造成结皮堵塞等问题,因此,对短流程预烧成窑用耐火材料的抗结皮性、抗热震性、耐高温性等提出了更高的要求。
     本课题是基于国家“973”计划项目《水泥低能耗制备与高效应用的基础研究》的第二课题《熟料分段烧成动力学及过程控制》的重要研究内容之一,目的是针对短流程预烧成窑工况条件和使用要求,开发新型的抗结皮耐火浇注料,并获得最优配方,为工业生产奠定基础,主要研究内容包括以下几个方面:
     (1)设计了新型抗结皮耐火浇注料的矿物组成。针对短流程预烧成窑工况条件及其对浇注料抗结皮性、抗热震性、抗硫碱侵蚀性和耐高温性等使用性能的要求,通过材料性能对比和分析,选择具有优异抗硫碱侵蚀性和抗结皮性的镁铝尖晶石相作为主晶相,选择具有优异抗热震性能的堇青石相作为次晶相,以MgO-Al_2O_3-SiO_2-H_2O作为结合相,并根据MgO-Al_2O_3-SiO_2三元相图,确定结合相的平衡组成位于镁铝尖晶石(MA)和堇青石(M_2A_2S_5)的连线附近。
     (2)建立了新的耐火材料抗结皮性能测试方法。针对现行的抗结皮性能试验标准《抗结皮耐火浇注料抗结皮性试验方法》的不足,即只能定性分析浇注料是否有抗结皮性,无法定量分析和比较各材料之间的抗结皮性能优劣,参考《普通混凝土力学性能试验方法》,设计了劈裂抗拉强度试验方法,实现了浇注料抗结皮性能的定量分析;利用该法测试了4种“三明治试样”的抗结皮性能,得到其抗结皮性的优劣顺序,即MA_2> MA_1>50S≈13NL;并通过单因素方差分析,对4种试样的劈裂抗拉强度试验结果进行组内和组间对比,证明了试样劈裂抗拉强度存在的显著性差异是由浇注料的种类不同引起的,验证了劈裂抗拉试验的合理性。
     (3)优化了新型抗结皮耐火浇注料的配方。在前期研究基础上,通过黑箱原理、四次性能优化试验,对抗结皮复合镁铝尖晶石浇注料进行了配方优化设计,研究各种配料掺量等条件对浇注料各项性能的影响,并最终获得了抗结皮复合镁铝尖晶石浇注料的最优配方。
     (4)系统测试了抗结皮复合镁铝尖晶石浇注料最优配方的抗结皮性、抗热震性、抗侵蚀性等性能,结果表明该浇注料的各项性能明显优于13NL、50S等浇注料。通过TG/DTA、XRD、SEM等测试手段对结合相的热稳定性、矿相组成、微观形貌等进行表征,初步分析了最优配方性能提高的原因。
Cement manufactory is the pillar industry of domestic economy and a typicalhigh energy consumption industry. The ultilization of precalciner, which replaced thebackwardness technologies, not only improved the qulity and quantity of cement, butalso reduced the energy consumption and pollutant emission. However, the heattransfer of accumulation in the precalciner brought about higher practical energyconsumption. Short process precementation technology can obviously enhance theheat transfer process and efficiency and reduce energy consumption by increase thetemperature of raw meal. The temperature of raw meal in short processprecementation kiln was increased from900℃to1200℃, which would cause thevariation of alkali-chlorine-sulfur environment, leading to such problems as crust andblock. Therefore, the refractories used in short process precementation kiln shouldhave excellent crust-resistance, thermal shock-resistance, and hightemperature-resistance.
     This dissertation is one important research of "kinetics study and process controlof clinker sectional burning", based on the "973" national projects “fundamentalresearch on cement production with low energy consumption and high efficientapplication”, aimed to develop anti-crust refractory castable and its optimal formula,which suit to the condition and requirement of the short process precementation kiln.The main contents include the following aspects:
     (1) According to the requirement of short process precementation kiln, theMagnesia-Alumina Spinel with excellent sulfur alkali corrosion-resistance andtemperature-resistance property was used as main crystal. The cordierite with highthermal shock-resistance was chosen as the secondary crystalline phase and theMgO-Al_2O_3-SiO_2-H_2O was selected as the combined phase. Based on theMgO-Al_2O_3-SiO_2three ternary phase diagram, the equilibrium composition can belocated at the connected line of the spinel (MA) and cordierite (M_2A_2S_5).
     (2) In view of disadvantagement of the current anti-crust performance test standard,the split tensile strength method was designed for quantitative analysis ofcrust-resistance. Four Sandwich specimens was tested by this method. The resultsshowed the order of their crust-resistance performance, i.e. MA_2> MA_1>50S=13NL.Meanwhile, the single factor analysis of variance was carried out to compare the test results within groups and between groups. The results proved that the significantdifferences between the split tensile strength were caused by different species, andalso verified the rationality and accuracy verification of the method.
     (3) The optimum formula of the composite Magnesia-Alumina Spinel castable wasobtained through the black-box principle and four orthogonal experiments. The effectof the ingredient content on the performance of castable was also obtained.
     (4) The crust-resistance, thermal shock-resistance, and corrsion-resistanceperformance of optimum formula of the composite Magnesia-Alumina Spinel castablewere systemically studied, which was much higher than13NL and50S. The thermalstability, mineral composition, morphorgy, et. al of the combined phase werecharacterized by methods like TG/DTA, XRD, SEM. Moreover, the reasons for theimproved performance of optimal formula were also anylized.
引文
[1]汪澜.水泥低碳生产技术评述[J].中国水泥,2010(5):25.
    [2]中国水泥网信息中心.2011年全年全国水泥产量[EB/OL].2012.01.17.http://www.ccement.com/news/Content/49383.html.
    [3]工信部节[2010]582号,工业和信息化部关于水泥工业节能减排的知道意见[J].中国水泥,2011.1:9.
    [4]杨楠如,曾燕伟.从科学发展观看传统水泥工艺改革的必然[J].水泥技术,2006(3):20.
    [5]蔣尔忠,崔源声.面向可持续发展的水泥工业[M].北京:化学工业出版社,2003.12:3.
    [6]沈威.水泥工艺学[M].湖北:武汉理工大学出版社,2011.7:89.
    [7]中国建筑科学研究总院,一种水泥预烧结生产方法及其系统.汪澜,王杰曾,佟贵山,谢吉优.中国,C04B7/44(2006.01)I,CN101139175,2008.3.12.
    [8]宋希文.耐火材料工艺学[M].北京:化学工业出版社,2008.1:1.
    [9]王杰曾,曾大凡.水泥窑用耐火材料[M].北京:化学工业出版社,2011.7:2.
    [10]范泳,陶贵华等.水泥窑固体废弃物处理对耐火材料的影响及对策[J].中国水泥,2006(11):53~58.
    [11]刘振英,薛群虎,熊小兵.水泥窑用优质耐碱浇注料的研究[J].新世纪水泥导报,2006,2:21~22.
    [12]范咏等.高性能耐火浇注料新品种[J].中国水泥,2003(5):39-41.
    [13]王杰曾,冷少林,刘锡俊等.刚玉质低水泥浇注料结合相的研究[J].硅酸盐通报,1997,16(增刊):347-352.
    [14]王杰曾,王晓红,李艳等.铝酸钡水泥系结合剂的研制[A].2004年全国耐火材料综合学术年会论文集[C].洛阳:中国金属学会耐火材料学会,2004:269-276.
    [15]王杰曾.建筑材料工业用耐火材料的研究进展[J].硅酸盐学报,2008,3:228-232.
    [16]王码.新型干法水泥窑用耐火浇注料使用体会[N].中国建材报,2007,4:1-2
    [17]范泳,陶贵华等.水泥窑固体废弃物处理对耐火材料的影响及对策[J].中国水泥,2006.11:53-58
    [18] Goto K, Lee E William. The “Direct Bond” in Magnesia Chromite and Magnesia SpinelRefractories[J]. J. Am. Ceram. Soc.,1995,78(7):1753-1760.
    [19] Bartha B. Possibilities of Preventing the Formation of Rings in Rotary Cement Kilns byUsing Magnessia-Spinel Bricks[J]. Refratechnik Report No.30.
    [20] Buchebner G, Harmuth H, Molami T. Magnesia-hercynite bricks, an innovartive burnt basicrefractory. Proceedings of Sixth UNITER’99, Berlin, Germany,1999.201-3-203.
    [21] Bartha G. Selection criteria for the use of high-alumina and fire clay bricks in rotary cementkilns[J]. Translated from Zement-Kalk-Gips,1978(1):35-38.
    [22] Bongers V U, Riddel I D, Stradmann. Experence with Basic Refractories in Morden CementKilns[J]. World Cement,1996(9):14-22.
    [23] Zeng Dafan, Wang Jiezeng. Development and Tendency of Retractories for BuildingMaterials Industry in China[J]. China’s Refractories,2007,16:34-36.
    [24] Yoshiharu K, Fumihito O, Toru H. The present and future of chrome-free linings for rotarycement kilns. Journal of the Technical Association of Refractories(Japan),2000,20(4):266-270.
    [25] Macey C L, Refratory solutions for high wear in cement kiln transition zones. Proceeding offifth UNITER’97,New Orlearns, USA,1997.1625-1631.
    [26] Geith M, Majcenovic C, Wiry A. Hercyrite&galaxite-active spinels, additives for excellentrotary kiln bricks. RHI Bulletin: Jourmal of Refractory Innovations,2003,(1):25-28.
    [27] Partridge T J. Cement kiln refractories-the chrome-free solutions. The RefractoriesEngineer,1997(2):6.
    [28] Griffin D J, Miller T G. The Effect of Ziroonia on Dolomite Refractories Seminar of TheBaker J E Refractories. Co., York, Pa, USA,1996.
    [29] Guo Z Q, Technical progress in basic refratories for cement rotary kiln, Journal of theTechnical Association of Refractories-Japan,2003,23(1):218-225.
    [30] Rigaud M, Guo Z Q, He H, et al. Coatability, adherence and refractories evaluation: CARE.Proceeding of Sixth UNITER’99,Berlin,Germany,1999.216-218.
    [31] Guo Z Q, Rigaud M. On the measurement of clinker’s adherence on refractories. China’sRefractories,2001,10(4):10-20.
    [32] Guo Z Q, Palco S, Rigaud M. Bonding of cement clinker onto doloma-based bricks. Journalof the American Ceranic Society,2005,88(6):1481-1487.
    [33]刘振英,薛群虎,熊小兵.水泥窑用优质耐碱浇注料的研究[J].新世纪水泥导报,2006,2:21-22
    [34]曹百言,刘洋.新型干法窑耐火浇注料的合理选用和发展趋势[J].水泥,2008(3):27-29
    [35]Semler E S. Refractories: A Decade in Review[J]. Ceramic Industry,2001(8):57-59.
    [36]王杰曾,曾大凡.水泥窑用耐火材料[M].北京:化学工业出版社,2011.7:9.
    [37]冯云生等,浅议水泥窑不定形耐火材料的研究方向[N].中国建材报,2007,6,13:1~2.
    [38] Haas,J.;Bauer,K.;Mǚller-Pfeiffer,M.:Einflusse auf den Feuerfestverbrauch der deutschenZementwerke-Entwicklungen und Tendenzen. Technisch-wissenschafitliche Zementtagung,Neuss,November2007.
    [39] Nievoll J. Friendly Alternatives[J].International Cement View,1996(9):50-52.
    [40] GROSSE-DALDRUP H, SVHEEUBEL B. Alternative fuels and their impact on refractorylinings[J]. World Cem,1996,27(3):94-98.
    [41] SCHEUD B. Refractory linings for modern rotary kiln plants [J]. Zement Kalk Gypsum,1993,46(11):710-714.
    [42] Gaebel,R.;N.:Alternative fules in the cement industry.Proc. Refra Koolloqium2000,Refratechnik Cement GmbH,Gottingen2000,pp.151-168.
    [43]冯云生等,浅议水泥窑不定形耐火材料的研究方向[N].中国建材报,2007,6,13:1-2.
    [44] Scheubel B. Retractory Linings for Modern Rotary Kiln Plants. Zemnet KalkGypsum[J].1993,46(11):710-714.
    [45] Grosse-Daldrup H, Svheubel B. Alternative Fules and Their Impact on RefractoryLinings[J].World Cement,1996(3):94-98.
    [46]范泳,陶贵华等.水泥窑固体废弃物处理对耐火材料的影响及对策[J].中国水泥,2006.11:53-58
    [47]李建锡,陈全德,袁润章.预分解系统结皮特征的研究[J].水泥工程,1999(1).
    [48]李建锡,陈全德,袁润章.预分解系统结皮特征的研究[J].Cement Engineering,1999,1:10-13.
    [49]矫深田.我公司预分解系统结皮堵塞的原因及对策[J].水泥工程,1999(6).
    [50]郭海珠.使用特种耐火材料消除预热器系统碱结皮堵塞的展望[A].中国建材研究院耐火所.
    [51]陈全德,等.解决预分解窑粘结堵塞难题的新进展[S].悬浮预热和预分解窑技术经验交流会论文集(第三届)1997.
    [52] Klischat,H.-J.:High alumina refractory bricks–countermeasures against thermochemicalattack in cement rotary kilns. Proc. Refra Kollomquium2004, Refratechnik Cement GmbH,Gottingen2008,pp.71-80.
    [53] Klischat,H.-J.;Groger,P.;Wirsing,H.:Superior alkali resistant high alumina bricks for cementkiln installations. UNITECR2007,Dresden2007.
    [54] Radovanovic S V. Reaction behavior of spinel, zirconia and monocalcium ziroonate underwording conditions of cement kilns. Proceedings of Fifth UNITER’97, New Orlens, USA,1997,1613-1623.
    [55] Leupold,H.;Santowski,K.:Wieland,K.: Verbesserung der Alkaliberstandigkeit feuerfesterWerkstoffe aus dem System SiO2-Al2O3fur Zementdrehrohrofen im Temperaturbereich bis1300℃. Proc. XXVI. Int. Coll. on Refractories, Aachen1983,pp.236-256.
    [56] Klischat,H.-J.; Liever,H.; Wirsing,H.: Alkalibestandige Zustellung der Sicherheiszone vonchemisch belasteten Zementund Kalkdrehofen. ZKG International55(2002) No.6, pp.66-75.
    [57] Dipl.-Ing., Dr.H.-J.Klischat, Dr.U.Zielinski,:Key aspects of the refractoey performance incement kilns operated with waste fuels. Refratechnik Cement GmbH, Gottingen,Germany.
    [58] Zawrah M F, Khalil M N. High alumina castables reinforced with SiC[J]. Advances inApplied Ceramics,2005,104(6):91-95.
    [59]范咏等,高性能耐火浇注料新品种[J].中国水泥,2003,5:39-41.
    [60]李红霞.耐火材料手册[M].北京:冶金工业出版社.2007.1:275-278.
    [61]李红霞.耐火材料手册[M].北京:冶金工业出版社.2007.1:275-278.
    [62]宋希文.耐火材料工艺学[M].北京:化学工业出版社.2008.1:59.
    [63]宋希文.耐火材料工艺学[M].北京:化学工业出版社.2008.1:63.
    [64]宋希文.耐火材料工艺学[M].北京:化学工业出版社.2008.1:63
    [65]王杰曾,曾大凡.水泥窑用耐火材料[M].北京:化学工业出版社,2011.7:140.
    [66] YB/T4193-2009,抗结皮耐火浇注料[S].
    [67]王杰曾,曾大凡.水泥窑用耐火材料[M].北京:化学工业出版社,2011.7:51.
    [68] DIN51069,pt.2, Prufung keramischer Roh-und Werkstoffe; vergleichende Prufung desVerhaltens Feuerfester Werkstoffe gegen den Angriff fester und flussiger Stoffe bei hoherTemperater, Tiegelverfahren.
    [69] GB10696-89,硅铝制耐火浇注料耐碱性试验方法[S].
    [70] YB/T376.1—1995,耐火制品抗热震性实验方法(水急冷法)[S].
    [71] YB4018-91,耐火制品抗热震试样方法(空气急冷法)[S].
    [72] YB4018-91,耐火制品抗热震实验方法(空气自然冷却法)[S].
    [73]王杰曾,金宗哲等.耐火材料抗热震疲劳行为评价的研究[J].硅酸盐学报,2002,(2):91-93.
    [74] GB/T5072.1—1998致密定形耐火制品常温耐压强度实验方法(无衬垫仲裁实验)[S].
    [75] GB/T3001—2000定型耐火制品常温抗折强度实验方法[S].
    [76] GB/T7320.1-2000,耐火材料热膨胀试验方法[S].
    [77]中国建筑材料科学研究总院.一种水泥预烧结生产方法及其系统[P].中国专利,CN101139175,2008.3.12.
    [78]范泳,陶贵华等.水泥窑固体废弃物处理对耐火材料的影响及对策[J].中国水泥,2006.11:53~58.
    [79] Beimdiek,K.: Highly flexible monolithic refractory systems-workability, installation,performance. Proc. Refra Kollomquium2008, Refratechnik Cement GmbH, Gottingen2008,pp.165-180.
    [80]宋希文.耐火材料工艺学[M].北京:化学工业出版社.2008.1:291.
    [81] Klischat,H.-J.:Meeting specific cement kiln challenges by basic brick development.Proc.Refra Kolloquium2000, Refratechnik Cement Gmbh, Gottingen2000,pp.151-168.
    [82] Sodje,J.;Wirsing, H.:Structurally reinforced basic refractory bricks for use in alkali loadedcement rotary kilns. Proc. Refra Kolloquium2004, Refratechnik Cement GmbH,Gottingen2008,pp.49-56.
    [83]宋希文.耐火材料工艺学[M].北京:化学工业出版社.2008.1:298-302.
    [84]段满珍等.影响合成堇青石材料热膨胀系数的因素[J].耐火材料,2007(3):201-204.
    [85]冯运生,李燕京,臧林云.超微粉对耐火浇注料性能的影响[J].水泥技术,2004,5:23.
    [86]薛文东等.颗粒尺寸分布对耐火浇注料性能的影响[J].稀有金属材料与工程,2007,(8)增刊:366.
    [87] GB/T50081-2002,普通混凝土力学性能检测方法标准[S].
    [88] YB/T4193-2009,抗结皮浇注料的抗结皮性[S].
    [89]黄大能.用劈裂法测定水泥抗拉强度的研究[A].水泥与混凝土研究论文选(1954~1984)[C].北京:建筑材料科学研究院水泥科学研究所,1984:1915~1919.
    [90]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2008:29.
    [91]王杰曾,曾大凡.水泥窑用耐火材料[M].北京:化学工业出版社,2011.7:304.
    [92]瑞泰科技股份有限公司,中国建筑材料科学研究总院,水泥窑用镁铝尖晶石抗结皮浇注料[P].中国专利,CN101412630,2009.04.22.
    [93]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2008:87
    [94]张圣弼,李道子.相图原理计算及在冶金中的应用[M].冶金工业出版社,1986.1:329.
    [95]王倩,陈国祥,刘振义.无水泥Al2O3-MgO尖晶石钢包浇注料的实用技术研究[J].河北冶金,2006增刊:64~66.
    [96]张巍,戴文勇,千代田修明.堇青石对莫来石-铝矾土浇注料性能的影响[J].硅酸盐通报,2009,12:1286~1290.
    [97] Cotterell B, Wook-Ong, Qin C. Thermal shock and size effects in castable in castablerefractories[J]. J. Am. C. Soc,1995,78(8):2056-2064.
    [98]王杰曾,曾大凡.水泥窑用耐火材料[M].北京:化学工业出版社,2011.7:14
    [99]段满珍等.影响合成堇青石材料热膨胀系数的因素[J].耐火材料,2007,(3):201-204.
    [100] Koumoto K, Shimizu H, Seo W, et al. Thermal shock resistance of porous SiC ceramics[J].Trans Brit Ceram Soc,1991,90(1):32-33.
    [101] Bartha, P.:Feuerleichtsteine als isolierendes Arbeitsfutter fur Zementdrehofen. Zement KalkGips22(1969) No.6, pp.257-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700